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Abstract: The informational energy of Onicescu is a positive quantity that measures the amount
of uncertainty of a random variable. However, contrary to Shannon’s entropy, the informational
energy is strictly convex and increases when randomness decreases. We report a closed-form formula
for Onicescu’s informational energy and its associated correlation coefficient when the probability
distributions belong to an exponential family. We show how to instantiate the generic formula for
several common exponential families. Finally, we discuss the characterization of valid thermodynamic
process trajectories on a statistical manifold by enforcing that the entropy and the informational
energy shall vary in opposite directions.
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1. Introduction
1.1. Onicescu’s Informational Energy

Let (X ,F , µ) be a probability space [1] with σ-algebra F on the sample space X , and µ
a base measure often chosen as the Lebesgue measure or as the counting measure. LetM
denote the set of Radon-Nikodym densities of probability measures dominated by µ. Two
probability densities p and q are said equal (i.e., p = q) if and only if p(x) = q(x) µ-almost
everywhere, and different (i.e., p 6= q) when µ({x ∈ X : p(x) 6= q(x)}) 6= 0.

Octav Onicescu [2,3] (1892–1983) was a renowned Romanian mathematician who
founded the school of probability theory and statistics [4] in Romania. Onicescu introduced
the informational energy [5] (also termed information energy [6] in the literature) of a
probability measure P� µ with Radon-Nikodym density p = dP

dµ as

I(p) :=
∫

p2(x)dµ(x) > 0. (1)

The Rényi entropy [7,8] of order-2 can be written using the informational energy:

R2(p) := − log
∫

p2(x)dµ(x) = − log I(p), (2)

as well as Vajda’s quadratic entropy [9]:

V2(p) := 1−
∫

p2(x)dµ(x) = 1− I(p). (3)

Notice that it follows from Cauchy-Schwarz’s inequality that we have I(p) ≤ 1 when
p ∈ L2(µ), the Lebesgue space of square integrable functions [1]. The informational energy
for continuous distributions p is I(p) =

∫
X p2(x)dx and the informational energy for

discrete distributions q, I(q) = ∑x∈X q2(x). Notice that the informational energy in the
continuous case is not a limit of the informational energy in the discrete case [6,10].
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The informational energy is an important concept in statistics which fruitfully inter-
plays with Shannon’s entropy [11,12] H(p):

H(p) :=
∫

p(x) log
1

p(x)
dµ(x) =

∫
−p(x) log p(x)dµ(x). (4)

Notice that the informational energy is always positive but the Shannon’s entropy
may be negative for continuous distributions (e.g., differential entropy of the normal
distributions for small standard deviation). For the Dirac’s distribution δe (with δe(x) = 1
when x = e and 0 otherwise), the informational energy is I(δe) = +∞ but Shannon’s
entropy is H(δe) = −∞.

The informational energy measures the amount of uncertainty of a random variable
like Shannon’s entropy but augments when randomness decreases.

Onicescu’s informational energy finds also applications in various other fields since
Onicescu’s informational energy corresponds to the Herfindahl–Hirschman index [13]
HHI(p) = I(p) in economics, to the index coincidence [14] IC(p) = I(p) in information
theory (originally developed for cryptanalysis [15]), and is related to Simpson’s diversity
index [16,17] S(p) = I(p) in ecology (also called the Gini-Simpson index of diversity [18]).
Section 4 will consider the joint variations of the Shannon entropy and the informational
energy to characterize valid thermodynamic process paths on a statistical manifold.

Another key difference with Shannon’s entropy is that Shannon’s entropy is always
strictly concave [12] but the informational energy is always strictly convex:

Property 1. Onicescu’s informational energy I(·) is a strictly convex functional.

Proof. A function F is strictly convex if and only if for any α ∈ (0, 1) and p 6= q two
densities of a convex domainM, we have F((1− α)p + αq) < (1− α)F(p) + αF(q). Let us
check this strict inequality for the informational energy I:

I((1− α)p + αq) = (1− α)2 I(p) + α2 I(q) + 2α(1− α)
∫

p(x)q(x)dµ(x), (5)

= (1− α)I(p) + αI(q) + 2α(1− α)
∫

p(x)q(x)dµ(x)

−α(1− α)(I(p) + I(q)),

= (1− α)I(p) + αI(q)− α(1− α)
∫
(p(x)− q(x))2dµ(x)︸ ︷︷ ︸

>0

, (6)

< (1− α)I(p) + αI(q), (7)

when p 6= q and α ∈ (0, 1).

Table 1 summarizes the comparison between Shannon’s entropy and Onicescu’s
informational energy.

