
On the Efficient Minimization of Convex Surrogates in Supervised Learning

Richard Nock∗ Frank Nielsen†

Abstract

Bartlett et al (2006) recently proved that a ground
condition for convex surrogates, classification calibra-
tion, ties up the minimization of the surrogates and
classification risks, and left as important open prob-
lems the algorithmic questions about the minimization
of these surrogates. Our paper gives an answer for a
wide subset of these surrogates that we call “balanced
surrogates”, a set with popular members (logistic loss,
squared loss), that contains all surrogates meeting three
important requirements about classification. We pro-
pose an algorithm that fits linear separators to the min-
imization of any such surrogate, with guaranteed con-
vergence bounds under a so-called “Weak Learning As-
sumption”, a generalization of the one that grounds cel-
ebrated boosting algorithms. Experiments on more than
50 readily available domains of 10 flavors of the algo-
rithm display the performances of new surrogates.

1. Introduction

A very active supervised learning trend has been
flourishing over the last decade: it studies functions
known as surrogates — upperbounds of the empirical
risk, generally with particular convexity properties —,
whose minimization remarkably impacts on empirical /
true risks minimization [2, 6] (and many others). Sur-
rogates play fundamental roles in some of the most suc-
cessful supervised learning algorithms, including Ad-
aBoost [8, 9], additive logistic regression [4], decision
tree induction [6], Support Vector Machines. As their
popularity has been rapidly spreading, some authors
have begun to stress the need to set in order surrogates,
and better understand their properties as wholes. Out of
the rationales of any kind that can be found, statistical
approaches have so far encompassed the others and ex-
plicitly left some of them, like the algorithmic question,
as important problems to settle [2].

∗CEREGMIA — U. Antilles-Guyane, 97275 Schoelcher, France.
Email: rnock@martinique.univ-ag.fr

†LIX — Ecole Polytechnique, 91128 Palaiseau, France. Email:
nielsen@lix.polytechnique.fr

In this paper, we provide an answer for a large subclass
of these surrogates, that we call balanced convex sur-
rogates (BCS). We show that this set, which contains
surrogates built from the logistic and squared losses, co-
incides with the set whose members meet 3 of the most
common requirements for such functions in supervised
learning: lower-boundedness, the optimality of condi-
tional probabilities from the decision standpoint, and
symmetries in the cost matrix. We provide a minimiza-
tion algorithm that works for any BCS, ULS, with the
key property that it meets Boosting-type convergence
bounds to reach the minimum of the BCS under a weak
learning assumption familiar to boosting algorithms [8].
The relevance of this result is also experimental: more
freedom to choose surrogates means more space for
domain-specific tunings. We provide such experiments
on 10 flavors of ULS on a wide benchmark of 52 do-
mains, report new challengers for popular surrogates,
and sketch possible domain-specific tuning strategies.
Section 2 gives definitions. Section 3 presents BCS.
Section 4 presents ULS; Section 5 gives experiments.

2 Preliminary definitions

Unless otherwise stated, bold-faced variables like w

denote vectors (components are wi, i = 1, 2, ...), calli-
graphic upper-cases like S denote sets, and blackboard
faces like O denote subsets of R, the set of real num-
bers. We let set O denote a domain (Rn, [0, 1]n, etc.,
where n is the number of description variables), whose
elements are observations. An example is an ordered
pair (o, c) ∈ O × {c−, c+}, Where {c−, c+} denotes
the set of classes (or labels), and c+ (resp. c−) is the
positive class (resp. negative class). Classes are ab-
stracted by a bijective mapping to one of two other sets:

c ∈ {c−, c+}� y∗ ∈ {−1,+1}� y ∈ {0, 1} . (1)

The convention is c+
 +1
 1 and c−
 −1
 0.
We thus have three distinct notations for an example:
(o, c), (o, y∗), (o, y). We suppose given a set of m
examples, S = {(oi, ci), i = 1, 2, ...,m}. We wish
to build a classifier H , which can either be a function
H : O → O ⊆ R (hereafter, O is assumed to be sym-
metric with respect to 0), or a function H : O → [0, 1].

