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Abstract
We propose a methodology to explore and measure the pairwise correlations that exist between
variables in a dataset. The methodology leverages copulas for encoding dependence between two
variables, state-of-the-art optimal transport for providing a relevant geometry to the copulas, and
clustering for summarizing the main dependence patterns found between the variables. Some of
the clusters centers can be used to parameterize a novel dependence coefficient which can target
or forget specific dependence patterns. Finally, we illustrate the methodology with financial time
series (credit default swaps, stocks, foreign exchange rates). Code and numerical experiments are
available online at https://www.datagrapple.com/Tech for reproducible research.
Keywords: Correlations, Copulas, Regularized Optimal Transport, Financial Time Series

1. Introduction

Pearson’s correlation coefficient which estimates linear dependence between two variables is still
the mainstream tool for measuring variable correlations in science and engineering. However, its
shortcomings are well-documented in the statistics literature: not robust to outliers; not invariant
to monotone transformations of the variables; can take value 0 whereas variables are strongly de-
pendent; only relevant when variables are jointly normally distributed. A large but under-exploited
literature in statistics and machine learning has expanded recently to alleviate these issues (Reshef
et al., 2011; Székely et al., 2009). An underlying idea to many of the dependence coefficients is to
compute a distance D(P (X,Y ), P (X)P (Y )) between the joint distribution P (X,Y ) of variables
X , Y and P (X)P (Y ) the product of marginal distributions encoding the independence. For exam-
ple, choosingD = KL (Kullback-Leibler divergence), we end up with the Mutual Information (MI)
measure, well-known in information theory. Thus, one can detect all the dependences between X
and Y since the distance will be greater than 0 as soon as P (X,Y ) is different from P (X)P (Y ).
Then, the dependence literature focus has shifted toward the new concept of “equitability” (Kin-
ney and Atwal, 2014): How can one quantify the strength of a statistical association between two
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variables without bias for relationships of a specific form? Many researchers now aim at designing
and proving that their proposed measures are indeed equitable (Ding and Li, 2013; Chang et al.,
2016). This is not what we look for in this article. But, on the contrary, we want to target specific
dependence patterns and ignore others. We want to target dependence which are relevant to such or
such problem, and forget about the dependence which are not in the scope of the problems at hand,
or even worse which may be spurious associations (pure chance or artifacts in the data). The latter
will be detected with an equitable dependence measure since they are deviation from independence,
and will be given as much weight as the interesting ones. Rather than using the biases for specific
dependence of several coefficients, we propose a dependence coefficient that can be parameterized
by a set of target-dependences, and a set of forget-dependences. Sets of target and forget depen-
dences can be built using expert hypotheses, or by leveraging the centers of clusters resulting from
an exploratory clustering of the pairwise dependences. To achieve this goal, we will leverage three
tools: copulas, optimal transportation, and clustering. Whereas clustering, the task of grouping a
set of objects in such a way that objects in the same group (also called cluster) are more similar to
each other than those in different groups, is common knowledge in the machine learning commu-
nity, copulas and optimal transportation are not yet mainstream tools. Copulas have recently gained
attention in machine learning, and several copula-based dependence measures have been proposed
for improving feature selection methods (Ghahramani et al., 2012; Lopez-Paz et al., 2013; Chang
et al., 2016). Optimal transport may be more familiar to computer scientists working in computer
vision since it is the underlying theory of the Earth Mover’s Distance (Rubner et al., 2000). Un-
til very recently, optimal transportation distances between distributions were not deemed relevant
for machine learning applications since the best computational cost known was super-cubic to the
number of bins used for discretizing the distribution supports which grows itself exponentially with
the dimension. A mere distance evaluation could take several seconds! In this article, we leverage
recent computational breakthroughs detailed in (Cuturi, 2013) which make their use practical in
machine learning. We demonstrate it by studying a comprehensive dataset of financial time series.
To capture their associations, most quantitative approaches make use of an estimated covariance
or correlation matrix (a mixed information of linear dependence perturbed by the possibly heavy-
tailed marginals) or a Gaussian copula (which only captures the linear dependence while factoring
out properly the marginals). This may have dramatic effect on subsequent analysis: (Marti et al.,
2016b) for an example with financial time series clustering. Using the proposed methodology, we
can explore the dependence between these time series.

2. Background on Copulas and Optimal Transport

2.1 Copulas

Copulas are functions that couple multivariate distribution functions to their univariate marginal
distribution functions. In this article, we will only consider bivariate copulas, but most of the re-
sults and the methodology presented hold in the multivariate setting, at the cost of a much higher
computational burden which is for now a bit unrealistic.