Since I(p) is strictly convex, we can define the informational energy divergence as the
following Jensen divergence [19] measuring the convexity gap:

JI(p, q) :=
I(p) + I(q)

2
− I
(

p + q
2

)
, (8)

=
1
4

∫
X
(p(x)− q(x))2dµ(x). (9)

For a uniform discrete distribution p on an alphabet X of d letters, we have I(p) = 1
d ,

and for any probability mass function p on X , we have I(p) ≥ 1
d . Recall that H(p) ≤ log d

with equality when p is the discrete uniform distribution. More generally, for a continuous
density on an interval X = [a, b], we have I(p) ≥ 1

b−a .
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For discrete or continuous distributions, we have the following inequality [20]
(Proposition 5.8.5):

H(p) +
1
2

I(p) ≥ 1− log 2 > 0.69897, (10)

and Shannon’s cross-entropy

H×(p : q) =
∫
−p(x) log q(x)dµ(x) (11)

can be lower bounded using the informational energy as follows (Problem 5.8 in [20]): For
any x > 0, we have log x ≤ x− 1. Thus we get log q(x) ≤ q(x)− 1 and −p(x) log q(x) ≥
p(x)− p(x)q(x). Therefore we have

H×(p : q) ≥ 1−
∫

p(x)q(x)dµ(x).

Using Cauchy–Schwarz’s inequality

∫
p(x)q(x)dµ(x) ≤

√∫
p(x)2dµ(x)

√∫
q(x)2dµ(x),

we get:

H×(p : q) ≥ 1−
√

I(p) I(q). (12)

In particular, we get a lower bound on Shannon’s entropy:

H(p) = H×(p : q) ≥ 1− I(p).

Table 1. Comparison between Shannon’s entropy and Onicescu’s informational energy.

Entropy H(p) Informational Energy I(p)

H(p) = −
∫

p(x) log p(x)dµ(x) I(p) =
∫

p2(x)dµ(x)
convexity strictly concave strictly convex

range can be negative always positive
uncertainty measure augments with disorder decreases with disorder

uniform discrete distribution u H(u) = log d I(u) = 1
d

(with alphabet size |X | = d)
bound H(p) ≥ 1− I(p) I(p) ≥ 1− H(p)

Inequality: H(p) + 1
2 I(p) ≥ 1− log 2

For an in-depth treatment of Onicescu’s informational energy, we refer to the paper [6]
(77 pages, with main properties listed in pp. 167–169 as statistical applications). Onicescu’s
informational energy has been used in physics [21], information theory in electronic struc-
ture theory of atomic and molecular systems [22–24], machine learning [17,25], and complex
systems [26], among others.

1.2. Onicescu’s Correlation Coefficient

Onicescu also defined a correlation coefficient (see [20], Chapter 5):

ρ(p, q) :=
I(p, q)√
I(p) I(q)

, (13)

where I(p, q) denotes the cross-informational energy:

I(p, q) :=
∫

p(x)q(x)dµ(x), (14)
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with I(p) = I(p, p). Notice that it follows from the Cauchy-Schwarz inequality that
I(p, q) ≤

√
I(p)I(q), and therefore we have:

0 < ρ(p, q) ≤ 1,

assuming both densities p and q belong to the Lebesgue space L2(µ).
Notice that the informational energy of a statistical mixture m(x) = ∑k

i=1 wi pi(x) with
k weighted components p1(x), . . . , pk(x) (with w ∈ ∆k the (k− 1)-dimensional standard
simplex) can be expressed as follows:

I(m) =
∫ ( k

∑
i=1

wi pi(x)

)2

dµ(x) =
k

∑
i=1

k

∑
j=1

wiwj I(pi, pj). (15)

The Cauchy-Schwarz divergence [27,28] is defined by

DCS(p, q) := − log

 ∫
X p(x)q(x)dµ(x)√(∫

X p(x)2dµ(x)
)(∫
X q(x)2dµ(x)

)
 ≥ 0. (16)

Thus, the Cauchy-Schwarz divergence is a projective divergence (that is, we have
DCS(p, q) = DCS(λp, λ′q) for any λ > 0 and λ′ > 0) which can be rewritten using the
Onicescu’s correlation coefficient as:

DCS(p, q) = − log(ρ(p, q)). (17)

1.3. Exponential Families

Consider a natural exponential family [29,30] (NEF)

E =
{

pθ(x) = exp
(

θ>t(x)− F(θ) + k(x)
)

: θ ∈ Θ
}

, (18)

where t(x) denotes the minimal sufficient statistics, k(x) an auxiliary measure carrier term,
and

F(θ) := log
(∫
X

exp(θ>t(x))dµ(x)
)

, (19)

the cumulant function which is commonly called the log-normalizer (or log-partition
function in statistical physics). Parameter θ is called the natural parameter and is defined
on the open convex natural parameter space Θ.

