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an Inductive Mean?
Frank Nielsen

Notions of means. The notion of means [10] is central
to mathematics and statistics, and plays a key role in
machine learning and data analytics. The three classical
Pythagorean means of two positive reals 𝑥 and 𝑦 are the
arithmetic (A), geometric (G), and harmonic (H) means,
given respectively by

𝐴(𝑥, 𝑦) = 𝑥 + 𝑦
2 , 𝐺(𝑥, 𝑦) = √𝑥𝑦, 𝐻(𝑥, 𝑦) = 2𝑥𝑦

𝑥 + 𝑦 .

These Pythagorean means were originally geometrically
studied to define proportions, and the harmonic mean led
to a beautiful connection betweenmathematics andmusic.
The Pythagorean means enjoy the following inequalities:

min(𝑥, 𝑦) ≤ 𝐻(𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦) ≤ 𝐴(𝑥, 𝑦) ≤ max(𝑥, 𝑦),
with equality if and only if 𝑥 = 𝑦. These Pythagorean
means belong to a broader parametric family of means,

the power means 𝑀𝑝(𝑥, 𝑦) = (𝑥𝑝 + 𝑦𝑝)
1
𝑝 defined for 𝑝 ∈

ℝ\{0}. We have 𝐴(𝑥, 𝑦) = 𝑀1(𝑥, 𝑦), 𝐻(𝑥, 𝑦) = 𝑀−1(𝑥, 𝑦)
and in the limits: 𝐺(𝑥, 𝑦) = lim𝑝→0𝑀𝑝(𝑥, 𝑦), max(𝑥, 𝑦) =
lim𝑝→+∞𝑀𝑝(𝑥, 𝑦), and min(𝑥, 𝑦) = lim𝑝→−∞𝑀𝑝(𝑥, 𝑦).
Power means are also called binomial, Minkowski, or
Hölder means in the literature.

There are many ways to define and axiomatize means
with a rich literature [8]. An important class of means are
the quasi-arithmetic means induced by strictly increasing
and differentiable real-valued functional generators 𝑓(𝑢):

𝑀𝑓(𝑥, 𝑦) = 𝑓−1 (𝑓(𝑥) + 𝑓(𝑦)
2 ) . (1)
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Quasi-arithmetic means satisfy the in-betweenness prop-
erty of means: min(𝑥, 𝑦) ≤ 𝑀𝑓(𝑥, 𝑦) ≤ max(𝑥, 𝑦), and are

called so because 𝑓(𝑀𝑓(𝑥, 𝑦)) =
𝑓(𝑥)+𝑓(𝑦)

2
= 𝐴(𝑓(𝑥), 𝑓(𝑦))

is the arithmetic mean on the 𝑓-representation of num-
bers.

The power means are quasi-arithmetic means, 𝑀𝑝 =
𝑀𝑓𝑝 , obtained for the following continuous family of gen-
erators:

𝑓𝑝(𝑢) = {
ᵆ𝑝−1
𝑝

, 𝑝 ∈ ℝ\{0},
log(𝑢), 𝑝 = 0.

,

𝑓−1𝑝 (𝑢) = { (1 + 𝑢𝑝)
1
𝑝 , 𝑝 ∈ ℝ\{0},

exp(𝑢), 𝑝 = 0.
.

Power means are the only homogeneous quasi-arithmetic
means, where a mean 𝑀(𝑥, 𝑦) is said to be homogeneous
when 𝑀(𝜆𝑥, 𝜆𝑦) = 𝜆𝑀(𝑥, 𝑦) for any 𝜆 > 0.

