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an Inductive Mean?

Frank Nielsen

Notions of means. The notion of means [10] is central
to mathematics and statistics, and plays a key role in
machine learning and data analytics. The three classical
Pythagorean means of two positive reals x and y are the
arithmetic (A), geometric (G), and harmonic (H) means,
given respectively by

xX+y

2x
Ay =75 Gy =y, Hop =

These Pythagorean means were originally geometrically
studied to define proportions, and the harmonic mean led
to a beautiful connection between mathematics and music.
The Pythagorean means enjoy the following inequalities:

min(x,y) < H(x,y) < G(x,y) < A(x,y) < max(x, y),

with equality if and only if x = y. These Pythagorean
means belong to a broader parametric family of means,
1

the power means Mp(x,y) = (xP + yP)P defined for p €
R\{0}. We have A(x,y) = M;(x,y), H(x,y) = M_(x,y)
and in the limits: G(x,y) = lim,_ o Mp(x,y), max(x,y) =
lim,_ ;o Mp(x,y), and min(x,y) = lim, _, Mp(x,y).
Power means are also called binomial, Minkowski, or
Holder means in the literature.

There are many ways to define and axiomatize means
with a rich literature [8]. An important class of means are
the quasi-arithmetic means induced by strictly increasing
and differentiable real-valued functional generators f(u):

MGy = £+ (L0, W
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Quasi-arithmetic means satisfy the in-betweenness prop-
erty of means: min(x,y) < My(x,y) < max(x,y), and are

called so because f(M(x,y)) = w =A(f(x), f()

is the arithmetic mean on the f-representation of num-
bers.

The power means are quasi-arithmetic means, M, =
My, obtained for the following continuous family of gen-
erators:

uP-1
| —, peR\o}
f"(u)_{ logw), p=0.

Sl = { (1+up)p, peR\0},
exp(u), p=0.

Power means are the only homogeneous quasi-arithmetic
means, where a mean M(x, y) is said to be homogeneous
when M(Ax, y) = AM(x,y) for any 4 > 0.
Quasi-arithmetic means can also be defined for n-
variable means (i.e., M;(xy,...,X,) = f‘l(% Zinzl FGe),
and more generally for calculating expected values of ran-
dom variables [10]: We denote by E¢[X] = FUELFXOD
the quasi-arithmetic expected value of a random variable
X induced by a strictly monotone and differentiable func-
tion f(u). For example, the geometric and harmonic ex-
pected values of X are defined by E°[X] = Elogx[X] =
exp(E[logX]) and EF[X] = E,1[X] = ﬁ, respec-
tively. The ordinary expectation is recovered for f(u) = u:
EA[X] = E.[X] = E[X]. The quasi-arithmetic expected
values satisfy a strong law of large numbers and a central
limit theorem ([10], Theorem 1): Let X, ..., X,, be indepen-
dent and identically distributed (i.i.d.) with finite variance
V[f(X)] < oo and derivative f'(E;[X]) # 0 at x = E¢[X].
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Then we have

a.s.
Mf(Xl, ,Xn) — [Ef[X]

V(M (s ) — EfIX]) N<O,M)

(f/(EAXD)°

as n — oo, where N(u, ¢2) denotes a normal distribution

of expectation u and variance 2.

Inductive means. An inductive mean is a mean defined as
alimit of a convergence sequence of other means [15]. The
notion of inductive means defined as limits of sequences
was pioneered independently by Lagrange and Gauss [7]
who studied the following double sequence of iterations:

a+g
a1 = Ala, g) = ot 2 L

81 = G(ar, &) =\ aigs,
initialized with ay = x > 0 and gy = y > 0. We have
80 < .. <8 <AGM(x,y) £ a; £ ... L ay,

where the homogeneous arithmetic-geometric mean
(AGM) is obtained in the limit:

AGM(x,y) = lim a; = lim g,.
t—oo t—oo
There is no closed-form formula for the AGM in terms of

elementary functions as this induced mean is related to the
complete elliptic integral of the first kind K(-) [7]:

T Xty
4 K(X_-y)
X+y

is the elliptic integral.

AGM(x,y) =

do

\/ 1-u? sinz(e)
The fast quadratic convergence [11] of the AGM iterations
makes it computationally attractive, and the AGM itera-
tions have been used to numerically calculate digits of 77 or
approximate the perimeters of ellipses among others [7].

