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Abstract: We present a generalization of Bregman divergences in finite-dimensional symplectic
vector spaces that we term symplectic Bregman divergences. Symplectic Bregman divergences
are derived from a symplectic generalization of the Fenchel–Young inequality which relies on the
notion of symplectic subdifferentials. The symplectic Fenchel–Young inequality is obtained using the
symplectic Fenchel transform which is defined with respect to the symplectic form. Since symplectic
forms can be built generically from pairings of dual systems, we obtain a generalization of Bregman
divergences in dual systems obtained by equivalent symplectic Bregman divergences. In particular,
when the symplectic form is derived from an inner product, we show that the corresponding
symplectic Bregman divergences amount to ordinary Bregman divergences with respect to composite
inner products. Some potential applications of symplectic divergences in geometric mechanics,
information geometry, and learning dynamics in machine learning are touched upon.

Keywords: dual system; duality product; inner product; symplectic form; symplectic matrix group;
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1. Introduction

Symplectic geometry [1–3] was historically pioneered by Lagrange around
1808–1810 [4–6] where the motions and dynamics (evolution curves) of a finite set of
m point mass particles in a time interval T are analyzed in the phase space by a 1D curve
C = {c(t) = (q1, p1, . . . , qm, pm)(t) : t ∈ T ⊂ R} ⊂ R2n, where qi(t) ∈ Rn’s denote the
point locations at time t and pi(t) ∈ Rn’s encode the momentum, i.e., pi(t) = mi q̇i with
q̇i =

d
dt qi(t). See Figure 1. (Notice that Joseph-Louis Lagrange (1736–1813) was 72 years old

in 1808, and is famous for his treatise on analytic mechanics [7,8] published first in french
in 1788 when he was 52 years old).

The Hamiltonian coupled equations [9] governing the system motion are written in
the phase space as follows:

dqi

dt
=

∂H
∂pi

,
dpi
dt

= −∂H
∂qi , (1)

where H(q, p, t) is the Hamiltonian describing the system. Lagrange originally started a
new kind of calculus, “symplectic calculus”. Symplectic geometry can be thought as the
first discovered non-Euclidean geometric structure since hyperbolic geometry is usually
considered to be first studied by Lobachevsky and Bolyai around 1820–1930. We refer to the
paper entitled “The symplectization of science” [10] for an outreach article on symplectic
geometry.

The adverb “symplectic” stems from Greek: It means “braided together” to convey
the interactions of point mass particle positions with their momenta. Its use in mathematics
originated in the work of Hermann Weyl (see §6 on symplectic groups in [11]). Another
synonym adverb of symplectic is “complex” which has been used to describe braided
numbers z of C = {z = a + ib : (a, b) ∈ R2}. Complex has its etymological root in Latin.
In differential geometry, symplectic structures are closely related to (almost) complex
structures on vector spaces and smooth manifolds [2].
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Figure 1. The motion of a single point particle q(t) with mass m and momentum p(t) = mq̇(t) on a
1D line can be modeled as a curve C = {c(t) = (q(t), p(t)) : t ∈ T ⊂ R} in the phase space R2.

In physics, symplectic geometry is not only at the core of classical mechanics (i.e.,
conservative reversible mechanics) and quantum mechanics [12], but has also recently been
used to model and study dynamics of systems exhibiting dissipative terms [13,14] which
are irreversible. As a pure geometry, symplectic geometry can be studied on its own by
mathematicians, and gave birth to the field of symplectic topology [15]. Thus, symplectic
geometry can be fruitfully applied to various areas beyond its original domain of geometric
mechanics. For example, symplectic geometry has been considered in machine learning for
accelerating numerical optimization methods based on symplectic integrators [16] and in
physics-informed neural networks [17,18] (PINNs).

