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Abstract

In this paper we redefine and generalize the classic
k-nearest neighbors (k-NN) voting rule in a Bayesian
maximum-a-posteriori (MAP) framework. Therefore,
annotated examples are used for estimating pointwise
class probabilities in the feature space, thus giving rise
to a new instance-based classification rule. Namely, we
propose to “boost” the classic k-NN rule by inducing
a strong classifier from a combination of sparse train-
ing data, called “prototypes”. In order to learn these
prototypes, our MAPBOOST algorithm globally min-
imizes a multiclass exponential risk defined over the
training data, which depends on the class probabilities
estimated at sample points themselves.

We tested our method for image categorization on
three benchmark databases. Experimental results show
that MAPBOOST significantly outperforms classic k-
NN (up to 8%). Interestingly, due to the supervised
selection of sparse prototypes and the multiclass clas-
sification framework, the accuracy improvement is ob-
tained with a considerable computational cost reduc-
tion.

1. Introduction

We address the task of image categorization, which
aims at classifying images into a predefined set of cate-
gories. Several techniques have been proposed to solve
this problem automatically, among which instance-
based methods, like k-nearest neighbors (k-NN) clas-
sification, have shown very good performances [1]. In
particular, much research effort has been devoted to im-
prove the statistical and computational properties of the
classic k-NN vote, which relies on labeled neighbors
to predict the class of unlabeled data [11]. Such meth-

ods can be viewed as primers to improve the (continu-
ous) estimation of the class membership probabilities.
Moreover, a Bayesian reassessment of the problem has
been recently proposed as a motivation for the formal
transposition of boosting to k-NN classification [5].

We generalize the k-NN rule in a supervised
Bayesian framework, where annotated data (sam-
ple points) are used for non-parametric maximum-a-
posteriori (MAP) estimation [2]. Namely, our main
contribution is redefining the classic voting rule as a
strong classifier that linearly combines predictions from
sample points in a boosting framework. For this pur-
pose, our boosting algorithm minimizes a multiclass
risk function over training data, thus redefining the
UNN approach of [9] directly in a multiclass frame-
work.

In the following sections, we first define the boosting
problem for MAP classifiers and describe our leverag-
ing algorithm (Sec. 2.1–2.2). Then, we provide the so-
lution when using kernel density estimators (Sec. 2.4),
thus enlightening the link to classic k-NN classification.
Finally, we present and discuss some experimental re-
sults on categorization of natural images (Sec. 3).

2. Method

2.1 (Leveraged) MAP classification

We tackle the classification problem directly in a
multiclass framework, i.e., unlike [9], we do not reduce
it to multiple two-class problems. We suppose given a
training set S of m annotated examples (xi,yi), where
xi is the image descriptor and yi the class vector that
specifies the category membership. In particular, the
sign of component yic gives the positive/negative mem-
bership of the example to class c (c = 1, ..., C). Inspired
by the multiclass boosting analysis of [12], we constrain

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.167

665

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.167

665

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.167

661

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.167

661

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.167

661



the class vector to be symmetric, i.e.,
∑C

c=1 yic = 0 by
setting: yi c̃ = 1, yi c �=c̃ = − 1

C−1 , c̃ being the true im-
age category.

The multiclass boosting algorithm we propose
grounds on MAP classification, where, for a given x,
one selects the label that maximizes the a-posteriori
probability, as it can be estimated from the annotated
data:

P (c|x) =
p(x, c)∑C

j=1 p(x, j)
=

∑
i:yic=1 f̂i(x)∑m

i=1 f̂i(x)
. (1)

In (1), p(x, c) is the joint probability density of obser-
vations and classes, and f̂i(x) is a density estimation
function evaluated at x for each example i. Note that
only the examples belonging to class c contribute to the
probability estimation, whereas the denominator serves
simply as a normalizing factor.