Many familiar families of distributions {pλ(x) λ ∈ Λ} are exponential families in
disguise after reparameterization: pλ(x) = pθ(λ)(x) (e.g., normal family or Poisson family).
Those families are called exponential families (omitting the leading adjective ‘natural’),
and their densities are canonically factorized as follows:

pλ(x) = exp
(

θ(λ)>t(x)− F(θ(λ)) + k(x)
)

. (20)

We call parameter λ ∈ Λ the source parameter, and parameter θ(λ) ∈ Θ is called the
corresponding natural parameter. Densities of an exponential family have all the same
support X .

2. Onicescu’s Informational Energy and Correlation Coefficient in
Exponential Families

In this section, we first report a closed-form formula for the informational energy
and its associated correlation coefficient in Section 2.1. We then describe some statistical
divergences related to Onicescu’s correlation coefficient in Section 2.2.
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2.1. Closed-Form Formula

We report closed-form formulas for Onicescu’s informational energy and correlation
coefficient when densities belong to a prescribed exponential family, and then illustrate
those formula on common families of probability distributions.

Theorem 1 (Onicescu’s informational energy and correlation coefficient in exponential
families). In an exponential family E = {pθ}θ∈Θ, Onicescu’s informational energy of a probability
density pθ is given by:

I(pθ) = exp(F(2θ)− 2F(θ)) Ep2θ
[exp(k(x))], (21)

provided that 2θ ∈ Θ so that p2θ ∈ E . When the auxiliary carrier term k(x) vanishes, we have
Ep2θ

[exp(k(x))] = 1.
The Onicescu’s correlation coefficient ρ(pθ1 , pθ2) between densities p1 = pθ1 and p2 = pθ2 is

ρ(pθ1 , pθ2) = exp(−JF(2θ1 : 2θ2))×
Epθ1+θ2

[exp(k(x))]√
Ep2θ1

[exp(k(x))] Ep2θ2
[exp(k(x))]

, (22)

provided that θ1 + θ2 ∈ Θ, 2θ1 ∈ Θ, 2θ2 ∈ Θ, where

JF(θ1, θ2) :=
F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

)
≥ 0, (23)

is a Jensen divergence [19] induced by the cumulant function of the exponential family.

Proof. The proof follows the same line of arguments as in [31]. Consider the term
I(pθ1 , pθ2):

I(pθ1 , pθ2) :=
∫

exp(t(x)>θ1 − F(θ1) + k(x)) exp(t(x)>θ2 − F(θ2) + k(x))dµ(x),(24)

=
∫

exp
(

t(x)>(θ1 + θ2)− F(θ1 + θ2) + k(x)

+F(θ1 + θ2)− F(θ1)− F(θ2) + k(x))dµ(x),

= exp(F(θ1 + θ2)− F(θ1)− F(θ2))
∫

pθ1+θ2(x) exp(k(x))dµ(x), (25)

= exp(F(θ1 + θ2)− F(θ1)− F(θ2)) Epθ1+θ2
[exp(k(x))], (26)

provided that θ1 + θ2 ∈ Θ. This condition is always satisfied when the natural param-
eter space is either a cone [31] (e.g., Gaussian family, Wishart family, etc) or an affine
space [32] (e.g., Poisson family, isotropic Gaussian family, etc). Since I(p) = I(p, p) and
ρ(p, q) = I(p,q)√

I(p)I(q)
, we deduce formula of Equations (21) and (22).

2.2. Divergences Related to Onicescu’s Correlation Coefficient

Since DCS(p, q) = − log(ρ(p, q)), we get the following closed-form for the Cauchy-
Schwarz divergence:

DCS(pθ1 , pθ2) = JF(2θ1 : 2θ2) + log


√

Ep2θ1
[exp(k(x))] Ep2θ2

[exp(k(x))]

Epθ1+θ2
[exp(k(x))]

. (27)

We check that when θ1 = θ2, we have DCS(pθ1 , pθ2) = 0. Closed-form formula were
also reported for the Cauchy-Schwarz divergence between densities of an exponential
family in [33]. Table 2 reports the formula for Onicescu’s informational energy and the
Shannon’s entropy [34] for densities belonging to some common exponential families.
These formula can be recovered easily from the generic formula using the canonical decom-
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positions of exponential families reported in [29]. Shannon’s entropy [34] of a density pθ of
E is

H(pθ) = F(θ)− θ>∇F(θ)− Epθ
[k(x)], (28)

H(pθ) = −F∗(η)− Epθ
[k(x)], (29)

where F∗ denotes the Legendre-Fenchel convex conjugate and η = ∇F(θ) = Epθ
[t(x)] the

moment parameter.