In this paper, we define symplectic Bregman divergences (Definition 5) which recover
as special cases Bregman divergences [19] defined with respect to composite inner products.
A Bregman divergence induced by a strictly convex and differentiable (potential) function
F (called the Bregman generator) between x1 and x2 of X is defined in [19] (1967) by

BF(x1 : x2) = F(x1)− F(x2)− ⟨x1 − x2,∇F(x2)⟩, (2)

where ⟨·, ·⟩ is an inner product on X. Let Γ0(X) denote the set of functions which are lower
semi-continuous convex with non-empty effective domains. The convex conjugate F∗(x∗)
obtained by the Legendre–Fenchel transform F∗(x∗) = supx∈X ⟨x∗, x⟩ − F(x) yields a dual
Bregman divergence BF∗ when the function F ∈ Γ0(X) is of Legendre type [20,21]:

BF∗(x1∗ : x∗2) = F∗(x∗1)− F∗(x∗2)− ⟨x∗1 − x∗2 ,∇F∗(x∗2)⟩,

such that BF(x1 : x2) = BF∗(x∗2 : x∗1) with

F∗(x∗) = ⟨x∗, (∇F)−1(x∗)⟩ − F((∇F)−1(x∗)).

This paper introduces and extends the work of Buliga and Saxcé [13,14] which is
motivated by geometric irreversible mechanics. To contrast with [13,14], this expository
paper is targeted to an audience familiar with Bregman divergences [19] in machine learning
and information geometry [22] but does not assume any prior knowledge in geometric
mechanics. Furthermore, we consider only finite-dimensional spaces in this study.

The paper is organized as follows: In Section 2, we define symplectic vector spaces
and explain the representation of symplectic forms using dual pairings. We then define the
symplectic Fenchel transform and the symplectic Fenchel–Young inequality in Section 3.
The definitions of symplectic Fenchel–Young divergences (Definition 4) and symplectic
Bregman divergences (Definition 5) are reported in Section 4. In particular, we show how
to recover Bregman divergences with respect to composite inner products as special cases
in Section 5 (Property 1). In general, symplectic Bregman divergences allow one to define
Bregman divergences in dual systems equipped with pairing products. Finally, we recall the
role of Bregman divergences in dually flat manifolds of information geometry in Section 6,
and motivate the introduction of symplectic Bregman divergences in geometric mechanics
(e.g., symplectic BEN principle of [13,14]) and learning dynamics in machine learning.



Entropy 2024, 26, 1101 3 of 11

2. Dual Systems, Linear Symplectic Forms, and Symplectomorphisms
2.1. Symplectic Forms Derived from Dual Systems

We begin with two definitions:

Definition 1 (Dual system). Let X and Y be finite m-dimensional vector spaces [23] equipped
with a pairing product b(·, ·), i.e., a bilinear map:

b(·, ·) : X × Y → R,

such that all continuous linear functionals on X and Y are expressed as x#(·) = b(x, ·) and
y#(·) = b(·, y), respectively. The triplet (X, Y, b(·, ·)) forms a dual system.

(Notice that when the type of X is different from the type of Y then the bilinear map
cannot be symmetric).

Definition 2 (Symplectic vector space). A symplectic vector space (V, ω) is a vector space
equipped with a map [24] ω : Z = V × V → R which is

1. bilinear: ∀α, β, α′, β′ ∈ R, ∀z1, z2 ∈ Z, we have

ω(αz1 + α′z′1, z2, βz2 + β′z′2) = αβ ω(z1, z2) + αβ′ ω(z1, z′2) + α′β ω(z′1, z2) + α′β′ ω(z1, z′2),

2. skew-symmetric (or alternating): ω(z2, z1) = −ω(z1, z2), and
3. non-degenerate: if for a z0, we have ω(z, z0) = 0 for all z ∈ Z then we have z0 = 0.

Notice that skew-symmetry implies that ω(z, z) = 0 for all z ∈ Z since
ω(z, z) = −ω(z, z) and hence 2ω(z, z) = 0. The map ω is called a linear symplectic
form [24,25].

We define the symplectic form ω induced by the pairing product of a dual system
as follows:

ω(z1, z2) = b(x1, y2)− b(x2, y1), (3)

where z1 = (x1, l1) and z2 = (x2, l2) belong to Z = X ⊕ Y.
Let us report several examples of linear symplectic forms:

• Let X = V be a finite n-dimensional vector space with the dual space of linear
functionals Y = V∗ (space of covectors l). The natural pairing ((x, l)) = l(x) = ∑i xili
of a vector x ∈ V with a covector l ∈ V∗ is an example of dual product. (We use the
superscript index for indicating components of contravariant vectors and subscript
index for specifying components of covariant vectors [9]). We define the symplectic
form ω induced by the natural pairing of vectors with covectors as follows:

ω(z1, z2) = ((x1, l2))− ((x2, l1)) = l2(x1)− l1(x2), (4)

where z1 = (x1, l1) and z2 = (x2, l2) belong to Z = V ⊕ V∗.
• Consider (X, ⟨·, ·⟩) an inner product space of dimension n. The product space

Z = X⊕X of even dimension n can be equipped with the following map ω : Z × Z → R
induced by the inner product:

ω(z1, z2) = ⟨x1, y2⟩ − ⟨x2, y1⟩, (5)

where z1 = (x1, y1) ∈ Z and z2 = (x2, y2) ∈ Z.