Quasi-arithmetic means can also be defined for 𝑛-
variable means (i.e., 𝑀𝑓(𝑥1, … , 𝑥𝑛) = 𝑓−1( 1

𝑛
∑𝑛

𝑖=1 𝑓(𝑥𝑖))),
and more generally for calculating expected values of ran-
dom variables [10]: We denote by 𝔼𝑓[𝑋] = 𝑓−1(𝔼[𝑓(𝑋)])
the quasi-arithmetic expected value of a random variable
𝑋 induced by a strictly monotone and differentiable func-
tion 𝑓(𝑢). For example, the geometric and harmonic ex-
pected values of 𝑋 are defined by 𝔼𝐺[𝑋] = 𝔼log𝑥[𝑋] =
exp(𝔼[log 𝑋]) and 𝔼𝐻[𝑋] = 𝔼𝑥−1[𝑋] = 1

𝔼[1/𝑋]
, respec-

tively. The ordinary expectation is recovered for 𝑓(𝑢) = 𝑢:
𝔼𝐴[𝑋] = 𝔼𝑥[𝑋] = 𝔼[𝑋]. The quasi-arithmetic expected
values satisfy a strong law of large numbers and a central
limit theorem ([10], Theorem 1): Let 𝑋1, … , 𝑋𝑛 be indepen-
dent and identically distributed (i.i.d.) with finite variance
𝕍[𝑓(𝑋)] < ∞ and derivative 𝑓′(𝔼𝑓[𝑋]) ≠ 0 at 𝑥 = 𝔼𝑓[𝑋].
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Then we have

𝑀𝑓(𝑋1, … , 𝑋𝑛)
𝑎.𝑠.⟶ 𝔼𝑓[𝑋]

√𝑛 (𝑀𝑓(𝑋1, … , 𝑋𝑛) − 𝔼𝑓[𝑋])
𝑑⟶ 𝑁(0, 𝕍[𝑓(𝑋)]

(𝑓′(𝔼𝑓[𝑋]))
2 )

as 𝑛 → ∞, where 𝑁(𝜇, 𝜎2) denotes a normal distribution
of expectation 𝜇 and variance 𝜎2.
Inductive means. An inductive mean is a mean defined as
a limit of a convergence sequence of othermeans [15]. The
notion of inductive means defined as limits of sequences
was pioneered independently by Lagrange and Gauss [7]
who studied the following double sequence of iterations:

𝑎𝑡+1 = 𝐴(𝑎𝑡, 𝑔𝑡) =
𝑎𝑡 + 𝑔𝑡
2 ,

𝑔𝑡+1 = 𝐺(𝑎𝑡, 𝑔𝑡) = √𝑎𝑡𝑔𝑡,
initialized with 𝑎0 = 𝑥 > 0 and 𝑔0 = 𝑦 > 0. We have

𝑔0 ≤ … ≤ 𝑔𝑡 ≤ AGM(𝑥, 𝑦) ≤ 𝑎𝑡 ≤ … ≤ 𝑎0,
where the homogeneous arithmetic-geometric mean
(AGM) is obtained in the limit:

AGM(𝑥, 𝑦) = lim
𝑡→∞

𝑎𝑡 = lim
𝑡→∞

𝑔𝑡.

There is no closed-form formula for the AGM in terms of
elementary functions as this inducedmean is related to the
complete elliptic integral of the first kind 𝐾(⋅) [7]:

AGM(𝑥, 𝑦) = 𝜋
4

𝑥 + 𝑦
𝐾 (𝑥−𝑦

𝑥+𝑦
)
,

where 𝐾(𝑢) = ∫
𝜋
2
0

d𝜃

√1−ᵆ2 sin2(𝜃)
is the elliptic integral.

The fast quadratic convergence [11] of the AGM iterations
makes it computationally attractive, and the AGM itera-
tions have been used to numerically calculate digits of 𝜋 or
approximate the perimeters of ellipses among others [7].

Some inductive means admit closed-form formulas:
For example, the arithmetic-harmonic mean AHM(𝑥, 𝑦)
obtained as the limit of the double sequence

𝑎𝑡+1 = 𝐴(𝑎𝑡, ℎ𝑡) =
𝑎𝑡 + 𝑔𝑡
2 ,

ℎ𝑡+1 = 𝐻(𝑎𝑡, ℎ𝑡) =
2𝑎𝑡ℎ𝑡
𝑎𝑡 + ℎ𝑡

,

initialized with 𝑎0 = 𝑥 > 0 and ℎ0 = 𝑦 > 0 converges to
the geometric mean:

AHM(𝑥, 𝑦) = lim
𝑡→∞

𝑎𝑡 = lim
𝑡→∞

ℎ𝑡 = √𝑥𝑦 = 𝐺(𝑥, 𝑦).