MAP classification based on (1) can be viewed as a
uniform voting (with real-valued votes f̂i) among sam-
ple points xi. We propose to replace the training dataset
in (1) by a subset of T training examples (called proto-
types), which are learned in a boosting framework, thus
defining:

P �
T (c|x) =

∑
t:y

(c)
t =1

αtf̂t(x)∑T
t=1 αtf̂t(x)

. (2)

Hence, each term f̂t is weighted by a leveraging co-
efficient αt, which measures the “confidence” of the
corresponding prototype t as a sample point for MAP
classification. We use the modified class probability es-
timation (2) for defining our leveraged MAP classifier
in the framework of multiclass boosting [12]:

h�
c(x) =

∑T
t=1 αtytcf̂t(x)∑T

t=1 αtf̂t(x)
. (3)

Therefore, we consider each prototype t as a weak clas-
sifier that matches the symmetric constraint imposed
by [12]:

∑C
c=1 ytcf̂t(x) = 0. Finally, the criterion for

predicting the label of unknown samples is:

ĉ = arg maxch
�
c(x) = arg max

T∑
t=1

αtytcf̂t(x) , (4)

where we can remove the normalizing factor of (3).
In order to fit rule (3), we have to:

• learn prototypes and their weights αt;

• estimate f̂t(x) from those prototypes.

In the following sections we first present our learning
algorithm, then describe some techniques we used for
estimating f̂t(x) directly from training data.

2.2 Boosting by multiclass risk minimization

In order to learn prototypes from training set S, we
exploit a common trick in boosting, i.e., minimizing a
particular upperbound of the risk functional on training
data. In particular, we focus on the following multiclass
exponential risk:

εexp
(
h�,S) .=

1
m

m∑
i=1

exp
{−ρ(h�, i)

}
, (5)

where

ρ(h�, i) .=
1
C

C∑
c=1

yich
�
c(xi) (6)

is the multiclass edge of classifier h� on example xi.
This edge averages over all classes quantity yich

�
c(xi),

which is positive iff the category membership predicted
by the classifier agrees with the true membership of the
example. (5) is an upper bound of the true empirical
risk, thus acting as a convenient primer for the optimiza-
tion problem [6].

Like common boosting algorithms, our method con-
sists of an iterative minimization procedure. Namely,
on each iteration t of the algorithm a new prototype j is
selected, thus updating the (unnormalized) strong clas-
sifier (3) as follows:

h(t)
c (xi) = h(t−1)

c (xi) + αtyjcf̂j(xi) . (7)

Then, computing the leverage coefficient αt associ-
ated to that prototype requires plugging (7) into the risk
definition (5, 6), thus turning to the following convex
optimization problem:

arg min
αt

m∑
i=1

wi · exp {−αtr̂ij} . (8)

In (8), wi > 0 are the weights defined over training
data, which are repeatedly updated as they depend on
the first t− 1 weak classifiers:

wi = exp

{
− 1

C

C∑
c=1

yich
(t−1)
c (xi)

}
, (9)

whereas R̂ = [̂rij ]m×m is the so-called edge matrix:

r̂ij = f̂j(xi)

(
1
C

C∑
c=1

yicyjc

)
. (10)

This edge matrix is constant along iterations, as it only
depends on the training data and the chosen density es-
timator. Moreover, r̂ij is positive iff labels of the two
examples agree, whereas its absolute value depends on
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the real-valued estimation from prototype j at xi. Due
to this definition, the multiclass edge (6) on example i
reads as a linear combination of the edges between i and
the training data (indexed by j), with real coefficients
αj :

ρ(h�, i) =
m∑

j=1

αj r̂ij . (11)

Finally, fitting αt in (7) amounts to taking the deriva-
tive of (8) and solving the following equation:

m∑
i=1

wir̂ij exp {−αtr̂ij} = 0 . (12)

The convexity of optimization program (8) guarantees
the uniqueness of the solution for (12). However, this
solution can be written in closed form only in the simple
case of uniform kernel, r̂ij being constant over all i’s:

αt ← (C − 1)2

C
log

(
(C − 1)w+

j

w−
j

)
, (13)

with:

w+
j =

∑
i: r̂ij>0

wi, w−
j =

∑
i: r̂ij<0

wi . (14)

Otherwise, in the general case, one has to compute
αt numerically, and for this purpose we propose to use
Newton’s recursive formula:

α
(k+1)
t = α

(k)
t +

∑m
i=1 wir̂ij exp {−α

(k)
t r̂ij}∑m

i=1 wir̂2ij exp {−α
(k)
t r̂ij}

. (15)