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 12, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

Following a convention of [3], we compute to which
extent the outputs of H and the labels in S disagree,
ε(S,H), by summing over all examples a loss which
quantifies pointwise disagreements:

ε(S,H)
.
=

∑

i

`(ci,H(oi)) . (2)

The fundamental loss is the 0/1 loss, `0/1(c,H) (to ease
readability, the second argument is written H instead of
H(o)), which takes on two forms depending on im(H):

`0/1
R

(y∗,H)
.
= 1y∗ 6=σ◦H if im(H) = O , (3)

`0/1
[0,1](y,H)

.
= 1y 6=τ◦H if im(H) = [0, 1] . (4)

The following notations are introduced in (3-4), and
shall be used wherever needed: for a clear distinction
of the output of H , we put in index to ` and ε an indica-
tion of the loss’ domain of parameters: R, meaning it is
actually some O ⊆ R, or [0, 1]. The exponent to ` gives
the indication of the loss name. Finally, 1π is the indi-
cator variable that takes value 1 iff predicate π is true,
and 0 otherwise; σ : R → {−1,+1} is +1 iff x ≥ 0
and −1 otherwise; τ : [0, 1] → {0, 1} is 1 iff x ≥ 1/2,
and 0 otherwise. Both losses `R and `[0,1] are defined si-
multaneously via popular transforms on H , such as the
logit transform logit(p)

.
= log(p/(1 − p)),∀p ∈ [0, 1]

[4]. We have indeed `0/1
[0,1](y,H) = `0/1

R
(y∗, logit(H)) and

`0/1
R

(y∗,H) = `0/1
[0,1](y, logit−1(H)). We have implicitly

closed the domain of the logit, adding two symbols±∞
to ensure that the eventual infinite values for H can be
mapped back to [0, 1]. In supervised learning, the objec-
tive is to carry out the minimization of the expectation
of the 0/1 loss in generalization, the so-called true risk.
Very often however, this task can be relaxed to the mini-
mization of the empirical risk ofH , which is simply (2)
with the 0/1 loss [3]: ε0/1(S,H)

.
=

∑

i `
0/1(ci,H(oi)).

The main classifiers we investigate are linear separators
(LS). In this case, H(o)

.
=

∑

t αtht(o) for features ht
with im(ht) ⊆ R and leveraging coefficients αt ∈ R.

3 Balanced Convex Surrogates

It has been found over the last decade that ε0/1(S,H)
can be computationally efficiently minimized if we
rather focus on the minimization of a surrogate risk [2].
This is a function ε(S,H) as in (2), whose surrogate
loss satisfies:

`0/1(c,H(o)) ≤ `(c,H(o)) . (5)

Three of them are particularly important; they are de-
fined via the following surrogate losses:

`log

R
(y∗,H)

.
= log(1 + exp(−y∗H)) , (6)

`sqr

R
(y∗,H)

.
= (1− y∗H)2 , (7)

`hinge

R
(y∗,H)

.
= max{0, 1− y∗H} . (8)

φ(x) aφ im(∇
φ

) Fφ(y∗H) P̂r[c = c+|H; o]

⊇ im(H) = (φ?(−y∗H) − aφ)/bφ = ∇
−1

φ
(H)

(11) µ R
−y∗H+

q

(1−µ)2+(y∗H)2

1−µ
1
2

+ H

2
q

(1−µ)2+H2

(12) 0 R −y∗H +
q

1 + (y∗H)2 1
2

+ H

2

q

1+H2

(13) 0 R log(1 + exp(−y∗H))
exp(H)

1+exp(H)

(14) 0 [−1, 1] (1 − y∗H)2 1
2

+ H
2

Table 1. Correspondence between per-
missible functions, the corresponding
BCLs and the matching [0, 1] predictions.

(6) is the logistic loss, (7) is the squared loss and (8)
is hinge loss. To state the class BCS, we need some
preliminary definitions related to convex analysis. The
Legendre conjugate ψ? of some strictly convex and dif-
ferentiable function ψ is:

ψ?(x)
.
= sup

x′∈int(X)

{xx′ − ψ(x′)} . (9)

Because of the strict convexity of ψ, the Legen-
dre conjugate can be explicitly computed: ψ?(x)

.
=

x∇−1
ψ (x)− ψ(∇−1

ψ (x)). ψ? is also strictly convex and
differentiable. A function φ : [0, 1]→ R+ is called per-
missible iff it is differentiable on (0, 1), strictly concave,
symmetric about x = 1/2, and with φ(0) = φ(1) =
aφ ≥ 0. We let bφ

.
= φ(1/2)− aφ > 0.