Table 2. Comparisons between Shannon’s entropy and Onicescu’s informational energy for common
distributions of exponential families. | · | denotes the matrix determinant, Γ(·) the gamma function,
ψ(·) the digamma function, and B(α, β) =

Γ(α)Γ(β)
Γ(α+β)

.

Family Entropy Informational Energy
Generic E F(θ)− θ>∇F(θ)− Epθ

[k(x)] eF(2θ)−2F(θ)Ep2θ
[exp(k(x))]

Univar. normal N(µ, σ) 1
2 log(2πeσ2) 1

2σ
√

π

Multivar. normal N(µ, Σ) 1
2 log |2πeΣ| π−

d
2 2−d|Σ|− 1

2

LogNormal(µ, σ) log(σeµ+ 1
2
√

2π) 1
2σ
√

π
exp( σ2

4 − µ)

Exponential(λ) 1− log λ λ
2

Paretok(a) 1 + 1
a + log k

a
a2

k(2a+1)

Gamma(α, β) α + log Γ(α)
β + (1− α)ψ(α) 1

β(2α−1)B(α, 1
2 )

Beta(α, β) log B(α, β)− (α− 1)ψ(α) B2(α, β) Γ(2α−1)Γ(2β−1)
Γ(2α+2β−2)

−(β− 1)ψ(β)
+(α + β− 2)ψ(α + β)

Poisson(λ) λ(1− log λ) + e−λ ∑∞
i=0

λi log i!
i! exp(−2λ)∑∞

i=0
λ2i

(i!)2

Notice that when k(x) = 0 (no auxiliary carrier term, e.g., Gaussian family), we have
Ep[ek(x)] = Ep[1] =

∫
p(x)dµ(x) = 1 for any density p ∈ M. In that case, the above

formula simplify as follows:

I(pθ) = exp(F(2θ)− 2F(θ)), (30)

ρ(pθ1 , pθ2) = exp(−JF(2θ1 : 2θ2)), (31)

DCS(pθ1 , pθ2) = JF(2θ1 : 2θ2). (32)

The Cauchy-Schwarz divergence between mixtures of Gaussians has been reported
in [35], and extended to mixtures of exponential families with conic natural parameter
spaces in [33].

Furthermore, since the Jensen divergence JF is defined for a strictly convex generator
F modulo an affine term, we may choose the representative F(θ) = − log pθ(ω) =: −lθ(ω)
for the equivalence class [F] of strictly convex functions, where ω is any point belonging
to the the support X of the exponential family X and lθ(·) the (concave) log-likelihood
function, see [36] for details.
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It follows that, we can rewrite the Onicescu’s informational energy, correlation coeffi-
cient and the Cauchy-Schwarz divergence when k(x) = 0 as follows:

I(pθ) =
p2

θ(ω)

p2θ(ω)
, ∀ω ∈ X (33)

ρ(pθ1 , pθ2) =

√
p2θ1(ω)

√
p2θ2(ω)

pθ1+θ2(ω)
, ∀ω ∈ X , (34)

DCS(pθ1 , pθ2) = − log


√

p2θ1(ω)
√

p2θ2(ω)

pθ1+θ2(ω)

, (35)

= lθ1+θ2(ω)−
l2θ1(ω) + l2θ2(ω)

2
, ∀ω ∈ X . (36)

Moreover, the Cauchy-Schwarz divergence can be generalized to the broader class of
Hölder divergences [28] for conjugate exponents 1

α + 1
β = 1 with α > 1, β > 1, and γ > 0

as follows:

Dα,γ
Hölder(pθ1 , pθ2) := − log

( ∫
X p(x)γ/αq(x)γ/βdµ(x)(∫

X p(x)γdµ(x)
)1/α(∫

X q(x)γdµ(x)
)1/β

)
, (37)

= log

 p γ
α θ1+

γ
β θ2

(ω)

p
1
α
γθ1

(ω)p
1
β

γθ2
(ω)

, ∀ω ∈ X , (38)

Dα,γ
Hölder(pλ1 , pλ2) = log

 p γ
α θ(λ1)+

γ
β θ(λ2)

(ω)

p
1
α

γθ(λ1)
(ω)p

1
β

γθ(λ2)
(ω)

, ∀ω ∈ X . (39)

The latter two formulae hold when k(x) = 0 (no auxiliary carrier term like the
Gaussian family). When α = β = γ = 2, we recover the Cauchy-Schwarz divergence:
D2,2

Hölder(pθ1 , pθ2) = DCS(pθ1 , pθ2).

3. Some Illustrating Examples

Let us illustrate how to instantiate the generic formula with some examples of expo-
nential families.