In general, inductivemeans defined as the limits of double
sequences with respect to two smooth symmetric means
𝑀1 and 𝑀2:

𝑎𝑡+1 = 𝑀1(𝑎𝑡, 𝑏𝑡),
𝑏𝑡+1 = 𝑀2(𝑎𝑡, 𝑏𝑡),

are proven to converge quadratically [11] to
DS𝑀1,𝑀2(𝑎0, 𝑏0) = lim𝑡→∞ 𝑎𝑡 = lim𝑡→∞ 𝑏𝑡 (order-2 conver-
gence).
Inductivemeans andmatrixmeans. Wehave obtained so
far three ways to get the geometric scalar mean 𝐺(𝑥, 𝑦) =
√𝑥𝑦 between positive reals 𝑥 and 𝑦:
1. As an inductive mean with the arithmetic-harmonic

double sequence: 𝐺(𝑥, 𝑦) = AHM(𝑥, 𝑦),
2. As a quasi-arithmetic mean obtained for the generator

𝑓(𝑢) = log 𝑢: 𝐺(𝑥, 𝑦) = 𝑀log(𝑥, 𝑦), and
3. As the limit of power means: 𝐺(𝑥, 𝑦) =

lim𝑝→0𝑀𝑝(𝑥, 𝑦).
Let us now consider the geometric mean 𝐺(𝑋, 𝑌) of two

symmetric positive-definite (SPD)matrices 𝑋 and 𝑌 of size
𝑑 × 𝑑. SPD matrices generalize positive reals. We shall in-
vestigate the three generalizations of the above approaches
of the scalar geometric mean, and show that they yield dif-
ferent notions of matrix geometric means when 𝑑 > 1.

First, the AHM iterations can be extended to SPD matri-
ces instead of reals:

𝐴𝑡+1 =
𝐴𝑡 + 𝐻𝑡

2 = 𝐴(𝐴𝑡, 𝐻𝑡),
𝐻𝑡+1 = 2(𝐴−1𝑡 + 𝐻−1

𝑡 )−1 = 𝐻(𝐴𝑡, 𝐻𝑡),

where the matrix arithmetic mean is 𝐴(𝑋, 𝑌) = 𝑋+𝑌
2

and

the matrix harmonic mean is 𝐻(𝑋, 𝑌) = 2(𝑋−1 + 𝑌−1)−1.
The AHM iterations initialized with 𝐴0 = 𝑋 and 𝐻0 = 𝑌
yield in the limit 𝑡 → ∞, the matrix arithmetic-harmonic
mean [3,14] (AHM):

AHM(𝑋, 𝑌) = lim
𝑡→+∞

𝐴𝑡 = lim
𝑡→+∞

𝐻𝑡.

Remarkably, the matrix AHM enjoys quadratic conver-
gence to the following SPD matrix:

AHM(𝑋, 𝑌) = 𝑋
1
2 (𝑋− 1

2𝑌𝑋− 1
2 )

1
2𝑋

1
2 = 𝐺(𝑋, 𝑌).

When 𝑋 = 𝑥 and 𝑌 = 𝑦 are positive reals, we recover
𝐺(𝑋, 𝑌) = √𝑥𝑦. When 𝑋 = 𝐼, the identity matrix, we

get 𝐺(𝐼, 𝑌) = 𝑌
1
2 = √𝑌 , the positive square root of

SPD matrix 𝑌 . Thus the matrix AHM iterations provide
a fast method in practice to numerically approximate ma-
trix square roots by bypassing the matrix eigendecomposi-
tion. When matrices 𝑋 and 𝑌 commute (i.e., 𝑋𝑌 = 𝑌𝑋),
we have 𝐺(𝑋, 𝑌) = √𝑋𝑌 . The geometric mean 𝐺(𝐴, 𝐵)
is proven to be the unique solution to the matrix Ricatti
equation 𝑋𝐴−1𝑋 = 𝐵, is invariant under inversion (i.e.,
𝐺(𝐴, 𝐵) = 𝐺(𝐴−1, 𝐵−1)−1), and satisfies the determinant
property det(𝐺(𝐴, 𝐵)) = √det(𝐴) det(𝐵).