Definition 1 Let φ permissible and φ
.
= −φ. The Bal-

anced Convex Loss (BCL) with generator φ, Fφ, is:
Fφ(x)

.
= (φ

?
(−x)− aφ)/bφ.

Any surrogate risk built from a BCL is called a Bal-
anced Convex Surrogates (BCS). All BCL share a com-
mon shape. Indeed, it is not hard to show that the
asymptotes of any BCL can be summarized as:

`(x) = x(σ(x)− 1)/(2bφ) . (10)

When bφ = 1, this is the linear hinge loss [5], a gener-
alization of (8) for which x

.
= y∗H − 1. Thus, while

hinge loss is not a BCL, it defines the limit behavior of
any BCL (see Figure 1). Below are examples of permis-
sible functions φ:

φµ(x)
.
= µ+ (1− µ)

√

x(1− x) ,∀µ ∈ (0, 1) .(11)

φM(x)
.
=

√

x(1− x) , (12)

φQ(x)
.
= −x log x− (1− x) log(1− x) , (13)

φB(x)
.
= x(1− x) . (14)

When scaled so that φ(1/2) = 1, some confound with
popular choices: (14) with Gini index, (13) with the Bit-
entropy, and (12) with Matsushita’s error [6, 7]. Table
1 (first four columns) gives the expressions of Fφ along
with the im(H) = O ⊆ R allowed by the BCL, for
the permissible functions in (11) — (14). Fig. 1 (right)
gives a typical shape plot for ∇φ, similar to those of
(11) — (13).

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 12, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

 0

 2

 4

 6

 8

 10

 12

-3 -2 -1 0 1 2 3

(φ = φB)
(φ = φM)

(φ = φµ = 1/3)
(φ = φQ)

x

0
p

1

1/2

∇φ

x � p

Figure 1. Left: bold curves are plots of
φ
?
(−x) for φ in (11) — (14); thin dotted

half-lines are its asymptotes. Right: a typ-
ical ∇φ (bold red, symmetric around point
(1/2, 0)), with the Legendre dual x�p shown,
a concept extensively used in ULS.

For any strictly convex function ψ : X → R differ-
entiable on int(X), the Bregman Loss Function (BLF,
[1]) Dψ with generator ψ is:

Dψ(x||x′) .
=ψ(x)− ψ(x′)− (x− x′)∇ψ(x′) .(15)

The following Lemma states an important relationship
that is easy to check.
Lemma 1 ∀ Fφ a BCL, Dφ(y||∇−1

φ
(H)) = bφFφ(−y∗H).

Lemma 1 is important because it ties real predictions
(right) with their matching [0, 1] predictions (left). Fol-
lowing notations in (6) — (8), we can write any BCL as
`φ
R
(y∗,H)

.
= Fφ(−y∗H). In fact, BCL matches the set

of losses that satisfy the main requirements about losses
used in machine learning. This is a very strong rationale
for this set. Consider the following requirements about
loss `[0,1](y,H) (with im(H) ⊆ [0, 1]):

(R1) The loss is lower-bounded. ∃z ∈ R such that
infy,H `[0,1](y,H) = z.

(R2) Conditional probabilities are a generalized Bayes
rule. Consider a singleton domain O =
{o}. Then, the best (constant) prediction is:
arg minx∈[0,1] ε[0,1](S, x) = Pr[c = c+|o] ∈ [0, 1].

(R3) The loss is symmetric as follows: ∀y ∈ {0, 1},
∀H ∈ [0, 1], `[0,1](y,H) = `[0,1](1− y, 1−H).

R1 is standard. R2 may be viewed as some consis-
tency requirement for the surrogate to be minimized as
p(.) defines Bayes classifier. R3 implies `[0,1](1, 1) =
`[0,1](0, 0), which is virtually assumed for any domain;
otherwise, it scales to H ∈ [0, 1] a well-known sym-
metry in the cost matrix that holds for domains without
class dependent misclassification costs. For these do-
mains indeed, it is assumed `[0,1](1, 0) = `[0,1](0, 1). The
following Lemma establishes the basis for the rationale
(proof involves Theorem 3 in [1]).
Lemma 2 Assume im(H) ⊆ [0, 1]. Loss `[0,1](., .) is
properly defined and satisfies requirements R1, R2, R3
iff `[0,1](y,H) = z +Dφ(y||H) for some permissible φ.
φ is thus the “signature” of the BCL/BCS. In the next
Section, we show how to efficiently minimize any BCS.