For example, let X = R and ⟨x1, x2⟩ = x1x2. Then ω(z1, z2) = x1y2 − x2y1. This

symplectic form can be interpreted as the determinant of the matrix M =

[
x1 x2
y1 y2

]
which corresponds geometrically to the signed orientation of the parallelogram defined
by the vectors z1 = (x1, y1) and z2 = (x2, y2). See Figure 2. (This example indicates the
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link with integration of 2D manifolds equipped with fields of symplectic forms smoothly
varying called differential 2-forms [9]).

In a finite-dimensional vector space, we can express the inner product as ⟨x, y⟩ =
x⊤Qy for a symmetric positive-definite matrix Q ∈ Rn×n. Let Q = L⊤L be the Cholesky
decomposition of Q. Then we have

⟨x, y⟩ = (L⊤x)⊤ I(L⊤y) = ⟨L⊤x, L⊤y⟩0,

where I is the n × n identity matrix and ⟨x, y⟩0 = x⊤y is the Euclidean inner product. Thus
the form ω0 induced by ⟨·, ·⟩0 can be expressed using linear algebra as

ω0(z1, z2) = z⊤1

[
0 I
−I 0

]
z2 = z⊤1 Ω0z2,

where Ω0 ∈ R2n×2n is a skew-symmetric matrix: Ω⊤
0 = −Ω0. More generally, we may

consider skew-symmetric matrices of the form Ω =

[
0 L⊤

−L⊤ 0

]
to define the symplectic

form ωQ induced by the inner product ⟨x, y⟩Q = x⊤Qy.

0 x

y

|ω(z1, z2)|

z1 = (x1, y1)

z2 = (x2, y2)

counterclockwise orientationclockwise orientation

Figure 2. Interpreting a 2D symplectic form ω(z1, z2) as the signed area of a parallelogram with first
oriented edge z1 (grey). A pair of vectors defines two possible orientations of the parallelogram:
The orientation compatible with z1 and the reverse orientation compatible with z2. ω is called the
standard area form.

2.2. Linear Symplectomorphisms and the Groups of Symplectic Matrices

A symplectic form ω can be expressed as a 2n × 2n matrix Ω = [ωij] such that
ωij = ω(bi, bj) where b1 = e1, . . . , bn = en, bn+1 = f1, . . . , b2n = fn are the basis vectors,
and ω(z1, z2) = z⊤1 Ωz2.

The Darboux basis [2] of the canonical form ω0 of R2n is such that ω(ei, f j) = δij and
ω(ei, ej) = ω(li, lj) = 0 where δ denotes the Kronecker delta function. Ω0 ∈ Sp(2n) is the

symplectic matrix
[

0 I
−I 0

]
corresponding to the canonical form ω0 of R2n.

A transformation t : V → V is called a linear symplectomorphism when ω(t(z1),
t(z2) = ω(z1, z2) (i.e., t∗ω = ω), i.e., when T⊤ΩT = Ω where T be the matrix repre-
sentation of t. In particular t is a linear symplectomorphism with respect to ω0 when
T⊤Ω0T = Ω0. Any symplectic vector space of (V, ω) dimension 2n is symplectomorphic
to the canonical symplectic space (R2n, ω0).

Linear symplectomorphisms can be represented by symplectic matrices of the sym-
plectic group [11,26] Sp(2n):

Sp(2n) =
{

T : T⊤Ω0T = Ω0

}
⊂ GL(2n),

=

{
T =

[
A B
C D

]
: − C⊤A + A⊤C = 0,−C⊤B + A⊤D = I,−D⊤B + B⊤D = 0

}
,
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Transpose and inverse of symplectic matrices are symplectic matrices. The inverse of
a symplectic matrix T is given by

T−1 = −Ω0T⊤Ω0,

=

[
D⊤ −B⊤

−C⊤ A⊤

]
Symplectic matrices of Sp(2n) have unit determinant (Sp(2n) ⊂ SL(2n) ⊂ GL(2n)),

and in the particular case of n = 1, Sp(2) corresponds precisely to the set of matrices
with unit determinant. Thus rotation matrices of SO(2) which have unit determinant for a
subgroup of Sp(2).