3.1. Exponential Family of Exponential Distributions

Consider the family of exponential distributions with rate parameter λ > 0. The
densities of this exponential family writes as pλ(x) = λ exp(−λx) with support X = [0, ∞).
We use the canonical decomposition of the exponential family to get t(x) = −x, θ = λ,
F(θ) = − log θ and k(x) = 0. It follows that

I(pθ) = exp(F(2θ)− 2F(θ)), (40)

= exp(− log 2θ + 2 log θ), (41)

= exp(− log 2 + log θ), (42)

=
θ

2
. (43)

Thus I(pλ) =
λ
2 . Similarly, we find that

I(pλ1 , pλ2) = exp(F(θ1 + θ2)− F(θ1)− F(θ2))Epθ1+θ2
[exp(k(x))], (44)

=
λ1λ2

λ1 + λ2
. (45)
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Thus ρ(pλ1 , pλ2) =
2
√

λ1λ2
λ1+λ2

, and DCS(pλ1 , pλ2) = log
(

λ1+λ2
2

)
− 1

2 log(λ1λ2). We check

that DCS(pλ1 , pλ2) ≥ 0 since the arithmetic mean A(λ1, λ2) = λ1+λ2
2 is greater or equal

than the geometric mean G(λ1, λ2) =
√

λ1λ2, and DCS(pλ1 , pλ2) = log A(λ1,λ2)
G(λ1,λ2)

.
Choose ω = 0 so that pλ(ω) = λ and lλ(ω) = log λ.

ρ(pθ1 , pθ2) =

√
p2θ1(ω)

√
p2θ2(ω)

pθ1+θ2(ω)
, (46)

=
2
√

λ1λ2

λ1 + λ2
, (47)

DCS(pθ1 , pθ2) = lθ1+θ2(ω)−
l2θ1(ω) + l2θ2(ω)

2
, (48)

= log(λ1 + λ2)−
1
2
(log(2λ1) + log(2λ2)) = log

(
λ1 + λ2

2
√

λ1λ2

)
. (49)

To illustrate the fact that the formula Equation (34) is independent of the choice of ω,
let us consider ω = 1 so that pλ(ω) = λ exp(−λ) with log-likelihood lλ(ω) = log(λ)− λ.
The correlation coefficient is then calculated as

ρ(pθ1 , pθ2) =

√
p2θ1(ω)

√
p2θ2(ω)

pθ1+θ2(ω)
, (50)

=

√
2λ1 exp(−2λ1)

√
2λ2 exp(−2λ2)

(λ1 + λ2) exp(−(λ1 + λ2))
, (51)

=
2
√

λ1λ2

λ1 + λ2

exp(−(λ1 + λ2))

exp(−(λ1 + λ2))
, (52)

=
2
√

λ1λ2

λ1 + λ2
. (53)

3.2. Exponential Family of Poisson Distributions

The Poisson family of probability mass functions (PMFs) pλ(x) = λx exp(−λ)
x! where

λ > 0 denotes the intensity parameter and x ∈ X = {0, 1, . . . , } is a discrete expo-
nential family with sufficient statistic t(x) = x, natural parameter θ(λ) = log λ (affine
natural parameter space), cumulant function F(θ) = exp(θ), and auxiliary carrier term
k(x) = − log x!. The informational energy is

I(pλ) =
∞

∑
x=0

p2
λ(x), (54)

= I(pθ) = exp(F(2θ)− 2F(θ))Ep2θ
[exp(k(x))], (55)

= exp(e2θ − 2eθ)Ep2θ

[
1
x!

]
, (56)

= eλ2−2λEp
λ2

[
1
x!

]
. (57)

3.3. Exponential Family of Univariate Normal Distributions

Consider the set of univariate normal probability density function:

N :=

{
pλ(x) =

1
σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)

, λ = (µ, σ2) ∈ R×R++

}
, (58)

where R++ = {x ∈ R : x > 0} denote the set of positive reals. Family N is interpreted as
an exponential family indexed by the source parameter λ = (µ, σ2) ∈ Λ with Λ = R×R++.
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The corresponding natural parameter is θ(λ) =
(

µ

σ2 ,− 1
2σ2

)
with the sufficient statistic

t(x) = (x, x2) on the support X = (−∞, ∞) (and no additional carrier term, i.e., k(x) = 0).

The cumulant function for the normal family is F(θ) = − θ2
1

4θ2
+ 1

2 log
(
− π

θ2

)
.