Algorithm 1: Algorithm ULS(M,φ)

Input: M ∈ R
m×T , permissible function φ;

Let α1 ← 0; Let w0 ← (1/2)1;
for j = 1, 2, ...J do

wj ← (Mαj) �w0 ; (16)

Let Tj ⊆ {1, 2, ..., T}; let δj ← 0;
∀t ∈ Tj , pick δj,t such that:

m
∑

i=1

mit((Mδj) �wj)i = 0 ; (17)

Let αj+1 ← αj + δj ;

Output: H(x)
.
=

∑T

t=1 αJ+1,tht(x) ∈ LS

4. ULS

Let H ∈ LS, and suppose that the permissible func-
tion φ is such that im(∇φ) = R (see Table 1). We begin
with few more definitions. Because any BLF is strictly
convex in its first argument, we can compute its Leg-
endre conjugate as in (9). In fact, we shall essentially
need the argument that realizes the supremum, for any
permissible φ: for any x ∈ R, for any p ∈ [0, 1], we let

x � p .
= argp′∈[0,1] sup{xp′ −Dφ(p

′||p)} .(18)

We do not make reference to φ in the � notation, as it
shall be clear from context. We name x�p the Legendre
dual of the ordered pair (x, p), closely following a nota-
tion by [3]. The technical look and feel of (18) hides an
appealing representation, given in Figure 1 and explain
below.
Because φ is permissible, the Legendre dual is unique
and it is always in [0, 1]. We follow the setting of [3]
and suppose that we have T features ht (t = 1, 2, ..., T)
known in advance, the problem thus reducing to the
computation of the leveraging coefficients. We define
m× T matrix M with mit

.
= −y∗i ht(oi). Given lever-

aging coefficients vector α ∈ R
T , we thus get:

−y∗iH(oi) = (Mα)i . (19)

Armed with these notations, algorithm ULS above pro-
vides a learning algorithm that provably minimize any
BCS on any matrix M .

The explanation of the Legendre dual in ULS follows
from (16). Consider example (oi, yi), and its weight
update, wj,i ← (Mαj)i � w0,i = (−y∗iH(oi)) � w0,i.
Fix p = w0,i and x = −y∗iH(oi) in Figure 1. It comes
that the new weight of the example is larger iff x > 0,
i.e. iff the example is given the wrong class by H .
This characteristic is one of the most popular of for-
mal boosting algorithms like AdaBoost [8, 9]. It turns

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 12, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

 0

 5

 10

 15

 20

 25

1110987654321

F∗

14.18 (10)

1110987654321

φM (12)
14.70 (5)

1110987654321

φυ
14.71 (3)

1110987654321

φµ (11)
14.83 (2)

1110987654321

F2
15.03 (1)

1110987654321

φQ (13)
15.06 (1)

1110987654321

E1
15.22 (1)

1110987654321

φB (14)
15.25 (1)

1110987654321

AdaBoost
15.35 (1)

1110987654321

E2
15.36 (1)

1110987654321

F1
17.37 (0)

Figure 2. Summary of our results over the 52 domains for the 11 algorithms (l = 2, r = 10).
Vertical (red) bars show the average rank over all domains.

out that ULS also generalizes the most important prop-
erty of boosting algorithms, which relies on a so-called
“Weak Learning Assumption” (WLA) [9]. To state the
WLA, we define Zj

.
= ||wj ||1 (||.||k is the Lk norm).

The WLA is:

(WLA)∀j,∃γj > 0 :

∣

∣

∣

∣

∣

∣

1

|Tj |
∑

t∈Tj

1

Zj

m
∑

i=1

mitwj,i

∣

∣

∣

∣

∣

∣

≥γj .(20)

The WLA in (20) tells that the average edge of the fea-
tures in Tj exceeds random (for which γj = 0) by a
guaranteed — even if small — amount; it is a general-
ization of conventional WLAs [8]. To state the follow-
ing Theorem, we need few more definitions. Let mt de-
note the tth column vector of M , am

.
= maxt ||mt||2

and aZ
.
= minj Zj . Let aγ denote the average of γj

over all j, and aϕ
.
= minx∈(0,1) d2φ(x)/dx2.