2.3 Algorithm properties and convergence

Alg. 1 is pseudocode of our MAPBOOST algorithm
for learning prototypes and their leveraging coefficients
by minimizing (5). Our algorithm repeatedly updates
weights wi in order to progressively decrease the ex-
ponential risk function (5) over the training data. In
particular, on each boosting iteration t a weak index
chooser oracle WIC({1, 2, ...,m}, t) determines index
j ∈ {1, 2, ...,m} of the example to leverage (step I.0),
which is then included in the prototype set (step I.3).
Notice that various choices are possible for this oracle.
The simplest is computing Eq. (12) for all the training
examples, then picking j that maximizes αt. Indeed, αt

in Eq. (12) can be viewed as a local measure of the class
density, which is as better as αt gets large. (See [6],
Lemma 4.)

Using known arguments of the boosting theory [6],
we proved the convergence of our boosting MAP algo-
rithm to the minimum of the surrogate risk, along with a
convergence rate, which is based on the following weak
index assumption (WIA):

(WIA) let pj
.= w+

j /(w+
j + w−

j ). There exist some
γ > 0 and η > 0 such that the following
two inequalities holds for index j returned by
WIC({1, 2, ...,m}, t):

|pj − 1/C| ≥ γ , (16)

(w+
j + w−

j )/||w||1 ≥ η . (17)

We summarize this fundamental convergence prop-
erty in the following theorem:

Theorem 1 If the WIA holds for τ ≤ T steps, then
MAPBOOST converges with τ to h� realizing the global
minimum of the surrogate risk (5), and ε0/1(h�,S) ≤
exp(− C

C−1ηγ2τ).

Because we consider examples themselves as weak
classifiers, inequality (16), which is the usual weak
learning assumption, is not enough for guaranteeing
convergence. Indeed, we also require a weak cover-
age assumption (17) to be matched, because insufficient
coverage of the reciprocal neighbors could easily wipe
out the surrogate risk reduction due to a large γ in (16).

Algorithm 1: MAPBOOST (S)
Input: S = {(xi, yi) , i = 1, 2, ..., m , yi ∈

{− 1
C−1

, 1}C}
Let:

r̂ij
.
= f̂j(xi)

(
1

C

C∑
c=1

yicyjc

)

Let wi ← 1/m, ∀i = 1, 2, ..., m

for t = 1, 2, ..., T do
[I.1] Weak index chooser oracle:
Let j ← WIC({1, 2, ..., m}, t);
Select prototype (xt, yt)← (xj , yj)

[I.2] Compute αt solution of:

m∑
i=1

wir̂ij exp {−αtr̂ij} = 0 ; (18)

[I.3] Let

wi ← wi exp(−αtr̂ij), ∀i = 1, 2, ..., m ; (19)

Output:

h�
c(x) =

T∑
t=1

αtytcf̂t(x) .

2.4 Kernel density estimation

In order to compute f̂j(xi) in (10), we propose to
use a non-parametric density estimator, which relies on
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kernel K(x,xi) [10]:

f̂(x) =
1
m

m∑
i=1

f̂i(x) =
1
m

m∑
i=1

1
h(·)d

K

( ||x− xi||
h(·)

)
.

(20)
(h(·) is the scale parameter of the kernel.) Therefore,
plugging (20) into (10) gives:

r̂ij =

(
1
C

C∑
c=1

yicyjc

)
K
(

||x−xi||
h(·)

)
∑m

i=1 K
(

||x−xi||
h(·)

) . (21)

Different kinds of estimators can be defined using
(20), depending on the way h(·) is chosen: (I) bal-
loon estimator, where h = h(x), i.e., a single variable-
size kernel centered at the estimation point; (II) sample-
point estimator, where h = h(xi), i.e., a mixture of
identical but individually scaled kernels that are cen-
tered at each observation xi.

We use the sample point estimator for computing the
training edge matrix (10), and the balloon estimator for
the classification rule (3). In the following, we con-
centrate on rectangular and Gaussian kernels, and set
h(xi) = ρk(xi), ρk(xi) being the Euclidean distance
from xi to its k-th nearest neighbor in the dataset. (We
also truncated the Gaussian kernel at h(xi).) As a re-
sult of this setting, estimator (20) with rectangular ker-
nel amounts to a uniform voting rule based on k-nearest
neighbors. This allows us to consider Alg. 1 as a multi-
class generalization of the two-class UNN boosting al-
gorithm described in [9]. In particular, allowing a dif-
ferent kernel from the rectangular one can be viewed as
generalizing the k-NN classification to a weighted vot-
ing rule, where geometric information between neigh-
bors data in the feature space is taken into account as
well.