Theorem 1 (Sklar’s Theorem) Let X = (Xi, Xj) be a random vector with a joint cumulative
distribution function F , and having continuous marginal cumulative distribution functions Fi, Fj
respectively. Then, there exists a unique distribution C such that F (Xi, Xj) = C(Fi(Xi), Fj(Xj)).
C, the copula of X , is the bivariate distribution of uniform marginals Ui, Uj := Fi(Xi), Fj(Xj).
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Figure 1: Copulas measure (left column) and cumulative distribution function (right column)
heatmaps for negative dependence (first row), independence (second row), i.e. the uni-
form distribution over [0, 1]2, and positive dependence (third row)

Copulas are central for studying the dependence between random variables: their uniform
marginals jointly encode all the dependence. They allow to study scale-free measures of depen-
dence and are invariant to monotonous transformations of the variables. Some copulas play a
major role in the measure of dependence, namelyW andM the Fréchet-Hoeffding copula bounds,
and the independence copula Π(ui, uj) = uiuj (depicted in Figure 1).

Proposition 1 (Fréchet-Hoeffding copula bounds) For any copula C : [0, 1]2 → [0, 1] and any
(ui, uj) ∈ [0, 1]2 the following bounds hold:

W(ui, uj) ≤ C(ui, uj) ≤M(ui, uj), (1)

where W(ui, uj) = max {ui + uj − 1, 0} is the copula for countermonotonic random variables
andM(ui, uj) = min {ui, uj} is the copula for comonotonic random variables.

Many correlation coefficients can actually be expressed as a distance between the data cop-
ula and one of these reference copulas. For example, the Spearman (rank) correlation ρS which
is usually understood as ρS(Xi, Xj) = ρ(Fi(Xi), Fj(Xj)), i.e. the linear dependence of the
probability integral transformed variables (rank-transformed data), can also be viewed as an av-
erage distance between the copula C of (Xi, Xj) and the independence copula Π: ρS(Xi, Xj) =
12
∫ ∫

[0,1]2 (C(ui, uj)− uiuj) duiduj . Moreover, since |ui− uj |/
√

2 is the distance between point
(ui, uj) to the diagonal (the measure of the positive dependence copula), one can rewrite ρS(Xi, Xj)
= 12

∫ ∫
[0,1]2 (C(ui, uj)− uiuj) duiduj = 12

∫ ∫
[0,1]2 uiujdC(ui, uj) − 3 = 1 − 6

∫ ∫
[0,1]2(ui −

uj)
2dC(ui, uj). Thus, Spearman correlation can also be viewed as measuring a deviation from the

monotonically increasing dependence to the data copula using a quadratic distance. We will leverage
this idea to propose our dependence-parameterized dependence coefficient.

Notice that when working with empirical data, we do not know a priori the margins Fi for
applying the probability integral transform Ui := Fi(Xi). Deheuvels in (Deheuvels, 1979) has
introduced a practical estimator for the uniform margins and the underlying copula, the empirical
copula transform.

Definition 1 (Empirical Copula Transform) Let (Xt
i , X

t
j), t = 1, . . . , T , be T observations from

a random vector (Xi, Xj) with continuous margins. Since one cannot directly obtain the corre-
sponding copula observations (U ti , U

t
j ) := (Fi(X

t
i ), Fj(X

t
j)), where t = 1, . . . , T , without know-

ing a priori Fi, one can instead estimate the empirical margins F Ti (x) = 1
T

∑T
t=1 1(Xt

i ≤ x), to
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obtain the T empirical observations (Ũ ti , Ũ
t
j ) := (F Ti (Xt

i ), F
T
j (Xt

j)). Equivalently, since Ũ ti =

Rti/T , Rti being the rank of observation Xt
i , the empirical copula transform can be considered as

the normalized rank transform.

Notice that the empirical copula transform is fast to compute, sorting arrays of length T can
be done in O(T log T ), consistent and converges fast to the underlying copula (Ghahramani et al.,
2012).

As motivated in the introduction, we want to compare and summarize the pairwise empirical
dependence structure (empirical bivariate copulas) of many variables. This brings the following
questions: How can we compare two such copulas? What is a relevant representative of a set of
empirical copulas? Which geometries are relevant for clustering these empirical distributions, and
which are not?