Theorem 1 For any BCS with signature φ, for any M ,
ULS achieves the minimum of the BCS on M in at most

J = d 4mbφa
2
m

aϕa
2
Za

2
γ
e steps.

As another important property, we can show that (17)
has always a solution in the non-trivial cases (when no
feature ht has zero empirical risk), so that ULS is al-
ways guaranteed to work.

5. Experiments

We have compared against each other 10 flavors of
ULS + AdaBoost [9], on a benchmark of 52 domains
(49 from the UCI repository). True risks are estimated
via stratified 10-fold cross validation; ULS is ran for
r (fixed) features ht, each of which is a boolean rule:
If Monomial then Class= ±1 else Class = ∓1, with
at most l (fixed) literals, induced following the greedy
minimization of the BCS at hand. Leveraging coef-
ficients (17) are approximated up to 10−10 precision.
Figure 2 summarizes the results. Histograms are or-
dered from left to right in increasing average true risk
over all domains (shown below histograms). The italic
numbers give, for each algorithm, the number of algo-
rithms it beats according to a Student paired t-test over
all domains with .1 threshold probability. Out of the
10 flavors of ULS, the first four flavors pick φ in (11)
— (14). The fifth uses another generalization of (12):
φυ(x)

.
= (x(1− x))υ ,∀υ ∈ (0, 1). The last five adap-

tively tune the BCS at hand out-of-a-bag of BCS. The

first four fit the BCS at each stage of the inner loop (for
j ...) of ULS. Two (noted “F.”) pick the BCS which min-
imizes the empirical risk in the bag; two others (noted
“E.”) pick the BCS which maximizes the current edge.
There are two different bags corresponding to four per-
missible functions each: the first (index “1”) contains
(11) — (14), the second (index “2”) contains (11) —
(13) and φυ . We wanted to evaluate (14) because it
forces to renormalize the leveraging coefficients in H
each time it is selected, to ensure that the output of H
lies in [−1, 1]. The last adaptive flavor, F ∗, “external-
izes” the choice of the BCS: it selects for each fold the
BCS which yields the smallest empirical risk in a bag
corresponding to five φ: (11) — (13) and φυ .

All results in Figure 2 advocate for the superiority of
F ∗ against all other approaches. Furthermore, stronger
concave regimes for φ (e.g. (12)) tend to improve per-
formances, a fact previously remarked for decision tree
induction in [6]. In the light of these results, Mat-
sushita’s BCL (built from (12)) appears to be a serious
alternative to the Logistic loss.
Acknowledgments : authors supported by ANR
“Blanc” programme ANR-07-BLAN-0328-01.
References

[1] A. Banerjee, X. Guo, and H. Wang. On the optimality
of conditional expectation as a bregman predictor. IEEE
Trans. on Information Theory, 51:2664–2669, 2005.

[2] P. Bartlett, M. Jordan, and J. D. McAuliffe. Convexity,
classification, and risk bounds. JASA, 101:138–156, 2006.

[3] M. Collins, R. Schapire, and Y. Singer. Logistic re-
gression, adaboost and Bregman distances. In COLT’00,
pages 158–169, 2000.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Additive Lo-
gistic Regression : a Statistical View of Boosting. Ann. of
Stat., 28:337–374, 2000.

[5] C. Gentile and M. Warmuth. Linear hinge loss and aver-
age margin. In NIPS*11, pages 225–231, 1998.

[6] M. Kearns and Y. Mansour. On the boosting ability of top-
down decision tree learning algorithms. JCSS, 58:109–
128, 1999.

[7] K. Matsushita. Decision rule, based on distance, for the
classification problem. Ann. ISM, 8:67–77, 1956.

[8] R. Nock and F. Nielsen. A Real Generalization of discrete
AdaBoost. Artificial Intelligence, 171:25–41, 2007.

[9] R. E. Schapire and Y. Singer. Improved boosting algo-
rithms using confidence-rated predictions. In COLT’98,
pages 80–91, 1998.

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 12, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