We have

I(pθ) = exp(F(2θ)− 2F(θ)), (59)

= exp

(
− (2θ1)

2

4(2θ2)
+

1
2

log
π

(−2θ2)
+

1
2

θ2
1

θ2
− log

π

(−θ2)

)
, (60)

= exp
(

1
2

log
π

(−2θ2)
− log

π

(−θ2)

)
, (61)

= exp
(
−1

2
log(2π)− 1

2
log(2σ2)

)
, (62)

=
1

2σ
√

π
. (63)

Similar calculations for θ1 = (µ1, σ1) and θ2 = (µ2, σ2) yield

I(pµ1,σ1 , pµ2,σ2) =
1√
2π

exp
(
− (µ1−µ2)

2

2σ2
1+2σ2

2

)
√

σ2
1 + σ2

2

. (64)

We check that I(pθ) = I(pθ , pθ).
It follows that Onicescu’s correlation coefficient between two normal densities is:

ρ(pµ1,σ1 , pµ2,σ2) =

√
2σ1σ2

σ2
1 + σ2

2
exp

(
− (µ1 − µ2)

2

2σ2
1 + 2σ2

2

)
, (65)

and the Cauchy-Schwarz divergence between two univariate Gaussians is:

DCS(pµ1,σ1 , pµ2,σ2) = − log ρ(pµ1,σ1 , pµ2,σ2) =
(µ1 − µ2)

2

2σ2
1 + 2σ2

2
+

1
2

log
(

1
2

(
σ1

σ2
+

σ2

σ1

))
. (66)

3.4. Exponential Family of Multivariate Normal Distributions

Consider the example of the multivariate normal (MVN) family: The parameter
λ = (λv, λM) of a MVN consists of a vector part λv = µ and a d× d positive-definite matrix
part λM = Σ � 0. The density is given by

pλ(x; λ) =
1

(2π)
d
2
√
|λM|

exp
(
−1

2
(x− λv)

>λ−1
M (x− λv)

)
, (67)

where | · | denotes the matrix determinant. Choose the sufficient statistic t(x) = (x,− 1
2 xx>)

so that θ = (θv = Σ−1µ, θM = Σ−1). Since k(x) = 0, let ω = 0,

pλ(0) =
1

(2π)
d
2
√
|Σ|

exp
(
−1

2
µ>Σ−1µ

)
,
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and apply the formula of Equation (33) with 2θM = 2Σ−1 =
(

1
2 Σ
)−1

:

I(pθ) =
p2

θ(0)
p2θ(0)

, (68)

=
(2π)

d
2

∣∣∣ 1
2 Σ
∣∣∣ 1

2

(2π)d|Σ|
=

1

2dπ
d
2 |Σ| 12

. (69)

Let us calculate the formula for the Cauchy-Schwarz divergence between two mul-
tivariate Gaussian distributions. We have θ(λ) = (θb, θM) = (Σ−1µ, Σ−1) for λ = (µ, Σ).
Conversely, we have λ(θ) = (θ−1

M θv, θ−1
M ). It follows that

λ(θ1 + θ2) =
(
(Σ−1

1 + Σ−1
2 )−1(Σ−1

1 µ1 + Σ−1
2 µ2), (Σ−1

1 + Σ−1
2 )−1

)
. (70)

In particular, we have λ(2θ) = (µ, 1
2 Σ). Let ω = 0 so that

pλ(0) =
1

(2π)
d
2
√
|Σ|

exp
(
−1

2
µ>Σ−1µ

)
, (71)

lλ(0) = −d
2

log(2π)− 1
2

log |Σ| − 1
2

µ>Σ−1µ. (72)

Thus we get

DCS(pλ1 , pλ2) = lλ(θ1+θ2)
(ω)−

lλ(2θ1)
(ω) + lλ2θ2(ω)

2
, (73)

DCS(pµ1,Σ1 , pµ2,Σ2) =
1
2

log

(
1
2d

√
|Σ1| Σ2||

|(Σ−1
1 + Σ−1

2 )−1|

)

+
1
2

µ>1 Σ−1
1 µ1 +

1
2

µ>2 Σ−1
2 µ2

−1
2
(Σ−1

1 µ1 + Σ−1
2 µ2)

>(Σ−1
1 + Σ−1

2 )−1(Σ−1
1 µ1 + Σ−1

2 µ2). (74)

The formula coincides with the formula of Equation (66) when Σ1 = σ2
1 and Σ2 = σ2

2 .

3.5. Exponential Family of Pareto Distributions

Consider the family of Pareto densities defined by a shape parameter a > 0 and a
prescribed scale parameter k > 0 as follows:{

pa(x) =
aka

xa+1 , x ∈ [k, ∞)

}
. (75)

Writing the density as pa(x) = exp(a log k + log a − (a + 1) log x) = pθ(a)(x), we
deduce that the Pareto densities form an exponential family with natural parameter θ =
a + 1, sufficient statistic t(x) = log x and k(x) = 0. Let us choose ω = k, and apply the
generic formula for the informational energy with θ(a) = a + 1 and θ−1(b) = b− 1 (and
2θ(a) = θ−1(2a + 2) = 2a + 2− 1 = 2a + 1):
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I(pθ) =
p2

θ(ω)

p2θ(ω)
, (76)