3 Experiments

We evaluated our MAPBOOST algorithm for image
categorization. We tested our method with both rectan-
gular and Gaussian kernels. In particular, we compared
two different versions of the Gaussian kernel estima-
tor, the one relying on a variable-size kernel (with pa-
rameter scale h equal to the k-NN distance), the other
using a fixed-size kernel, i.e., h being independent on
the local sample density. In the following, we refer
to these approaches as “adaptive Gaussian” and “fixed
Gaussian”, respectively. In both cases, we truncated
kernels at the k-th nearest neighbor. We also tested
MAPBOOST in a one-versus-all classification frame-
work, where the learning problem is decomposed in
multiple binary problems (as many as the number of

classes), i.e., one class is trained at a time against all
the others. Finally, we compared our method with both
uniform and weighted k-NN classification. For this lat-
ter method, we tested the weighting rule proposed by
Philbin et al. [8], where the votes are weighted by a
Gaussian function of the distance between k-NN and
the query point.

We validated our algorithm on three well-known
image categorization databases: 8-cat [7], 13-cat [3]
and 15-cat [4], which contain, respectively: 2,688 im-
ages (in 8 categories), 3,759 images (in 13 categories)
and 4,385 images (in 15 categories). We splitted each
database in two subsets, one for training (containing
2,000 randomly selected images), the other for test.
Images were represented using Gist, a state-of-the-art
global image descriptor which has been shown to be
very discriminant for classifying natural scenes [7].
Namely, we extracted 320 features from an image to
form a Gist descriptor, then reduced the descriptor di-
mension down to 128 by means of PCA.

Fig. 1(a) shows performances of our boosting algo-
rithm with (both adaptive and fixed) Gaussian and rect-
angular kernel, as well as those of one-vs-all MAP-
BOOST and the two k-NN methods. Classification per-
formances are evaluated in terms of the mean Average
Precision (mAP), i.e., the average of the classification
rates per category, and are reported as a function of the
number of boosting rounds T , i.e., the number of se-
lected prototypes (ranging between 10% and 50% of the
overall training set size). So as for k-NN classification,
we selected a random sample of the training set and av-
eraged results over a number of random sampling real-
izations. All the results we present were obtained with
k = 11.

Three main empirical observations can be pointed
out, which arise from these experimental results.

• Our method significantly outperforms both uni-
form and weighted k-NN voting, even when using
a sparse prototype dataset (e.g., in Fig. 1(a) remark
6% gap between MAPBOOST with adaptive Gaus-
sian kernel and weighted k-NN at T = 200.)

• The Gaussian adaptive kernel provides the best
performances overall (81% mAP on 8-cat, 67% on
13-cat, 64% on 15-cat), and generally outperforms
both the fixed-size one and the adaptive rectangu-
lar one. This observation suggests that improving
the accuracy of local density estimation, as enabled
by a non-uniform adaptive kernel estimator, may
improve the classification accuracy as well.

• The multiclass version of MAPBOOST outper-
forms the one-versus-all strategy, while dramati-
cally reducing the computational cost, as it avoids
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running the same algorithm C times independently
on as many binary problems.

To summarize, experimental results enlight the abil-
ity of MAPBOOST to efficiently reject “noisy” exam-
ples, which are generally responsible for the failure of
classic voting methods, thus improving both classifica-
tion accuracy and computational speed at query time.

4 Conclusion

In this paper we have proposed MAPBOOST, a new
multiclass boosting algorithm for Bayesian MAP classi-
fication. Our method induces a strong classifier by com-
bining examples themselves as weak classifiers, thus
generalizing classic k-NN classification. MAPBOOST

significantly outperforms k-NN voting for image cat-
egorization, while considerably reducing the computa-
tional cost at classification time, thanks to the sparsity
of the prototype set selected from training data.
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Figure 1. Categorization performances in
terms of mAP (average of diagonal en-
tries in the confusion matrix) as a function
of the prototype set size T .
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