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Orthogonal Projections as Distance Minimizers
In Euclidean geometry, the orthogonal projection 𝑝𝑆 of a
vector 𝑝 onto a subset 𝑆 as in Figure 1 can be defined
as the point(s) 𝑞 of 𝑆 minimizing the distance 𝐷(𝑝,𝑞)
from 𝑝 to 𝑞. In general, the projection may not be unique:
for example, projecting the center of a unit ball onto
its boundary sphere yields the full boundary sphere.
However, the projection 𝑝𝑆 is always guaranteed to be
unique when 𝑆 is an affine subspace.
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Figure 1. In Euclidean geometry, the orthogonal
projection 𝑝𝑆 of 𝑝 onto 𝑆 can be defined as the
minimizer of the Euclidean distance: it is unique
when 𝑆 is affine.

We shall describe how these notions generalize to the
dual geometry of information spaces.

Dual Divergences and Information Projections
In information theory [2], we prefer to use a dissimilarity
measure 𝐷(𝑝,𝑞) between probability distributions 𝑝(𝑥)
and𝑞(𝑥) instead of the Euclidean distance. Since those dis-
tortionmeasures are often asymmetric,𝐷(𝑝,𝑞) ≠ 𝐷(𝑞,𝑝),
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we use the notation 𝐷(𝑝 ∶ 𝑞) to highlight the asymmetric
property of information distances and call 𝐷(𝑝 ∶ 𝑞) a
divergence, assumed to be infinitely differentiable.

Here the word “divergence” is not to be confused
with the divergence operator from calculus. Similar to
the Euclidean case, an information projection of 𝑝 ∈ 𝑀
onto 𝑆 ⊂ 𝑀 can be defined by minimizing the divergence
𝐷(𝑞 ∶ 𝑝) for 𝑞 ∈ 𝑆. Since the divergence is asymmetric,
we define a dual divergence 𝐷∗(𝑝 ∶ 𝑞) = 𝐷(𝑞 ∶ 𝑝).

Information Monotonicity, Invariant Divergence,
and Invariant Metric
For example, consider the space 𝑀 of Gaussian distribu-
tions on 𝒳 the real line with

𝑝(𝑥; 𝜉) = 𝑝(𝑥;𝜇,𝜎) = 1
√2𝜋𝜎

exp(−(𝑥 − 𝜇)2
2𝜎2 )

parameterized by 𝜉 = (𝜇,𝜎). There exist many statis-
tical distances 𝐷(𝑝(𝑥; 𝜉1) ∶ 𝑝(𝑥; 𝜉2)) for measuring the
distortion between any two distributions of the statisti-
cal manifold 𝑀. However, assume we apply a mapping
𝑦 = 𝑘(𝑥) (not necessarily one-to-one) and define the
distributions

𝑝′(𝑦; 𝜉) = ∫
{𝑥∶𝑘(𝑥)=𝑦}

𝑝(𝑥; 𝜉)d𝑥.

Then we would like to have
𝐷(𝑝′(𝑦; 𝜉1) ∶ 𝑝′(𝑦; 𝜉2)) ≤ 𝐷(𝑝(𝑥; 𝜉1), 𝑝(𝑥; 𝜉2)),

with equality when 𝑦 = 𝑘(𝑥) is one-to-one or when 𝑘(𝑥) is
a sufficient statistic. This property of divergences is called
the information monotonicity. Members of the class of
statistical 𝑓-divergences