Sesquilinear symplectic forms can also be defined on complex linear spaces [27].

3. Symplectic Fenchel Transform, Symplectic Subdifferentials, and Symplectic
Fenchel–Young (in)Equality

Let F : Z = X × Y → R ∪ {+∞} be a convex lower semi-continuous (lsc) function
called a potential function.

Definition 3 (Symplectic Fenchel conjugate). The symplectic Fenchel conjugate F∗ω(z′) is
defined by

F∗ω(z′) = sup
z∈Z

{
ω(z′, z)− F(z)

}
.

Notice that since ω is skew-symmetric, the order of the arguments in ω is important:
The symplectic Fenchel transform optimizes with respect to the second argument of ω(·, ·).

The symplectic subdifferential of F at z is defined by

∂ω F(z) = {z1 ∈ Z : ∀z2 ∈ Z, F(z + z2) ≥ F(z) + ω(z1, z2)}.

The differential operator ∂ω is a set-valued operator: ∂ω : F ⇒ Z, where F is the set
of potential functions. An element of the symplectic subdifferential of F at z is called a
symplectic subgradient.

Remark 1. Moreau generalized the Fenchel conjugate using a cost function [28]. In particular, the
duality induced by logarithmic cost function was studied in [29], and lead to a generalization of
Bregman divergences called the logarithmic divergences which are canonical divergences of constant
section curvature manifolds in information geometry.

Remark 2. In geometric mechanics [2], the symplectic gradient on a symplectic manifold (M, ω) is
the Hamiltonian vector field, i.e., the vector field XH such that the Halmitonian mechanics equation
writes concisely as ω(XH , ·) = dH.

Theorem 1 (Symplectic Fenchel–Young inequality, Theorem 2.3 of [13,14]). Let F(z) be a
convex (i.e., F(z) = F(x, y) is joint convex, i.e., convex with respect to z = (x, y)) and lower
semi-continuous function. Then the following inequality holds:

∀ z, z′ ∈ Z, F(z) + F∗ω(z′) ≥ ω(z′, z),

with equality if and only if z′ ∈ ∂ω(z).

Let us again notice that the argument order in ω(·, ·) is important.
Assume that the potential functions are smooth and that symplectic subdifferentials

consist only of single-element sets (singletons). By abuse of language, we shall call in this
paper the symplectic gradient of F the single element of the symplectic subdifferential ∂ω,
and denote it by ∇ω F: ∂ω F(z) = {∇ω F(z)}. (Our terminology and notation is thus not to
be confused with the Hamiltonian vector field XH of geometric mechanics).
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4. Symplectic Fenchel–Young Divergences and Symplectic Bregman Divergences

Divergences are smooth dissimilarity functions (see Section 4.2 of [30]). From the sym-
plectic Fenchel–Young inequality of Theorem 1, we can define the symplectic Fenchel–Young
divergence as follows:

Definition 4 (Symplectic Fenchel–Young divergence). Let F : Z = X × Y → R be a smooth
convex function. Then the symplectic Fenchel–Young divergence is the following non-negative
measure of dissimilarity between z and z′:

YF(z, z′) = F(z) + F∗ω(z′)− ω(z′, z) ≥ 0. (6)

We have YF(z, z′) = 0 if and only if z′ ∈ ∂ω F(z), i.e., z′ = ∇ω F(z) when F is smooth.
Let us now define the symplectic Bregman divergence Bω

F (z1 : z2) as YF(z1, z′2) where
z′2 = ∇ω F(z2). Using the following identity derived from the symplectic Fenchel–Young
equality:

F∗ω(∇ω F(z)) = ω(∇ω F(z), z)− F(z),

and the bilinearity of the symplectic form, we obtain:

Bω
F (z1 : z2) = YF(z1, z′2),

= F(z1) + F∗ω(z′2)− ω(z′2, z1),

= F(z1) + ω(∇ω F(z2), z2)− F(z2)− ω(∇ω F(z2), z1),

= F(z1)− F(z2)− ω(∇ω F(z2), z1 − z2). (7)

Since ω is skew-symmetric, we can also rewrite Equation (7) equivalently as

Bω
F (z1 : z2) = F(z1)− F(z2) + ω(z1 − z2,∇ω F(z2)). (8)

Definition 5 (Symplectic Bregman divergence). Let (Z = X × Y, ω) be a symplectic vector
space. Then the symplectic Bregman divergence between z1 and z2 of Z induced by a smooth convex
potential F(z) is

Bω
F (z1 : z2) = F(z1)− F(z2)− ω(∇ω F(z2), z1 − z2),

where the symplectic subdifferential gradient is the singleton ∂ω F(z) = {∇ω F(z)}.

Remark 3. The ordinary Bregman divergences (BDs) have been generalized to non-smooth strictly
convex potential functions using a subdifferential map in [31–33] to choose among several potential
subgradients at a given location. Similarly, we can extend symplectic Bregman divergences to
non-smooth strictly convex potential functions using a symplectic subdifferential map.

5. Particular Cases Recover Composite Bregman Divergences

When Y = X and (X, ⟨·, ·⟩) is an inner-product space, we may consider the composite
inner-product on Z = X × X:

⟨⟨z1, z2⟩⟩ = ⟨x1, y1⟩+ ⟨x2, y2⟩,

with z1 = (x1, y1) and z1 = (x2, y2).
Let I : Z → Z be the linear function I(z) = z and denote by J : Z → Z the linear

function defined by
J(z) = J(x, y) = (−y, x).

Notice that this definition of J makes sense because X = Y and thus (−y, x) ∈ Z. We check
that we have J2(x, y) = J(−y, x) = (−x,−y) = −(x, y), i.e., J2 = −I. Furthermore, we have
g(z1, z2) = ω(z1, Jz2) = ⟨x1, x2⟩+ ⟨y1, y2⟩ that is a positive definite inner product. That is,
the automorphism J is a complex structure ω-compatible (J is a symplectomorphism).
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We can express the symplectic form ω(z1, z2) = ⟨x1, y2⟩ − ⟨x2, y1⟩ induced by the
inner product using the composite inner product as follows:

ω(z1, z2) = ⟨x1, y2⟩ − ⟨x2, y1⟩ = ⟨⟨J(z1), z2⟩⟩,
ω(−Jz1, z2) = ⟨⟨z1, z2⟩⟩.

Similarly, the symplectic subdifferential of F can be expressed using the ordinary
subdifferential (and vice versa) as follows:

z′ ∈ ∂ω F(z) ⇔ J(z′) ∈ ∂F(z),

z′ ∈ ∂F(x) ⇔ −J(z′) ∈ ∂ω F(z).

When subdifferentials are singletons, we thus have

J(∇ω F(z)) = ∇F(z),

∇ω F(z) = −J(∇F(z)).

Last, the symplectic Fenchel conjugate of F is related by the ordinary Fenchel conjugate
F∗ of F as follows:

F∗ω(z) = F∗(J(z)).

Thus in that case the symplectic Bregman divergence amounts to an ordinary Bregman
divergence:

Bω
F (z1 : z2) = F(z1)− F(z2)− ω(∇ω F(z2), z1 − z2),

= F(z1)− F(z2) + ω(−∇ω F(z2), z1 − z2),

= F(z1)− F(z2) + ω(J(∇F(z2)), z1 − z2),

= F(z1)− F(z2)− ⟨⟨z1 − z2,∇F(z2)⟩⟩,
= BF(z1 : z2).

Property 1. When the symplectic form ω is induced by an inner product ⟨·, ·⟩ of X, the symplectic
Bregman divergence Bω

F (z1 : z2) between z1 = (x1, y1) and z2 = (x2, y2) of Z = X × X amounts
to an ordinary Bregman divergence with respect to the composite inner-product ⟨⟨z1, z2⟩⟩ =
⟨x1, y1⟩+ ⟨x2, y2⟩:

Bω
F (z1 : z2) = BF(z1 : z2) = F(z1)− F(z2)− ⟨⟨z1 − z2,∇F(z2)⟩⟩.