Some inductive means admit closed-form formulas:
For example, the arithmetic-harmonic mean AHM(x, y)
obtained as the limit of the double sequence

where K(u) = fOE

a; +
a1 = Alag, hy) = ot 5 gt,

2a.h;
hiyq = H(a;, hy) = ————,
t+1 (as hy) a +hy

initialized with ay; = x > 0 and hy = y > 0 converges to
the geometric mean:

AHM(x,y) = tlgg a; = tlgg hy = 4/xy = G(x, ).

In general, inductive means defined as the limits of double
sequences with respect to two smooth symmetric means
Ml and Mz:

a1 = My(a;, by),
bi11 = My(ay, by),
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are proven to converge uadratically [11] to
DS, ,m,(ag, bo) = lim;_,, a; = lim,_,, b; (order-2 conver-
gence).

Inductive means and matrix means. We have obtained so
far three ways to get the geometric scalar mean G(x,y) =
\/xy between positive reals x and y:

1. As an inductive mean with the arithmetic-harmonic
double sequence: G(x,y) = AHM(x, y),

2. Asa quasi-arithmetic mean obtained for the generator
f(u) = logu: G(x’y) = Mlog(x’ y)/ and

3. As the limit of power means:
lim,,_o Mp(x, y).

Let us now consider the geometric mean G(X, Y) of two
symmetric positive-definite (SPD) matrices X and Y of size
d x d. SPD matrices generalize positive reals. We shall in-
vestigate the three generalizations of the above approaches
of the scalar geometric mean, and show that they yield dif-
ferent notions of matrix geometric means when d > 1.

First, the AHM iterations can be extended to SPD matri-
ces instead of reals:

Ay +H,;

2
Hyyy = Z(At_l + Ht_l)_l = H(A, Hy),

G(x,y) =

Ay = = A(At,H,),

.. . . X+Y
where the matrix arithmetic mean is A(X,Y) = % and

the matrix harmonic mean is H(X,Y) = 2(X"! + Y1)~ L.
The AHM iterations initialized with A = X and Hy = Y
yield in the limit t — oo, the matrix arithmetic-harmonic
mean [3, 14] (AHM):

AHM(X,Y) = lim A, = lim H,.
t—>+o0 t—>+oo

Remarkably, the matrix AHM enjoys quadratic conver-
gence to the following SPD matrix:

1 1 1 1 1
AHM(X,Y) = X2(X 2YX 2)2X2 = G(X, Y).

When X = x and Y = y are positive reals, we recover
G(X,Y) = 4/xy. When X = I, the identity matrix, we

1

get G(ILY) = Yz = \Y, the positive square root of
SPD matrix Y. Thus the matrix AHM iterations provide
a fast method in practice to numerically approximate ma-
trix square roots by bypassing the matrix eigendecomposi-
tion. When matrices X and Y commute (i.e, XY = YX),
we have G(X,Y) = \/X_Y . The geometric mean G(A, B)
is proven to be the unique solution to the matrix Ricatti
equation XA~!X = B, is invariant under inversion (i.e.,
G(A,B) = G(A™',B~1)71), and satisfies the determinant
property det(G(A, B)) = 1/ det(A) det(B).

Let P denote the set of symmetric positive-definite d x d
matrices. The matrix geometric mean can be interpreted
using a Riemannian geometry [5] of the cone P: Equip P
with the trace metric tensor, i.e., a collection of smoothly
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varying inner products gp for P € P defined by
gp(51,8,) = tr (P715,P71S,),

where S; and S, are matrices belonging to the vector space
of symmetric d X d matrices (i.e., S; and S, are geometri-
cally vectors of the tangent plane Tp of P € P). The geo-
desic length distance on the Riemannian manifold (P, g)

1S
d =1 -1
= Zlogzﬂi(a *BR )
F

i=1

1 1
p(R,B) = 10g<P1 ’BR 2)

where 1;(M) denotes the i-th largest real eigenvalue of a
symmetric matrix M, || - || denotes the Frobenius norm,
and log P is the unique matrix logarithm of a SPD matrix
P. Interestingly, the matrix geometric mean G(X,Y) =
AHM(X,Y) can also be interpreted as the Riemannian cen-
ter of mass of X and Y:

1 1
X,Y) = in =p2(X, P) + =p%(Y, P).
G(X,Y) argggugzp( , )+2p( ,P)

This Riemannian least squares mean is also called the Car-
tan, Karcher, or Fréchet mean in the literature. More gener-
ally, the Riemannian geodesic y(X,Y;t) = X#,Y between
X and Y of (P,g) for t € [0,1] is expressed using the
weighted matrix geometric mean G(X,Y;1 —t,t) = X#,Y
minimizing

(1 = 0)p*(X,P) + tp*(Y, P).