2.2 Optimal Transport

In (Marti et al., 2016a), authors illustrate in a parametric setting using Gaussian copulas that com-
mon divergences (such as Kullback-Leibler, Jeffreys, Hellinger, Bhattacharyya) are not relevant for
clustering these distributions, especially when dependence is high. These information divergences
are only defined for absolutely continuous measures whereas some copulas have no density (e.g. the
one for positive dependence). In practice, when working with frequency histograms, it gets worse:
One has to pre-process the empirical measures with a kernel density estimator before computing
these divergences. On the contrary, optimal transport distances are well-defined for both discrete
(e.g. empirical) and continuous measures.

The idea of optimal transport is intuitive. It was first formulated by Gaspard Monge in 1781 as
a problem to efficiently level the ground: Given that work is measured by the distance multiplied
by the amount of dirt displaced, what is the minimum amount of work required to level the ground?
Optimal transport plans and distances give the answer to this problem.

In practice, empirical distributions can be represented by histograms. We follow notations from
(Cuturi, 2013). Let r, c be two histograms in the probability simplex Σm = {x ∈ Rm+ : x>1m =
1}. Let U(r, c) = {P ∈ Rm×m+ | P1m = r, P>1m = c} be the transportation polytope of r and c,
that is the set containing all possible transport plans between r and c.

Definition 2 (Optimal Transport) Given am×m cost matrixM , the cost of mapping r to c using
a transportation matrix P can be quantified as 〈P,M〉F , where 〈·, ·〉F is the Frobenius dot-product.
The optimal transport between r and c given transportation cost M is thus:

dM (r, c) := min
P∈U(r,c)

〈P,M〉F . (2)

Whenever M belongs to the cone of distance matrices, the optimum of the transportation problem
dM (r, c) is itself a distance.

Lightspeed transportation. Optimal transport distances suffer from a computational burden
scaling in O(m3 logm) which has prevented their widespread use in machine learning: A mere
distance computation between two high-dimensional histograms can take several seconds. In (Cu-
turi, 2013), Cuturi provides a solution to this problem: He restrains the polytope U(r, c) of all
possible transport plans between r and c to a Kullback-Leibler ball Uα(r, c) ⊂ U(r, c), where
Uα(r, c) = {P ∈ U(r, c) | KL(P‖rc>) ≤ α}. He then shows that it amounts to perform an
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Figure 2: Exploration (left panel) and measure (right panel) of non-linear correlations. Exploration
consists in finding clusters of similar copulas, visualizing their centroids, and eventually
using them to assess the dependence of given variables represented by their copula

entropic regularization (recently generalized to many more regularizers in (Muzellec et al., 2016;
Dessein et al., 2016)) of the optimal transportation problem whose solution is smoother and less
deterministic. The regularized optimal transportation problem is now strictly convex, and can be
solved efficiently using the Sinkhorn-Knopp iterative algorithm which exhibits linear convergence.
Its solution is the Sinkhorn distance (Cuturi, 2013):

dM,α(r, c) := min
P∈Uα(r,c)

〈P,M〉F , (3)

and its dual dλM (r, c): ∀α > 0, ∃λ > 0,

dM,α(r, c) = dλM (r, c) := 〈P λ,M〉F , (4)

where P λ = argminP∈U(r,c)〈P,M〉F − 1
λh(P ), and h is the entropy function.

In the following, we will leverage the dual-Sinkhorn distances for comparing, clustering and
computing the clusters centers (Cuturi and Doucet, 2014) of a set of copulas at full speed.

3. A methodology to explore and measure non-linear correlations

We propose an approach to explore and measure non-linear correlations between N variables X1,
. . . , XN in a dataset. These N variables can be, for instance, time series or features. The method-
ology presented (which is summarized in Figure 2) is twofold, and consists of: (i) an exploratory
part of the pairwise dependence between variables, (ii) the parameterization and use of a novel
dependence coefficient.

3.1 Using transportation of copulas as a measure of correlations

In this section, we leverage and extend the idea presented in our short introduction to copulas: cor-
relation coefficients can be viewed as a distance between the data-copula and the Fréchet-Hoeffding
bounds or the independence copula. The distance involved is usually an `p Minkowski metric dis-
tance. In the following, we will:

• replace the `p distance by an optimal transport distance between measures,
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Figure 3: Empirical copulas for (X,Y ) where X = Z1Z<a + εX1Z>a, Y = Z1Z<a+0.25 +
εY 1Z>a+0.25, a = 0, 0.05, . . . , 0.95, 1, and where Z is uniform on [0, 1] and εX , εY
are independent noises (left figure). Top left is an empirical copula for independence
(a = 0), bottom right is the copula for perfect positive dependence (a = 1). Parameter a
is increasing from top to bottom, and from left to right; TFDC and Spearman coefficients
estimated between X and Y as a function of a (right figure). For a = 0.75, Spearman
coefficient yields a negative value, yet X = Y over [0, a]

• parameterize a dependence coefficient with other copulas than the Fréchet-Hoeffding bounds
or the independence one.