I(pa) =
p2

θ(a)(k)

p2θ(a)(k)
=

p2
a(k)

p2a+1(k)
(77)

=

(
aka

xa+1

)2 k2a+2

(2a + 1)k2a+1 , (78)

=
a2

k(2a + 1)
. (79)

3.6. Instantiating Formula with a Computer Algebra System

In general, we can automate the calculations of closed-form formula for conic expo-
nential families using a computer algebra system (CAS) by defining the source-to-natural
parameter conversion function θ(λ), and then apply the formula

DCS(pλ1 , pλ2) = log

 pθ(λ1)+θ(λ2)
(ω)√

p2θ(λ1)
(ω)

√
p2θ(λ2)

(ω)

, ∀ω ∈ X . (80)

For example, using the CAS Maxima (http://maxima.sourceforge.net/ accessed on
14 April 2022), we can calculate the formula of the information energy of Pareto densities
as follows:

/* Pareto densities form an exponential family */
assume(k>0);
assume(a>0);

Pareto(x,a):=a*(k**a)/(x**(a+1));

/* check that it is a density (=1) */
integrate(Pareto(x,a),x,k,inf);

/* calculate Onicescu’s informational energy */
integrate(Pareto(x,a)**2,x,k,inf);

/* method bypassing the integral calculation */
omega:k;
(Pareto(omega,a)**2)/Pareto(omega,2*a+1);

4. Informational Energy and the Laws of Thermodynamics

The informational energy was originally motivated by an analogy to kinetic energy in
physics, and proves useful when investigating the thermodynamics laws on a statistical
manifold [20] where thermodynamic processes [37] can be viewed as oriented trajectories on
the manifold as depicted in Figure 1: Indeed, the third law of thermodynamics states that the
entropy and the kinetic energy (i.e., informational energy) of an isolated thermodynamical
system should vary with opposite directions. Thus when viewing a parametric family
M = {pθ : θ ∈ Θ} of distributions as a statistical manifold [20,38], a valid oriented
thermodynamic path {pθ(t), t ∈ I ⊂ R} (with time t increasing) should satisfy the following
condition: (

H(pθ(t+dt))− H(pθ(t))
)
×
(

I(pθ(t+dt))− I(pθ(t))
)
< 0.

http://maxima.sourceforge.net/
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This condition can be written equivalently as the following variational inequality:

d
dt

H(pθ(t)) ×
d
dt

I(pθ(t)) < 0. (81)

We consider the thermodynamic process paths on exponential family manifolds in
Section 4.1 and on location-scale manifolds in Section 4.2.

M = {pθ : θ ∈ Θ}

pθ(t)

pθ(t+dt)

Figure 1. Visualizing a thermodynamic process as an oriented trajectory on a statistical manifold.

4.1. Exponential Family Manifolds

Consider statistical manifolds induced by exponential families [20], and let us report
the variations of entropy and informational energy on those manifolds.

Lemma 1. The variation of entropy of a density pθ(t) of a D-dimensional exponential family with
log-normalized F(θ) for θ = (θ1, . . . , θD) is

d
dt

H(pθ(t)) = −θ̇(t)>∇2F(θ(t)) θ(t),

where θ̇(t) =
(

d
dt θ1(t), . . . , d

dt θD(t)
)

.

Proof. The entropy H(pθ) of a density pθ of a (potentially reparametrized) natural expo-
nential family with log-normalizer F(θ) is given by [34]:

H(pθ) = −F∗(η) = F(θ)− 〈θ,∇F(θ)〉,

where 〈·, ·〉 denotes the scalar product (Euclidean inner product). It follows that we have

d
dt

H(pθ(t)) =
d
dt

(F(θ(t))− 〈θ(t),∇F(θ(t))〉),

= 〈θ̇(t),∇F(θ(t))〉 − 〈θ̇(t),∇F(θ(t))〉 − 〈θ(t), 〈∇2F(θ(t)), θ̇(t)〉〉,
= −θ̇(t)>∇2F(θ(t)) θ(t).

Notice that the Hessian matrix ∇2F(θ) is positive-definite since the log-normalizer
F(θ) is strictly convex for a minimal regular exponential family [20].

Next, we report the variation of the informational energy on any thermodynamic
process trajectory:

Lemma 2. The variation of informational energy of a density pθ(t) of an exponential family of order
D with log-normalizer F(θ) and zero auxiliary carrier term k(x) is

d
dt

I(pθ(t)) = 2 〈θ̇(t),∇F(2θ(t))−∇F(θ(t))〉 I(pθ(t)),

provided that 2θ ∈ Θ.
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Proof. Assume no extra auxiliary carrier term (i.e., k(x) = 0) so that by Theorem 1 we have
I(pθ) = exp(F(2θ)− 2F(θ)). Therefore, we get

d
dt

I(pθ(t)) = 2〈θ̇(t),∇F(2θ(t))−∇F(θ(t))〉 I(pθ(t)).