Let ℙ denote the set of symmetric positive-definite 𝑑×𝑑
matrices. The matrix geometric mean can be interpreted
using a Riemannian geometry [5] of the cone ℙ: Equip ℙ
with the trace metric tensor, i.e., a collection of smoothly
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varying inner products 𝑔𝑃 for 𝑃 ∈ ℙ defined by

𝑔𝑃(𝑆1, 𝑆2) = tr (𝑃−1𝑆1𝑃−1𝑆2) ,
where 𝑆1 and 𝑆2 are matrices belonging to the vector space
of symmetric 𝑑 × 𝑑 matrices (i.e., 𝑆1 and 𝑆2 are geometri-
cally vectors of the tangent plane 𝑇𝑃 of 𝑃 ∈ ℙ). The geo-
desic length distance on the Riemannian manifold (ℙ, 𝑔)
is

𝜌(𝑃1, 𝑃2) =
‖
‖‖log (𝑃

− 1
2

1 𝑃2𝑃
− 1

2
1 )‖‖‖𝐹

=
√√√
√

𝑑
∑
𝑖=1

log2 𝜆𝑖 (𝑃
− 1

2
1 𝑃2𝑃

− 1
2

1 ),

where 𝜆𝑖(𝑀) denotes the 𝑖-th largest real eigenvalue of a
symmetric matrix 𝑀, ‖ ⋅ ‖𝐹 denotes the Frobenius norm,
and log 𝑃 is the unique matrix logarithm of a SPD matrix
𝑃. Interestingly, the matrix geometric mean 𝐺(𝑋, 𝑌) =
AHM(𝑋, 𝑌) can also be interpreted as the Riemannian cen-
ter of mass of 𝑋 and 𝑌 :

𝐺(𝑋, 𝑌) = argmin
𝑃∈ℙ

1
2𝜌

2(𝑋, 𝑃) + 1
2𝜌

2(𝑌, 𝑃).

This Riemannian least squares mean is also called the Car-
tan, Kärcher, or Fréchet mean in the literature. More gener-
ally, the Riemannian geodesic 𝛾(𝑋, 𝑌; 𝑡) = 𝑋#𝑡𝑌 between
𝑋 and 𝑌 of (ℙ, 𝑔) for 𝑡 ∈ [0, 1] is expressed using the
weighted matrix geometric mean 𝐺(𝑋, 𝑌; 1 − 𝑡, 𝑡) = 𝑋#𝑡𝑌
minimizing

(1 − 𝑡)𝜌2(𝑋, 𝑃) + 𝑡𝜌2(𝑌, 𝑃).
This Riemannian barycenter can be solved as

𝑋#𝑡𝑌 = 𝑋
1
2 (𝑋− 1

2𝑌𝑋− 1
2 )

𝑡
𝑋

1
2 ,

with 𝐺(𝑋, 𝑌) = 𝑋# 1
2
𝑌 , 𝑋#𝑡𝑌 = 𝑌#1−𝑡𝑋 , and

𝜌(𝑋#𝑡𝑌, 𝑋) = 𝑡𝜌(𝑋, 𝑌), i.e., 𝑡 is the arc length parameteriza-
tion of the constant speed geodesic 𝛾(𝑋, 𝑌; 𝑡). When matri-
ces 𝑋 and 𝑌 commute, we have 𝑋#𝑡𝑌 = 𝑋1−𝑡𝑌 𝑡. We thus
interpret the matrix geometric mean 𝐺(𝑋, 𝑌) = 𝑋#𝑌 =
𝑋# 1

2
𝑌 as the Riemannian geodesic midpoint.