Using the optimal transport distance between copulas, we now propose a dependence coefficient
which is parameterized by two sets of copulas: target copulas and forget copulas.

Definition 3 (Target/Forget Dependence Coefficient) Let {C−l }l be the set of forget-dependence
copulas. Let {C+

k }k be the set of target-dependence copulas. Let C be the copula of (Xi, Xj).
Let dM be an optimal transport distance parameterized by a ground metric M . We define the
Target/Forget Dependence Coefficient as:
TFDC

(
Xi, Xj ; {C+

k }k, {C
−
l }l
)

:=

minl dM (C−l , C)

minl dM (C−l , C) + mink dM (C,C+
k )
∈ [0, 1]. (5)

Using this definition, we obtain: TFDC
(
Xi, Xj ; {C+

k }k, {C
−
l }l
)

= 0 ⇔ C ∈ {C−l }l,
TFDC

(
Xi, Xj ; {C+

k }k, {C
−
l }l
)

= 1⇔ C ∈ {C+
k }k.

Example. A standard correlation coefficient can be obtained by setting the forget-dependence
set to the independence copula, and the target-dependence set to the Fréchet-Hoeffding bounds.
How does it compare to the Spearman correlation? In Figure 3, we display how the two coeffi-
cients behave on a simple numerical experiment: X = Z1Z<a + εX1Z>a, Y = Z1Z<a+0.25 +
εY 1Z>a+0.25, where Z is uniform on [0, 1] and εX , εY are independent noises. That is X = Y over
[0, a]. Notice that for a = 0.75, Spearman coefficient takes a negative value. We may thus prefer
the monotonically increasing behaviour of the TFDC to the Spearman one.

3.2 How to choose, design and build targets?

We now propose two alternatives for choosing, designing and building the target and forget copulas:
an exploratory data-driven approach and an hypotheses testing approach.
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Figure 4:
4 copulas describing the dependence between
X ∼ U([0, 1]) and Y ∼ (X ± εi)2, where εi is
a constant noise specific for each distribution. X
and Y are countermonotonic (more or less) half
of the time, and comonotonic (more or less) half
of the time
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Figure 5:
Barycenter of the 4 copulas from Figure 4
for: (left) Bregman geometry (Banerjee et al.,
2005) (which includes, for example, squared
Euclidean and Kullback-Leibler distances);
(right) Wasserstein geometry.

3.2.1 DATA-DRIVEN: CLUSTERING OF COPULAS

Assume we have N variables X1, . . . , XN , and T observations for each of them. First, we compute(
N
2

)
= O(N2) empirical copulas which represent the dependence structure between all the couples

(Xi, Xj). Then, we summarize all these distributions using a center-based clustering algorithm, and
extract the clusters centers using a fast computation of Wasserstein barycenters (Cuturi and Doucet,
2014). A given center represents the mean dependence between the couples (Xi, Xj) inside the
corresponding cluster. Figure 4 and 5 illustrate why a WassersteinW2 barycenter, i.e. the minimizer
µ? of 1

N

∑N
i=1W

2
2 (µ, νi) (Agueh and Carlier, 2011) where {ν1, . . . , νN} is a set of N measures

(here, bivariate empirical copulas), is more relevant to our needs: we benefit from robustness against
small deformations of the dependence patterns.

3.2.2 TARGETS AS HYPOTHESES FROM AN EXPERT

One can specify dependence hypotheses, generate the corresponding copulas, then measure and
rank correlations with respect to them. For example, one can answer to questions such as: Which
are the pairs of assets that are usually positively correlated for small variations but uncorrelated
otherwise? In (Durante et al., 2009), authors present a method for constructing bivariate copulas by
changing the values that a given copula assumes on some subrectangles of the unit square. They
discuss some applications of their methodology including the construction of copulas with different
tail dependencies. Building target and forget copulas is another one. In the Experiments section,
we illustrate its use to answer the previous question and other dependence queries.