Thus we can check that whether the statistical normal manifold [20] satisfies the third
thermodynamic law everywhere or not as follows: We have H(pµ(t),σ(t)) = log(

√
2πeσ(t))

and I(pµ(t),σ(t)) =
1

2
√

πσ(t) . Therefore we get:

d
dt

H(pθ(t))×
d
dt

I(pθ(t)) =
σ̇(t)
σ(t)

×
(
−σ̇(t)

1
2
√

π
σ2(t)

)
,

= − 1
2
√

π

σ̇(t)2

σ3(t)
< 0,

since σ(t) > 0 for all t. Any smooth curve on a statistical normal manifold can be a
thermodynamic process path satisfying the third law of thermodynamics.

4.2. Location-Scale Manifolds

Consider the setting where M is a statistical manifold modeling a location-scale
family:

M =

{
pl,s(x) =

1
s

pstd

(
x− l

s

)
, (l, s) ∈ (R,R++)

}
,

where pstd(x) denotes the standard probability density function of the family (i.e., pstd(x) =
p0,1(x)). The family of normal distributions and the family of Cauchy distributions are two

examples of location-scale families with standard density pstd(x) = 1√
2π

exp
(
− 1

2 x2
)

and

pstd(x) = 1
π(1+x2)

, respectively.

By a change of variable y = x−l
s in the integral definitions of the entropy (Equation (4))

and the informational energy (Equation (1)) of a location-scale probability density function
pl,s(x), we find that

H(pl,s) = H(pstd) + log s, (82)

I(pl,s) =
1
s

I(pstd). (83)

The informational energy of the standard normal and Cauchy distributions are 1
2
√

π

(since
∫ ∞
−∞ e−x2

dx =
√

π) and 1
2 (since

∫ ∞
−∞

1
(1+x2)2 dx = π

2 ), respectively. Thus the informa-
tional energy of the normal distributions N(µ, σ) and the Cauchy distributions C(l, s) are

1
2σ
√

π
(see also Table 2) and 1

2s , respectively.
Using a first-order Taylor expansion on the scale parameter

s(t + dt) ≈ s(t) + ṡ(t)dt,

we get
d
dt

H(pl(t),s(t)) = ṡ(t),

and
d
dt

I(pl(t),s(t)) = −
ṡ(t)
s2(t)

I(pstd).
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Therefore, we have

d
dt

H(pθ(t))×
d
dt

I(pθ(t)) = −
ṡ(t)2

s3(t)
I(pstd) < 0,

since s(t) > 0 and I(pstd) > 0 for any (standard) probability density function. Thus all
smooth paths on a location-scale manifold are compatible with the third law of thermody-
namics.

Note that the second law of thermodynamics states that the entropy of an isolated
system increases over time. That is, for a thermodynamic process {pθ(t), t ∈ I ⊂ R}, we
shall have H(pθ(t)) < H(pθ(t+dt)). On a statistical location-scale manifold with differential
entropy H(pl(t),s(t)) = H(pstd) + log s(t), we have

d
dt

H(pl(t),s(t)) =
ṡ(t)
s(t)

.

Thus the entropy of a thermodynamic process increases whenever the scale s(t)
increases with time (i.e., ṡ(t) > 0) since s(t) > 0. Therefore not all oriented thermodynamic
process paths on a location-scale manifold satisfies the second law of thermodynamics but
only paths with increasing scales.

5. Summary and Discussion

Shannon’s entropy [11] and Onicescu’s informational energy [5] are two complemen-
tary measures of uncertainty of a random variable: When randomness increases, Shannon’s
entropy increases but Onicescu’s informational energy decreases. Table 1 compares the
properties of these randomness measures: Interestingly, the Onicescu’s informational en-
ergy is strictly convex and is always positive while Shannon’s entropy is strictly concave
and can be negative for continuous random variables (e.g., differential entropy of a normal
distribution with small variance). The fundamental quantity of the informational energy of
Equation (1) has been studied in various other fields under different names: Simpson’s di-
versity index [16] or Gini-Simpson index [18] in ecology, Herfindahl–Hirschman index [13]
in economics, or the index of coincidence [14] in cryptanalysis. In this work, we show how
to compute the informational energy for a distribution belonging to an exponential family
in Theorem 1, and reported closed-form formula for its associated correlation coefficient
and related statistical divergences. We then show how to characterize thermodynamic
processes satisfying the third law of thermodynamics by interpreting them as smooth
oriented trajectory paths on a statistical manifold and asserting that the entropy and the
informational energy (interpreted as the kinetic energy) shall vary in opposite directions.
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