Second, let us consider the matrix geometric mean as
the limit of matrix quasi-arithmetic power means which

can be defined [13] as 𝑄𝑝(𝑋, 𝑌) = (𝑋𝑝 + 𝑌𝑝)
1
𝑝 for 𝑝 ∈

ℝ, 𝑝 ≠ 0, with 𝑄1(𝑋, 𝑌) = 𝐴(𝑋, 𝑌) and 𝑄−1(𝑋, 𝑌) =
𝐻(𝑋, 𝑌). We get lim𝑝→0 𝑄𝑝(𝑋, 𝑌) = LE(𝑋, 𝑌), the log-
Euclidean matrix mean defined by

LE(𝑋, 𝑌) = exp ( log 𝑋 + log 𝑌
2 ) ,

where exp and log denote the matrix exponential and
the matrix logarithm, respectively. We have LE(𝑋, 𝑌) ≠
𝐺(𝑋, 𝑌). Consider the Loewner partial order⪯ on the cone
ℙ: 𝑃 ⪯ 𝑄 if and only if 𝑄 − 𝑃 is positive semi-definite. A
mean𝑀(𝑋, 𝑌) is said operator monotone [5] if for 𝑋 ′ ⪯ 𝑋
and 𝑌 ′ ⪯ 𝑌 , we have 𝑀(𝑋 ′, 𝑌 ′) ⪯ 𝑀(𝑋, 𝑌). The log-
Euclidean mean LE(𝑋, 𝑌) is not operator monotone but

the Riemannian geometric matrix mean 𝐺(𝑋, 𝑌) is opera-
tor monotone.

Third, we can define matrix power means 𝑀𝑝(𝑋, 𝑌) for
𝑝 ∈ (0, 1] by uniquely solving the following matrix equa-
tion [13]:

𝑀 = 1
2𝑀#𝑝𝑋 + 1

2𝑀#𝑝𝑌. (2)

Let 𝑀𝑝(𝑋, 𝑌) = 𝑀 denote the unique solution of Eq. 2.
This equation is the matrix analogue of the scalar equation
𝑚 = 1

2
𝑚1−𝑝𝑥𝑝 + 1

2
𝑚1−𝑝𝑦𝑝 which can be solved as 𝑚 =

( 1
2
𝑥𝑝 + 1

2
𝑦𝑝)

1
𝑝 = 𝑀𝑝(𝑥, 𝑦), i.e., the scalar 𝑝-power mean.

In the limit case 𝑝 → 0, this matrix power mean𝑀𝑝 yields
the matrix geometric/Riemannian mean [13]:

lim
𝑝→0+

𝑀𝑝(𝑋, 𝑌) = 𝐺(𝑋, 𝑌).

In general, we get the following closed-form expres-
sion [13] of this matrix power mean for 𝑝 ∈ (0, 1):

𝑀𝑝(𝑋, 𝑌) = 𝑋# 1
𝑝
(12𝑋 + 1

2(𝑋#𝑝𝑌)) .

Inductive means, circumcenters, and medians of several
matrices. To extend these various binary matrix means of
two matrices to matrix means of 𝑛 matrices 𝑃1, … , 𝑃𝑛 of ℙ,
we can use induction sequences [9]. First, the 𝑛-variable
matrix geometric mean 𝐺(𝑃1, … , 𝑃𝑛) can be defined as the
unique Riemannian center of mass:

𝐺(𝑃1, … , 𝑃𝑛) = argmin
𝑃∈ℙ

𝑛
∑
𝑖=1

1
𝑛𝜌

2(𝑃, 𝑃𝑖).

This geometric matrix mean𝐺 = 𝐺(𝑃1, … , 𝑃𝑛) can be charac-

terized as the unique solution of∑𝑛
𝑖=1 log (𝐺

− 1
2𝑃𝑖𝐺− 1

2 ) = 0
(called the Kärcher equation), and is proven to satisfy the
ten Ando–Li–Mathias properties [1] defining what should
be a good matrix generalization of the scalar geometric
mean.