𝐼𝑓(𝑝 ∶ 𝑞) = ∫
𝒳
𝑝(𝑥)𝑓(𝑞(𝑥)/𝑝(𝑥))d𝑥

defined for a convex function 𝑓(𝑢) satisfying 𝑓(1) = 0
have this property and are called invariant divergences.
These include all divergences represented as sums or
integrals of elementary scalar divergences that satisfy
the information monotonicity (except for divergences on
binary alphabets, with 𝒳 = {0, 1}). Since 𝐼𝑔(𝑝 ∶ 𝑞) =
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𝐼𝑓(𝑝 ∶ 𝑞) for 𝑔(𝑢) = 𝑓(𝑢) + 𝑐(𝑢 − 1) with 𝑐 ∈ ℝ, we may
assume that 𝑓′(1) = 0. Furthermore, since 𝐼𝜆𝑓(𝑝 ∶ 𝑞) =
𝜆𝐼𝑓(𝑝 ∶ 𝑞) for 𝜆 > 0, we define the standard 𝑓-divergences
for 𝑓″(1) = 1. The dual 𝑓-divergence 𝐼∗𝑓 (𝑝 ∶ 𝑞) = 𝐼𝑓(𝑞 ∶ 𝑝)
of a standard 𝑓-divergence 𝐼𝑓(𝑝 ∶ 𝑞) is a standard 𝑓-
divergence obtained for the convex generator 𝑓⋄(𝑢) =
𝑢𝑓(1/𝑢).

Any standard 𝑓-divergence induces a Riemannian ge-
ometry (𝑀,𝑔) given by a certain “Fisher information
matrix.” This metric is called the Fisher metric and allows
one to define the Fisher orthogonality of vectors.

Dual Geodesic Projections and Dual Pythagorean
Theorems
The most fundamental distance or divergence in informa-
tion theory is the Kullback-Leibler invariant divergence,
commonly called 𝐼-divergence for short,

𝐼(𝑝 ∶ 𝑞) = 𝐼𝑓(𝑝 ∶ 𝑞) = ∫
𝒳
𝑝(𝑥) log 𝑝(𝑥)

𝑞(𝑥)d𝑥,

obtained for 𝑓(𝑢) = − log𝑢.
Recall that in Euclidean geometry the line segment

[𝑝𝑝𝑆] meets the subset 𝑆 orthogonally at the projected
point 𝑝𝑆 (that is, [𝑝𝑝𝑆] ⟂ 𝑆) and that the projection 𝑝𝑆
is guaranteed to be unique when 𝑆 is affine. Information
geometry extends these results by revealing the dual
nature of the 𝐼-divergence geometry using the framework
of differential geometry. Consider𝑀 as a smoothmanifold
of a family of distributions. When the family belongs to
the exponential families (e.g., Gaussian distributions), the
density can be written canonically as

𝑝(𝑥;𝜃) = exp(⟨𝜃, 𝑡(𝑥)⟩ − 𝐹(𝜃)),
where ⟨⋅, ⋅⟩ denotes the Euclidean inner product, 𝐹(𝜃) =
log ∫𝒳 exp(⟨𝜃, 𝑡(𝑥)⟩)d𝑥 is a 𝐶∞ (convex) “Legendre” func-
tion that ensures normalization to a probability distri-
bution, and 𝜃 is the natural parameter belonging to the
parameter space Θ = {𝜃 ∶ ∫𝒳 exp(⟨𝜃, 𝑡(𝑥)⟩)d𝑥 < ∞}.
Any Legendre function 𝐹(𝜃) has a conjugate Legendre
function [1] 𝐹⋆(𝜂) defined by

𝐹⋆(𝜂) = sup
𝜃∈Θ

{⟨𝜃,𝜂⟩ − 𝐹(𝜃)}.

The parameter 𝜂 = 𝜂(𝜃) is called the expectation param-
eter since 𝐸𝑥∼𝑝(𝑥;𝜃)[𝑡(𝑥)] = 𝜂. For the univariate Gaussian
family, we get 𝜃 = ( 𝜇

𝜎2 ,− 1
2𝜎2 ) and 𝜂 = (𝜇,𝜇2 +𝜎2) (with

𝑡(𝑥) = (𝑥, 𝑥2)).
Thus a distribution of an exponential family can be

indexedby either its natural parameter𝜃or its expectation
parameter 𝜂: 𝑝(𝑥;𝜃) = 𝑝(𝑥; 𝜂), with the conversion 𝜃 =
∇𝐹⋆(𝜂) and 𝜂 = ∇𝐹(𝜃), where ∇ denotes the gradient
operator.