This Riemannian barycenter can be solved as
1o\ 1
X#,Y =Xz (X 2YX 2) X2,
with G(X,Y) = X#Y, X#Y = Y#,_X, and

p(X#,Y,X) =tp(X,Y), i.é., t is the arc length parameteriza-
tion of the constant speed geodesic y(X, Y;t). When matri-
ces X and Y commute, we have X#,Y = X!=tY!. We thus
interpret the matrix geometric mean G(X,Y) = X#Y =
X#1Y as the Riemannian geodesic midpoint.

2
Second, let us consider the matrix geometric mean as
the limit of matrix quasi-arithmetic power means which
1

can be defined [13] as Q,(X,Y) = (XP + YP)? for p €
R,p # 0, with Q,(X,Y) = A(X,Y) and Q_,(X,Y) =
H(X,Y). We get limp_oQp(X,Y) = LE(X,Y), the log-
Euclidean matrix mean defined by
logX +logY

).

where exp and log denote the matrix exponential and
the matrix logarithm, respectively. We have LE(X,Y) #
G(X,Y). Consider the Loewner partial order < on the cone
P: P < Q if and only if Q — P is positive semi-definite. A
mean M(X,Y) is said operator monotone [5] if for X’ <X
and Y < Y, we have M(X',Y') < M(X,Y). The log-

Euclidean mean LE(X, Y) is not operator monotone but

LE(X,Y) = exp<
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the Riemannian geometric matrix mean G(X,Y) is opera-
tor monotone.

Third, we can define matrix power means MP(X ,Y) for
p € (0,1] by uniquely solving the following matrix equa-
tion [13]:

1 1

Let M,(X,Y) = M denote the unique solution of Eq. 2.

This equation is the matrix analogue of the scalar equation

m = %ml‘l’xl’ + %ml‘l’yl’ which can be solved as m =
1

(%xp + %yp>p = My(x,y), i.e, the scalar p-power mean.

In the limit case p — 0, this matrix power mean M), yields

the matrix geometric/Riemannian mean [13]:

lim M,(X,Y) = G(X,Y).
p—0+

In general, we get the following closed-form expres-
sion [13] of this matrix power mean for p € (0,1):

1. 1
My(X.Y) = X#1 (EX + E(X#py)> .

Inductive means, circumcenters, and medians of several
matrices. To extend these various binary matrix means of
two matrices to matrix means of n matrices B, ..., B, of P,
we can use induction sequences [9]. First, the n-variable
matrix geometric mean G(B, ..., B;) can be defined as the
unique Riemannian center of mass:

n

1
G(B,...,B) = i ~0%(P,PR).
(B....B) argrglelug};np( )

This geometric matrix mean G = G(B, ..., B,) can be charac-
1 1
terized as the unique solution of Z?:l log <G_5Pl-G_E> =0

(called the Karcher equation), and is proven to satisfy the
ten Ando-Li-Mathias properties [1] defining what should
be a good matrix generalization of the scalar geometric
mean.
Holbrook [12] proposed the following sequence of iter-
ations to approximate G(B, ..., B,):
M1 =M# 1 R

t+1

mod n (3)

with M; initialized to B. In the limit t — oo, we get the
n-variable geometric mean: lim,;_,, M; = G(B, ..., B,). This
deterministic inductive definition of the matrix geometric
mean by Eq. 3 allows to prove that the geometric mean
G(B,...,B,) is monotone [12]: Thatis, if B < B, ..., B <
B, then we have G(#,...,B,) < G(B,...,B,). The following
matrix arithmetic-geometric-harmonic mean inequalities
extends the scalar case:

HX,Y;1—t,t)
=((Q-D)X"1+ry=H!
<GX,Y;1-t,t) <AX,Y;1—-t,t) =1 —-t)X + tY.

1853



What is...