Holbrook [12] proposed the following sequence of iter-
ations to approximate 𝐺(𝑃1, … , 𝑃𝑛):

𝑀𝑡+1 = 𝑀𝑡# 1
𝑡+1
𝑃𝑡 mod 𝑛 (3)

with 𝑀1 initialized to 𝑃1. In the limit 𝑡 → ∞, we get the
𝑛-variable geometric mean: lim𝑡→∞𝑀𝑡 = 𝐺(𝑃1, … , 𝑃𝑛). This
deterministic inductive definition of the matrix geometric
mean by Eq. 3 allows to prove that the geometric mean
𝐺(𝑃1, … , 𝑃𝑛) is monotone [12]: That is, if 𝑃′1 ⪯ 𝑃1, . . . , 𝑃′𝑛 ⪯
𝑃𝑛 then we have 𝐺(𝑃′1 , … , 𝑃′𝑛) ⪯ 𝐺(𝑃1, … , 𝑃𝑛). The following
matrix arithmetic-geometric-harmonic mean inequalities
extends the scalar case:

𝐻(𝑋, 𝑌; 1 − 𝑡, 𝑡)
= ((1 − 𝑡)𝑋−1 + 𝑡𝑌−1)−1

⪯ 𝐺(𝑋, 𝑌; 1 − 𝑡, 𝑡) ⪯ 𝐴(𝑋, 𝑌; 1 − 𝑡, 𝑡) = (1 − 𝑡)𝑋 + 𝑡𝑌.
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Now, if instead of taking cyclically the input matri-
ces 𝑃1, … , 𝑃𝑛, 𝑃1, … , 𝑃𝑛, …, we choose at iteration 𝑡 the far-
thest matrix in 𝑃1, … , 𝑃𝑛 to𝑀𝑡 with respect to the Riemann-
ian distance 𝜌, we get the Riemannian circumcenter [2]
𝐶(𝑃1, … , 𝑃𝑛) which is the minimax minimizer:

𝐶(𝑃1, … , 𝑃𝑛) = argmin
𝐶∈ℙ

max
𝑖∈{1,…,𝑛}

𝜌(𝑃𝑖, 𝐶).

The sequence of iterations

𝐶𝑡+1 = 𝐶𝑡# 1
𝑡+1
𝑃farthest(𝑡), (4)

where

farthest(𝑡) = arg max
𝑖∈{1,…,𝑛}

𝜌(𝐶𝑡, 𝑃𝑖),

initialized with 𝐶1 = 𝑃1 is such that

𝐶(𝑃1, … , 𝑃𝑛) = lim
𝑡→∞

𝐶𝑡.

The uniqueness of the smallest enclosing ball and the
proof of convergence of the iterations of Eq. 4 relies on
the fact that the cone ℙ is of nonpositive sectional curva-
tures [2]: ℙ is a nonpositive curvature space or NPC space
for short.

The Riemannian median minimizing
argmin𝑃∈ℙ∑

𝑛
𝑖=1

1
𝑛
𝜌(𝑃, 𝑃𝑖) is proven to be unique in Rie-

mannian NPC spaces, and can be obtained as the limit of
the following cyclic order sequence [4]:

𝑋𝑘𝑛+1 = 𝑋𝑘𝑛#𝑡𝑘,1𝑃1,
𝑋𝑘𝑛+2 = 𝑋𝑘𝑛+1#𝑡𝑘,2𝑃2,

⋮ =⋮
𝑋𝑘𝑛+𝑛 = 𝑋𝑘𝑛+𝑛−1#𝑡𝑘,𝑛𝑃𝑛,

where 𝑡𝑘,𝑛 = min {1, 𝜆𝑘
𝑛𝜌(𝑃𝑛,𝑋𝑘𝑛+𝑛−1)

} with the positive real

sequence (𝜆𝑘) such that ∑∞
𝑘=0 𝜆𝑘 = ∞ and ∑∞

𝑘=0 𝜆2𝑘 < ∞
(e.g., 𝜆𝑘 =

1
𝑘+1

).