It turns out that the 𝐼-divergence between two distri-
butions of the same exponential family is equivalent to a
Bregman divergence:

𝐼(𝑝(𝑥; 𝜃1) ∶ 𝑝(𝑥; 𝜃2)) = 𝐵𝐹(𝜃2 ∶ 𝜃1),
where

𝐵𝐹(𝜃2 ∶ 𝜃1) = 𝐹(𝜃2) − 𝐹(𝜃1) − ⟨𝜃2 −𝜃1,∇𝐹(𝜃1)⟩.
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(ηp − ηq) (θq − θr) = 0

BF (θp : θr) = BF (θp : θq) + BF (θq : θr)

primal geodesic

dual geodesic

Figure 2. The Pythagorean theorem in an information
space.

We can also express the information divergence using the
𝜂-parameters as 𝐼(𝑝(𝑥; 𝜂1) ∶ 𝑝(𝑥; 𝜂2)) = 𝐵𝐹⋆(𝜂1 ∶ 𝜂2).

To connect two distributions 𝑝(𝑥;𝜃1) and 𝑝(𝑥;𝜃2) on
the exponential family manifold 𝑀 = {𝑝(𝑥,𝜃) ∶ 𝜃 ∈ Θ},
we may consider the path 𝛾𝑒(𝜃1, 𝜃2, 𝑎) = 𝑝(𝑥; 𝜃(𝑎)) with
𝜃(𝑎) = (1 − 𝑎)𝜃1 + 𝑎𝜃2 for 𝑎 ∈ [0, 1]. This path forms a
1D exponential family, and we can rewrite it by taking the
logarithm as
log𝑝(𝑥,𝜃(𝑎))=(1−𝑎) log𝑝(𝑥;𝜃1)+𝑎 log𝑝(𝑥;𝜃2)−𝐹(𝜃(𝑎)).
This is a linear interpolation on the logarithmic scale,
hence its name 𝑒-geodesic 𝛾𝑒(𝜃1, 𝜃2) = {𝛾𝑒(𝜃1, 𝜃2, 𝑎) ∶
𝑎 ∈ [0, 1]}, which stands for exponential geodesic. Or,
we can alternatively connect the two distributions using
the path 𝛾𝑚(𝜂1, 𝜂2, 𝑎) = 𝑝(𝑥; 𝜂(𝑎)) = 𝑝(𝑥; (1 − 𝑎)𝜂1 +
𝑎𝜂2). For discrete probability distributions 𝑝1 and 𝑝2 of
the probability simplex, we get the mixture distribution
𝑝(𝑎) = (1 − 𝑎)𝑝1 + 𝑎𝑝2, hence its name 𝑚-geodesic
𝛾𝑚(𝜂1, 𝜂2) = {𝛾𝑚(𝜂1, 𝜂2, 𝑎) ∶ 𝑎 ∈ [0, 1]}, which stands
for mixture geodesic. The 𝑒-geodesic and 𝑚-geodesic
are visualized as straight line segments in the 𝜃- and
𝜂-coordinate systems, respectively. Let us define an 𝑒-flat
subspace (𝑒-flat for short) as an affine subspace in the
𝜃-coordinate system and an 𝑚-flat subspace (𝑚-flat for
short) as an affine subspace in the 𝜂-coordinate system.

The 𝑒-projection𝑝𝑒
𝑆 of𝑝onto𝑆 is definedbyminimizing

𝐼(𝑞 ∶ 𝑝) for 𝑞 ∈ 𝑆 and is unique when 𝑆 is 𝑚-flat. The
𝑚-projection 𝑝𝑚

𝑆 of 𝑝 onto 𝑆 is defined by minimizing
𝐼(𝑝 ∶ 𝑞) for 𝑞 ∈ 𝑆 and is unique when 𝑆 is 𝑒-flat.