4. Experiments

4.1 Exploration of financial correlations

We illustrate the first part of the methodology with three different datasets of financial time series.
These time series consist in the daily returns of stocks (40 stocks from the CAC 40 index comprising
the French highest market capitalizations), credit default swaps (75 CDS from the iTraxx Crossover
index comprising the most liquid sub-investment grade European entities) and foreign exchange
rates (80 FX rates of major world currencies) between January 2006 and August 2016. We display
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Figure 6:
Stocks: More mass in the
bottom-left corner, i.e. lower
tail dependence. Stock prices
tend to plummet together. Oth-
erwise, empirical copulas are
similar to the Gaussian ones.

Figure 7:
Credit default swaps: More
mass in the top-right corner,
i.e. upper tail dependence. In-
surance cost against the default
of companies tends to soar in
distressed market.

Figure 8:
FX rates: Empirical copu-
las show that dependence be-
tween FX rates are various,
and strongly non-linear: Ellip-
tical copulas and comonotonic
measures are thus ill-suited.

some of the clustering centroids obtained for each asset class in the left column, and on their right
we display their corresponding Gaussian copulas parameterized by the estimated linear correlations.
Notice in Figures 6, 7, 8 the strong difference between the empirical copulas and the Gaussian
ones which are still widely used in financial engineering due to their convenience. Notice also
the difference between asset classes: Though estimated correlations are ρ = 0.34 for the topmost
copulas, they have much dissimilar peculiarities.

4.2 Answering dependence queries

Inspired by the previous exploration results, we may want to answer such questions: (A) Which
pair of assets having ρ = 0.7 correlation has the nearest copula to the Gaussian one? Though such
questions can be answered by computing a likelihood for each pairs, our methodology stands out for
dealing with non-parametric dependence patterns, and thus for questions such as: (B) Which pairs
of assets are both positively and negatively correlated? (C) Which assets occur extreme variations
while those of others are relatively small, and conversely? (D) Which pairs of assets are positively
correlated for small variations but uncorrelated otherwise?

Considering a cross-asset dataset which comprises the SBF 120 components (index including
the CAC 40 and 80 other highly capitalized French entities), the 500 most liquid CDS worldwide,
and 80 FX rates, we display in Figure 9 the empirical copulas (below their respective targets) which
best answer questions A,B,C,D.

8
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(A) (B) (C) (D)

Figure 9: Target copulas (simulated or handcrafted) and their respective nearest copulas which an-
swer questions A,B,C,D

4.3 Power of TFDC

In this experiment, we compare the empirical power of TFDC to well-known dependence coeffi-
cients such as Pearson linear correlation (cor), distance correlation (dCor) (Székely et al., 2009),
maximal information coefficient (MIC) (Reshef et al., 2011), alternating conditional expectations
(ACE) (Breiman and Friedman, 1985), maximum mean discrepancy (MMD) (Gretton et al., 2012),
copula maximum mean discrepancy (CMMD) (Ghahramani et al., 2012), randomized dependence
coefficient (RDC) (Lopez-Paz et al., 2013). Statistical power of a binary hypothesis test is the prob-
ability that the test correctly rejects the null hypothesis (H0) when the alternative hypothesis (H1)
is true. In the case of dependence coefficients, we consider (H0): X and Y are independent; (H1):
X and Y are dependent. Following the numerical experiment described in (Simon and Tibshirani,
2014; Lopez-Paz et al., 2013), we estimate the power of the aforementioned dependence measures
with simulated pairs of variables with different relationships (considered in (Reshef et al., 2011;
Lopez-Paz et al., 2013)), but with varying levels of noise added. By design, TFDC aims at detecting
the simulated dependence relationships. Thus, this dependence measure is expected to have a much
higher power than coefficients such as MIC. Results are displayed in Figure 10.

5. Discussion

It is known by risk managers how dangerous it can be to rely solely on a correlation coefficient to
measure dependence. That is why we have proposed a novel approach to explore, summarize and
measure the pairwise correlations which exist between variables in a dataset. The experiments show
the benefits of the proposed method: It allows to highlight the various dependence patterns that can
be found between financial time series, which strongly depart from the Gaussian copula widely used
in financial engineering. Though answering dependence queries as briefly outlined is still an art, we
plan to develop a rich language so that a user can formulate complex questions about dependence,
which will be automatically translated into copulas in order to let the methodology provide these
questions accurate answers.
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Figure 10: Power of several dependence coefficients as a function of the noise level in eight differ-
ent scenarios. Insets show the noise-free form of each association pattern. The coeffi-
cient power was estimated via 500 simulations with sample size 500 each
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