Finally, let us mention that Bini, Meini, and Poloni [6]
proposed a class of recursive geometric matrix means
𝐺𝑠1,…,𝑠𝑛−1(𝑃1, … , 𝑃𝑛) parameterized by (𝑛 − 1)-tuple of scalar
parameters, and defined recursively as the common limit
of the following sequences:

𝑃(𝑟+1)𝑖

= 𝑃(𝑟)𝑖 #𝑠1𝐺𝑠2,…,𝑠𝑛−1 (𝑃1, … , 𝑃𝑖−1, 𝑃𝑖+1, … , 𝑃𝑛) , 𝑖 ∈ {1, … , 𝑛}.

In particular, these matrix means exhibit a unique (𝑛 − 1)-
tuple for which the recursive mean 𝐺𝑛−1

𝑛 , 𝑛−2𝑛−1 ,…,
1
2
(𝑃1, … , 𝑃𝑛)

converges fast in cubic order (order-3 convergence). This
geometric matrix mean is called the BMP mean in the
literature. Furthermore, the mean 𝐺1,1,…,1, 12

(𝑃1, … , 𝑃𝑛) co-

incides with the Ando–Li–Mathias geometric mean [1]
(ALM) which converges linearly.

Random variables, expectations, and the law of large
numbers. Although inductive means as limits of se-
quences have been considered since the 18th century
(AGM by Lagrange and Gauss), this term was only re-
cently coined by Karl-Theodor Sturm in 2003 (see Defi-
nition 4.6 in [15]), who considered inductive sequences
to calculate probability expectations of random variables
on nonpositive curvature complete metric spaces. For ex-
ample, let 𝒫(ℙ) denote the set of probability measures
on ℙ with bounded support [15]. Let 𝑋 ∶ Ω → ℙ be
a SPD-valued random variable with probability density
function 𝑝𝑋 expressed with respect to the canonical Rie-
mannian volume measure d𝜔(𝑃) = √det(𝑔𝑃). The ex-
pectation 𝔼[𝑋] and the variance 𝕍[𝑋] of a random vari-
able 𝑋 ∼ 𝑝𝑋 are defined respectively as the unique min-
imizer of 𝐶 ↦ 𝔼[𝜌2(𝑋, 𝐶)] = ∫ℙ 𝜌2(𝐶, 𝑃)𝑝𝑋(𝑃)d𝜔(𝑃) and
inf𝑃∈ℙ 𝔼[𝜌2(𝑋, 𝑃)]. Consider (𝑋𝑖)𝑖∈ℕ to be an independent
sequence of measurable maps 𝑋𝑖 ∶ Ω → ℙ with identical
distributions 𝑝𝑋𝑖 = 𝑝𝑋 , and let 𝑝𝑛 = 1

𝑛
∑𝑛

𝑖=1 𝛿𝑋𝑖 ∈ 𝒫(ℙ)
denote the empirical distribution. Then the following em-
pirical law of large numbers holds as 𝑛 → ∞:

𝐺(𝑋1, … , 𝑋𝑛) → 𝔼[𝑋].

Several proofs are reported in the literature (e.g., Proposi-
tion 6.6 of [15], Theorem 1 of [9], or Theorem 5.1 of [4]).
Thus the expectation 𝔼[𝑋] of a SPD-valued random vari-
able can be estimated incrementally by considering in-
creasing sequences (𝑋𝑖)𝑖∈ℕ of i.i.d. random vectors, and
incrementally computing their Riemannian means. Exper-
iments demonstrating convergence to various probability
law expectations 𝑝𝑋 are reported in [9].
Closing remarks. The AHMdouble sequence yielding the
matrix geometric mean can further be generalized to de-
fine self-dual operators on convex functionals in Hilbert
spaces [3] based on the Legendre–Fenchel transformation
(called convex geometric mean functionals). For example,
the AHM iterations initialized on a pair of nonzero com-
plex numbers 𝑧1 = 𝑟1𝑒𝑖𝜃1 and 𝑧2 = 𝑟2𝑒𝑖𝜃2 expressed in polar

forms is proven to converge to AHM(𝑧1, 𝑧2) = √𝑟1𝑟2𝑒𝑖
𝜃1+𝜃2

2

which involves both the scalar arithmetic mean 𝐴(𝜃1, 𝜃2)
and the scalar geometric mean 𝐺(𝑟1, 𝑟2).