Similar to the Euclidean case, the proof of the unique-
ness of the dual information geodesic projections follows
from the dual Pythagorean theorems of Bregman diver-
gences (Figure 2): When the triangle 𝑝𝑞𝑟 is such that
𝛾𝑚(𝜂𝑝, 𝜂𝑞) ⟂ 𝛾𝑒(𝜃𝑞, 𝜃𝑟) (dual geodesics perpendicular at
𝑞), we have

𝐵𝐹(𝜃𝑝 ∶ 𝜃𝑟) = 𝐵𝐹(𝜃𝑝 ∶ 𝜃𝑞) + 𝐵𝐹(𝜃𝑞 ∶ 𝜃𝑟).
The orthogonality implies that (𝜂𝑝 −𝜂𝑞)⊤(𝜃𝑞 −𝜃𝑟) = 0.
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Figure 3. The maximum likelihood estimator ̂𝜃 of a
Boltzmann machine is the unique 𝑚-projection of the
target distribution 𝑠(𝑥) onto the Boltzmann manifold.

When the triangle 𝑝𝑞𝑟 is such that 𝛾𝑒(𝜃𝑝, 𝜃𝑞) ⟂
𝛾𝑚(𝜂𝑞, 𝜂𝑟) (dual geodesics perpendicular at 𝑞), we have

𝐵𝐹⋆(𝜂𝑝 ∶ 𝜂𝑟) = 𝐵𝐹⋆(𝜂𝑝 ∶ 𝜂𝑞) + 𝐵𝐹⋆(𝜂𝑞 ∶ 𝜂𝑟).
The orthogonality implies that (𝜃𝑝 −𝜃𝑞)⊤(𝜂𝑞 −𝜂𝑟) = 0.

To illustrate the geodesic information projections,
let us consider the following two examples: In machine
learning [3], a Boltzmannmachine is a fully interconnected
network of 𝑛 stochastic units that defines an exponential
family distribution on 𝒳 = {0, 1}𝑛 by

𝑝(𝑥;𝜃) = exp⎛
⎝
∑
𝑖
𝜃𝑖𝑥𝑖 + ∑

𝑖<𝑗
𝜃𝑖𝑗𝑥𝑖𝑥𝑗 −𝐹(𝜃)⎞

⎠
,

where the 𝜃𝑖𝑗’s are the weights connecting unit 𝑖 to
unit 𝑗 and the 𝜃𝑖’s are the bias parameters. Boltzmann
machines are universal approximators: they can represent
any smooth distribution within any prescribed accuracy.
The set of all machines 𝑀 = {𝑝(𝑥;𝜃) ∶ 𝜃 ∈ Θ} defines
the Boltzmann 𝑒-flat manifold. Given a target distribution
𝑠(𝑥) that we wish to learn from, the Maximum Likelihood
Estimator (MLE) ̂𝜃 is characterized by the unique 𝑚-
projection of 𝑠(𝑥) onto 𝑀 as in Figure 3.

The Maximum Entropy (MaxEnt) principle yields a
distribution 𝑝(𝑥) maximizing the Shannon entropy under
a set of 𝐷 moment constraints 𝐸𝑋[𝑡𝑖(𝑋)] = 𝑚𝑖, 𝑖 ∈
{1,… ,𝐷}. It can be shown that the MaxEnt distribution
belongs to an exponential family and is the unique
𝑒-projection of the uniform distribution on the 𝑚-flat
manifold {𝑋 ∶ 𝐸[𝑡1(𝑋)] = 𝑚1,… ,𝐸𝑋[𝑡𝐷(𝑋)] = 𝑚𝐷}.

A geodesic information projectionmin𝑞∈𝑆 𝐷(𝑞 ∶ 𝑝) can
be rewritten as a point-set divergence 𝐷(𝑆 ∶ 𝑝). Consider
two submanifolds 𝑈 and 𝑉 of 𝑆, and define

𝐷(𝑈 ∶ 𝑉) = min
𝑢∈𝑈,𝑣∈𝑉

𝐷(𝑢 ∶ 𝑣) = 𝐷(𝑢∗, 𝑣∗),

where 𝑢∗ and 𝑣∗ form a closest pair between𝑈 and𝑉. We
approximate a closest pair between the submanifolds by
the alternatingminimizationalgorithm:Beginwith𝑣1 ∈ 𝑉,
minimize𝐷(𝑢 ∶ 𝑣1) by an information projection to get 𝑢1,
and minimize 𝐷(𝑢1 ∶ 𝑉) to get 𝑣2 by a dual information

U

V

v1

u1

v2

u2

v3
v∗

u∗

Figure 4. The alternating geodesic projection
algorithm for computing the divergence between
submanifolds always converges.

projection, etc. This alternating projection algorithm
always converges, since the divergence decreases and is
lower bounded by 0. Moreover, there is a unique closest
pair when 𝑉 is flat and 𝑈 is dually flat as in Figure 4.