Furthermore, if the potential function F(z) is separable, i.e., F(z) = F1(x) + F2(y) for
Bregman generators F1 and F2, then we have Bω

F (z1 : z2) = BF1(x1 : x2) + BF2(y1, y2) where
the Bregman divergences BF1 and BF2 are defined with respect to the inner product of X.

Notice that the symplectic Fenchel–Young inequality can be rewritten using the ordi-
nary Fenchel–Young inequality and the linear function J as:

F(z) + F∗ω(z′) ≥ ω(z′, z),

F(z) + F∗(J(z′)) ≥ ⟨⟨J(z′), z⟩⟩.

6. Summary, Discussion, and Perspectives

Since its inception in operations research, Bregman divergences [19] have proven
instrumental in many scientific fields including information theory, statistics, and machine
learning, just to cite a few. Let (X, ⟨·, ·⟩) be a Hilbert space, and F : X → R a strictly convex
and smooth real-valued function. Then the Bregman divergence induced by F is defined
in [19] (1967) by

BF(x1 : x2) = F(x1)− F(x2)− ⟨x1 − x2,∇F(x2)⟩.



Entropy 2024, 26, 1101 8 of 11

In this work, we consider finite-dimensional vector spaces equipped with an inner
product.

In information geometry [22,34,35], a smooth dissimilarity D(p, q) between two points
p and q on an n-dimensional smooth manifold M induces a statistical structure on the
manifold [36], i.e., a triplet (g,∇,∇∗) where the Riemannian metric tensor g and the
torsion-free affine connections ∇ and ∇∗ are induced by the divergence D. The duality in
information geometry is expressed by the fact that the mid-connection ∇+∇∗

2 corresponds
to the Levi-Civita connection induced by g. To build the divergence-based information
geometry [37], the divergence D(p, q) is interpreted as a scalar function on the product
manifold M × M of dimension 2n. Thus, the divergence D is called a contrast function [36]
or yoke [38]. Conversely, a statistical structure (g,∇,∇∗) on an n-dimensional manifold M
induces a contrast function [39]. When the statistical manifold (M, g,∇,∇∗) is dually flat
with θ(·) the global ∇-affine coordinate system and η(·) the global ∇∗-affine coordinate
system [40], there exists two dual global potential functions ϕ and ϕ∗ on the manifold M
such that ϕ(p) = F(θ(p)) and ϕ∗(η(p)) = F∗(η(p)) where F∗(η) is the Legendre–Fenchel
convex conjugate of F(θ). The canonical dually flat divergence on M is then defined by

D(p, q) = F(θ(p)) + F∗(η(p))−
n

∑
i=1

θi(p)ηi(q),

and amounts to a Fenchel–Young divergence or equivalently a Bregman divergence:

D(p, q) = YF(θ(p) : θ(q)) = BF(θ(p) : θ(q)),

where the Fenchel–Young divergence is defined by

YF(θ : η′) = F(θ) + F∗(η′)−
n

∑
i=1

θiη′
i .

The Riemannian metric g of a dually flat space can be expressed as g = ∇dϕ = ∇∗dϕ∗ or
in the θ-coordinates by gij(θ) =

∂2

∂θi∂θj
F(θ) and in the η-coordinates by gij(η) =

∂2

∂ηi∂ηj
F∗(η).

That is, g is a Hessian metric [40], (g,∇) a Hessian structure and (g,∇∗) a dual Hessian
structure. In differential geometry, (M, g,∇) is called a Hessian manifold which admits
a dual Hessian structure (g,∇∗). In particular, a Hessian manifold is of Koszul type [40]
when there exists a closed 1-form α such that g = ∇α.

Remark 4. Notice that the potential functions F and F∗ are not defined uniquely although the
potential functions ϕ and ϕ∗ on the manifold are. Indeed, consider the generator F̄(θ) = F(Aθ +
b) + ⟨c, θ⟩ + d for invertible matrix A ∈ GL(d,R), vectors b, c ∈ Rd and scalars d ∈ R.
The gradient of the generator F̄ is η = ∇F̄(θ) = A⊤∇F(Aθ + b) + c. Solving the equation
∇F̄(θ) = η yields the reciprocal gradient θ(η) = ∇Ḡ(η) = A−1∇G

(
A−⊤(η − c)

)
− b from

which the Legendre convex conjugate is obtained as Ḡ(η) = ⟨η,∇Ḡ(η)⟩ − F(∇Ḡ(η)). We have
BF(θ1 : θ1) = BF̄(θ̄1 : θ̄2) where θ̄ = A−1(θ − b).