To conclude, let us say that not only is it important to
consider which mean we mean [10] but it is also essential
to state which matrix geometric mean we mean!
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on non-positively curved Riemannian manifolds with applica-
tions, Riemannian computing in computer vision, Springer,
Cham, 2016, pp. 21–43. MR3444345

[10] Miguel de Carvalho, Mean, what do you mean?,
Amer. Statist. 70 (2016), no. 3, 270–274, DOI
10.1080/00031305.2016.1148632. MR3535513

[11] D. M. E. Foster and G. M. Phillips, A generaliza-
tion of the Archimedean double sequence, J. Math. Anal.
Appl. 101 (1984), no. 2, 575–581, DOI 10.1016/0022-
247X(84)90121-5. MR748590

[12] John Holbrook, No dice: a deterministic approach to the
Cartan centroid, J. Ramanujan Math. Soc. 27 (2012), no. 4,
509–521. MR3027448

[13] Yongdo Lim and Miklós Pálfia, Matrix power means and
the Karcher mean, J. Funct. Anal. 262 (2012), no. 4, 1498–
1514, DOI 10.1016/j.jfa.2011.11.012. MR2873848

[14] Yoshimasa Nakamura, Algorithms associated with arith-
metic, geometric and harmonic means and integrable systems, J.
Comput. Appl. Math. 131 (2001), no. 1-2, 161–174, DOI
10.1016/S0377-0427(00)00316-2. MR1835710

[15] Karl-Theodor Sturm, Probability measures on metric spaces
of nonpositive curvature, Heat kernels and analysis on
manifolds, graphs, and metric spaces (Paris, 2002), Con-
temp. Math., vol. 338, Amer. Math. Soc., Providence,
RI, 2003, pp. 357–390, DOI 10.1090/conm/338/06080.
MR2039961

Frank Nielsen

Credits

Photo of Frank Nielsen is courtesy of Maryse Beaumont.

DECEMBER 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1855

http://dx.doi.org/10.1016/0022-247X(84)90121-5
http://dx.doi.org/10.1016/0022-247X(84)90121-5
http://dx.doi.org/10.1016/j.jfa.2011.11.012
http://dx.doi.org/10.1016/S0377-0427(00)00316-2
http://dx.doi.org/10.1090/conm/338/06080
http://dx.doi.org/10.1137/140953393
http://dx.doi.org/10.1016/j.laa.2005.08.025
http://dx.doi.org/10.1090/S0025-5718-09-02261-3
http://dx.doi.org/10.1007/978-94-017-0399-4
http://dx.doi.org/10.1080/00031305.2016.1148632
http://www.ams.org/mathscinet-getitem?mr=2039961
http://www.ams.org/mathscinet-getitem?mr=1835710
http://www.ams.org/mathscinet-getitem?mr=3027448
http://www.ams.org/mathscinet-getitem?mr=748590
http://www.ams.org/mathscinet-getitem?mr=1829063
http://www.ams.org/mathscinet-getitem?mr=3264572
http://www.ams.org/mathscinet-getitem?mr=2198952
http://www.ams.org/mathscinet-getitem?mr=2552234
http://www.ams.org/mathscinet-getitem?mr=877728
http://www.ams.org/mathscinet-getitem?mr=947142
http://www.ams.org/mathscinet-getitem?mr=2024343
http://www.ams.org/mathscinet-getitem?mr=3444345
http://www.ams.org/mathscinet-getitem?mr=3535513
http://www.ams.org/mathscinet-getitem?mr=2873848