Dual Geometry of Information Projections
Information projections are a core concept of infor-
mation sciences that are met whenever minimizing
divergences [2]. Depending on whether the minimiza-
tion is carried out on the left argument of the divergence
𝐷(⋅ ∶ ⋅) or on its right argument (that is, the left argument
of the dual divergence𝐷∗), we end upwith an information
projection or a dual information projection. The geomet-
ric nature of information projections is elucidated using
the dual geodesics of information geometry. In differen-
tial geometry, the notion of a geodesic 𝛾(𝑝, 𝑞) passing
through two points 𝑝,𝑞 ∈ 𝑀 depends on a connection.
A connection ∏𝑝→𝑞 indicates how to transport vectors
from one tangent plane 𝑇𝑝 to any other tangent plane
𝑇𝑞. A geodesic is then defined as an auto-parallel curve
satisfying ∇𝛾̇𝛾̇ = 0, where ∇ is the covariant derivative
associated to the connection. An affine connection ∇
is defined by its Christoffel symbols. The fundamental
structure of information geometry is a pair of torsion-
free affine connections ∇ and ∇∗ that are coupled to a
Riemannian metric tensor 𝑔 with 𝑔∗ = 𝑔 and ∇+∇∗

2 = ∇𝑔,
the Levi-Civita metric connection. This dualistic structure
(𝑀,𝑔,∇,∇∗) can be built from any divergence 𝐷(⋅ ∶ ⋅)
and generalizes Euclidean geometry. A manifold is called
∇-flat if the Christoffel coefficients of ∇ vanish in some
coordinate system.

A dually flat geometry can be built from any smooth
strictly convex function via the Legendre transformation
and the corresponding dual Bregman divergences: those
geometries are said to be dually flat because their primal
anddual geodesics canbe expressedas straight lines in the
primal and dual affine coordinate systems, respectively.

Bregman divergences are the canonical divergences
of dually flat manifolds: any dually flat manifold is
induced by a corresponding Bregman divergence. Many
stochastic neuronal network models (like the stochastic
multilayer perceptrons [3] or the Boltzmann machines)
handle exponential families in disguise and can thus be
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studied using the method of information geometry and
its dual information projections.
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From the January 2018 Electronic Newsletter of the International Mathematical Union1

The Committee for Women in Mathematics funded 10 proposals, most devoted to developing regional networks 
for Women in Mathematics, in Africa, Latin America, and Asia. Often the initiatives take the form of a meeting with 
both a mathematical part and a career development part. This is the case for two regional meetings of the African 
Women in Mathematics Association, one in Addis Ababa (Ethiopia) for East Africa and one in Ibadan (Nigeria) for West 
Africa, and also for the second Central Asia Women in Mathematics Association meeting in Uzbekistan. There are 
other meetings in India, Macedonia, El Salvador, and Uruguay. The African Women in Mathematics Association will 
also be writing portraits of African women mathematicians. Two further events are taking place in Europe, an ICTP 
school in Trieste (Italy) on Dynamical Systems, with all female organizers and lecturers, and the European Women 
in Mathematics General Meeting in Graz (Austria). In both cases the grant will be used to support the attendance of 
women from developing countries. The remaining part of the budget will be used to support (WM)2, the first World 
Meeting for Women in Mathematics taking place on 31 July 2018 as a satellite event of ICM Rio.2 In particular, women 
from all over the world who are supported by the Open Arms program have been invited to attend (WM)2, with no 
registration fee. Submissions of scientific mathematical posters and thematic posters on women in mathematics to 
(WM)2 is possible until 30 March.

1www.mathunion.org/organization/imu-net

2www.worldwomeninmaths.org/
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