Now, if instead of taking cyclically the input matri-
ces B,...,B,B,...,B,.., we choose at iteration ¢t the far-
thest matrix in B, ..., B, to M, with respect to the Riemann-
ian distance p, we get the Riemannian circumcenter [2]
C(B, ..., B,)) which is the minimax minimizer:

C(B,..,P) =argmin max p(R,C).
(B, ... F) = argmin ie{l,u_’n}p(l )

The sequence of iterations
Ciy1 = Ct#LPfarthest(t): (4)
t+1

where
farthest(t) = arg max p(C;, B),
i€fl,..,n}

initialized with C; = B is such that

C(B,..,B,) = lim C,.
t—o0

The uniqueness of the smallest enclosing ball and the
proof of convergence of the iterations of Eq. 4 relies on
the fact that the cone P is of nonpositive sectional curva-
tures [2]: P is a nonpositive curvature space or NPC space
for short.

The Riemannian median minimizing
arg minpep Z?:l %p(P,Pi) is proven to be unique in Rie-
mannian NPC spaces, and can be obtained as the limit of
the following cyclic order sequence [4]:

Xin+1 = an#tk’lpl»
Xknv2 = an+1#tk,2Pz’

Xin+n = Xkn+n-1 #tk,nPn’

- M
’ np(Pn,Xkn+n-1)
sequence (4) such that ;> Ak = oo and 3, A <
(eg, A = k%l).

Finally, let us mention that Bini, Meini, and Poloni [6]
proposed a class of recursive geometric matrix means
Gy,.,..sn_, (B> > B,) parameterized by (n — 1)-tuple of scalar
parameters, and defined recursively as the common limit
of the following sequences:

where ., = min{l } with the positive real

Pi(r+l)

= B4, Gy, s,y (Booes Boys By s B

In particular, these matrix means exhibit a unique (n — 1)-

tuple for which the recursive mean Gn-1 n-2 1(R, ..., B,)
‘h-1"""2
converges fast in cubic order (order-3 convergence). This

geometric matrix mean is called the BMP mean in the
literature. Furthermore, the mean G, | 1(R,..,B) co-

iell,..,n}

,,,,, Sn-1

incides with the Ando-Li-Mathias geometric mean [1]
(ALM) which converges linearly.
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Random variables, expectations, and the law of large
numbers. Although inductive means as limits of se-
quences have been considered since the 18th century
(AGM by Lagrange and Gauss), this term was only re-
cently coined by Karl-Theodor Sturm in 2003 (see Defi-
nition 4.6 in [15]), who considered inductive sequences
to calculate probability expectations of random variables
on nonpositive curvature complete metric spaces. For ex-
ample, let P(P) denote the set of probability measures
on P with bounded support [15]. Let X : Q — P be
a SPD-valued random variable with probability density
function py expressed with respect to the canonical Rie-
mannian volume measure dw(P) = +/det(gp). The ex-
pectation E[X] and the variance V[X] of a random vari-
able X ~ pyx are defined respectively as the unique min-
imizer of C ~ E[p*(X,C)] = [, p*(C,P)px(P)dw(P) and
infpep E[0?(X, P)]. Consider (X;);ey to be an independent
sequence of measurable maps X; : Q — P with identical
distributions px, = px, and let p, = %2?21 dx, € P(P)
denote the empirical distribution. Then the following em-
pirical law of large numbers holds as n — oo:

G(Xy, .., X)) — E[X].

Several proofs are reported in the literature (e.g., Proposi-
tion 6.6 of [15], Theorem 1 of [9], or Theorem 5.1 of [4]).
Thus the expectation E[X] of a SPD-valued random vari-
able can be estimated incrementally by considering in-
creasing sequences (X;);cy Of i.i.d. random vectors, and
incrementally computing their Riemannian means. Exper-
iments demonstrating convergence to various probability
law expectations px are reported in [9].

Closing remarks. The AHM double sequence yielding the
matrix geometric mean can further be generalized to de-
fine self-dual operators on convex functionals in Hilbert
spaces [3] based on the Legendre-Fenchel transformation
(called convex geometric mean functionals). For example,
the AHM iterations initialized on a pair of nonzero com-

plex numbers z; = re%1 and z, = el expressed in ;;olélr
;91102

. i
forms is proven to converge to AHM(z;, z,) = 4/nhe 2

which involves both the scalar arithmetic mean A(6;,6,)
and the scalar geometric mean G(r;, ;).

To conclude, let us say that not only is it important to
consider which mean we mean [10] but it is also essential
to state which matrix geometric mean we mean!
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