It has been shown that a divergence D also allows one to define a symplectic structure
ω on a statistical manifold [38,41]. The symplectic vector space (R2n, ω0) viewed as a
symplectic manifold has symplectic form ω0 = ∑n

i=1 dxi ∧ dyi = −d(∑n
i=1 yidxi). There

are no local invariants but only global invariants on symplectic manifolds (symplectic
topology). That is, a symplectic structure is flat.

In this expository paper, we have defined symplectic Fenchel–Young divergences and
equivalent symplectic Bregman divergences by following the study of geometric mechanics
reported in [13,14]. The symplectic Bregman divergence between two points z1 and z2
on a symplectic vector space (Z, ω) induced by a convex potential function F : Z → R is
defined by

Bω
F (z1 : z2) = F(z1)− F(z2) + ω(z1 − z2,∇ω F(z2)),
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where ∇ω F has been called the symplectic gradient in this paper, and assumed to be the
unique symplectic subdifferential at any z ∈ Z, i.e., ∂wF(z) = {∇ω F(z)}. Symplectic
Bregman divergences are used to define Bregman divergences on dual systems (Figure 3).
In the particular case of dual system (X, X, ⟨·, ·⟩), we recover ordinary Bregman divergences
with composite inner products.

(Z = X ⊕ Y, ω)

X Y

x
y

b(x, y)

Bω
F

Dual system

YF,F∗ω

Symplectic manifold Symplectic divergences:

pairing product

Figure 3. Bregman divergences generalized to dual systems (X, Y, b(·, ·)): A symplectic form ω on
the space Z = X ⊕ Z is induced by the pairing product. The Bregman divergence on the dual system
is then defined as the symplectic Bregman divergence on the symplectic vector space (Z, ω).

In finite 2n-dimensional symplectic vector spaces, linear symplectic forms ω can be
represented by symplectic matrices of the matrix group Sp(2n). Buliga and de Saxcé [13,14]
considered geometric mechanics with dissipative terms, and stated the following “sym-
plectic Brezis–Ekeland–Nayroles principle” (SBEN principle for short):

Definition 6 (SBEN principle [13,14]). The natural evolution path z(t) = zrev(t) + zirr(t) ∈ Z
for t ∈ [0, T] in a geometric mechanic system with convex dissipation potential ϕ(z) minimizes
among all admissible paths

∫ T
0 Yω

F (ż(t), żirr(t))dt and satisfies Yω
F (ż(t), żirr(t)) = 0 for all

t ∈ [0, T], where Yω
F denotes the symplectic Fenchel–Young divergence induced by ϕ, and zrev(t)

and zirr(t) are the reversible and irreversible parts of the particle z(t), respectively.

The decomposition of z = zrev + zirr into two parts can be interpreted as Moreau’s
proximation [42,43] associated to the potential function ϕ: Indeed, let F(z) be a convex
function of Z = Rd. Then for all z ∈ Rd, we can uniquely decompose z as z = z + z∗ such
that F(z) + F∗(z∗) = ⟨z, z∗⟩ (Fenchel–Young equality) where z∗ = ∇F(z) (see Proposition
in Section 4 of [42]). The part z is called the proximation with respect to F, and the part z∗

is the proximation with respect to the convex conjugate F∗.
We may consider the non-separable potential functions F(z) = F(x, y) = x f (y/x)

which are obtained from the perspective transform [44,45] of arbitrary convex functions
f (u) to define symplectic Bregman divergences. The perspective functions F(x, y) are
jointly convex if and only if their corresponding generators f are convex. Such perspective
transforms play a fundamental role in information theory [46] and information geome-
try [22].

In machine learning, symplectic geometry has been used for designing accelerated
optimization methods [16,47] (Bregman–Lagrangian framework) and physics-informed
neural networks [17,18] (PINNs).

This paper aims to spur interest in either designing or defining symplectic divergences
from first principles, and to demonstrate their roles when studying thermodynamics [48]
or the learning dynamics of ML and AI systems.
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