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Jeffreys–Fisher–Rao Center and the Gauss–Bregman
Inductive Center
Frank Nielsen

Sony Computer Science Laboratories, Tokyo 141-0022, Japan; frank.nielsen.x@gmail.com

Abstract: The symmetric Kullback–Leibler centroid, also called the Jeffreys centroid, of a set of
mutually absolutely continuous probability distributions on a measure space provides a notion
of centrality which has proven useful in many tasks, including information retrieval, information
fusion, and clustering. However, the Jeffreys centroid is not available in closed form for sets of
categorical or multivariate normal distributions, two widely used statistical models, and thus needs
to be approximated numerically in practice. In this paper, we first propose the new Jeffreys–Fisher–
Rao center defined as the Fisher–Rao midpoint of the sided Kullback–Leibler centroids as a plug-in
replacement of the Jeffreys centroid. This Jeffreys–Fisher–Rao center admits a generic formula for uni-
parameter exponential family distributions and a closed-form formula for categorical and multivariate
normal distributions; it matches exactly the Jeffreys centroid for same-mean normal distributions
and is experimentally observed in practice to be close to the Jeffreys centroid. Second, we define a
new type of inductive center generalizing the principle of the Gauss arithmetic–geometric double
sequence mean for pairs of densities of any given exponential family. This new Gauss–Bregman
center is shown experimentally to approximate very well the Jeffreys centroid and is suggested to be
used as a replacement for the Jeffreys centroid when the Jeffreys–Fisher–Rao center is not available in
closed form. Furthermore, this inductive center always converges and matches the Jeffreys centroid
for sets of same-mean normal distributions. We report on our experiments, which first demonstrate
how well the closed-form formula of the Jeffreys–Fisher–Rao center for categorical distributions
approximates the costly numerical Jeffreys centroid, which relies on the Lambert W function, and
second show the fast convergence of the Gauss–Bregman double sequences, which can approximate
closely the Jeffreys centroid when truncated to a first few iterations. Finally, we conclude this work by
reinterpreting these fast proxy Jeffreys–Fisher–Rao and Gauss–Bregman centers of Jeffreys centroids
under the lens of dually flat spaces in information geometry.

Keywords: Kullback–Leibler divergence; exponential family; Bregman divergence; quasi-arithmetic
mean; Fisher–Rao geodesic; information geometry; Lambert W function; geometric optimization

1. Introduction

Let (X ,F ) be a measurable space with sample space X and σ-algebra of events F ,
and µ a positive measure. We consider a finite set {P1, . . . , Pn} of n probability distributions
all dominated by µ and weighted by a vector w belonging to the open standard simplex
∆n = {x = (x1, . . . , xn) : x1 > 0, . . . , xn > 0, ∑n

i=1 xi = 1} ⊂ Rn. Let P = {p1, . . . , pn} be
the Radon–Nikodym densities of P1, . . . , Pn with respect to µ, i.e., pi =

dPi
dµ .

The Kullback–Leibler divergence (KLD) between two densities p(x) and q(x) is de-
fined by DKL(p : q) =

∫
p(x) log p(x)

q(x) dµ(x). The KLD is asymmetric: DKL(p : q) ̸= DKL(q :
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p). We use the argument delimiter ‘:’ as a notation to indicate this asymmetry. The Jeffreys
divergence [1] symmetrizes the KLD as follows:

DJ(p, q) = DKL(p : q) + DKL(q : p),

=
∫
X
(p(x)− q(x)) log

p(x)
q(x)

dµ(x).

In general, the D-barycenter CD of P with respect to a statistical dissimilarity measure
D(· : ·) yields a notion of centrality CR defined by the following optimization problem:

cR = arg min
p

n

∑
i=1

wi D(pi : p). (1)

Here, the upper case letter ‘R’ indicates that the optimization defining the D-barycenter
is carried on the right argument. When w = ( 1

n , . . . , 1
n ) is the uniform weight vector,

the D-barycenter is called the D-centroid. We shall loosely call centroids barycenters in
the remainder even when the weight vector is not uniform. Centroids with respect to
information-theoretic measures have been studied in the literature.

Let us mention some examples of centroids: The entropic centroids [2] (i.e., Bregman
centroids and f -divergences centroids), the Burbea–Rao and Bhattacharyya centroids [3],
the α-centroids with respect to α-divergences [4], the Jensen–Shannon centroids [5], etc.

The DJ-centroid is also called the symmetric Kullback–Leibler (SKL) divergence cen-
troid [6] in the literature. However, since there are many possible symmetrizations of the
KLD [7] like the Jensen–Shannon divergence [8] or the resistor KLD [9], we prefer to use
the term Jeffreys centroid instead of SKL centroid to avoid any possible ambiguity on the
underlying divergence. Notice that the square root of the Jensen–Shannon divergence is a
metric distance [10,11] but all powers Dα

J of Jeffreys divergence DJ for α > 0 do not yield
metric distances [12].

This paper considers the Jeffreys centroids of a finite weighted set of densities P =
{pθ1 , . . . , pθn} belonging to some prescribed exponential family [13] E :

c = arg min
p

n

∑
i=1

wi DJ(pθi , p). (2)

In particular, we are interested in computing the Jeffreys centroids for sets of categorical
distributions or sets of multivariate normal distributions [14].

In general, centroids are used in k means [15,16]-type clustering or hierarchical clus-
tering (e.g., Ward criterion [17]) and information fusion tasks [18] (related to distributed
model estimation [19]) among others. See Figure 1. The choice of the dissimilarity measure
depends on the application at hand [20]. Clustering with respect to Jeffreys divergence/Jef-
freys centroid has proven useful in many scenarios: for example, it was shown to perform
experimentally better than Euclidean or square Euclidean distances for compressed his-
tograms of gradient descriptors [21] or in fuzzy clustering [22]. Jeffreys divergence has
also been used for image processing [23], including image segmentation [24], speech pro-
cessing [25], and computer vision [26], just to name a few. In particular, finding weighted
means of centered 3D normal distributions plays an important role in diffusion tensor
imaging (DTI) for smoothing and filtering DT images [27] which consist of sets of normal
distributions centered at 3D grid locations.

In general, the Jeffreys centroid is not known in closed form for exponential fami-
lies [28] like the family of categorical distributions or the family of normal distributions
often met in applications and thus needs to be numerically approximated in practice. The
main contribution of this paper is to present and study two proxy centers as drop-in replace-
ments of the Jeffreys centroids in applications and report the generic structural formula for
generic exponential families with an explicit closed-form formula for the families of cate-
gorical and multivariate normal distributions. Namely, we define the Jeffreys–Fisher–Rao
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(JFR) center (Definition 2) and the Gauss–Bregman (GB) inductive center (Definition 3) in
Section 2.

Gaussian mixture model (GMM)

w1N(µ1,Σ1)

w2N(µ2,Σ2)

w4N(µ4,Σ4)

w6N(µ6,Σ6)

w5N(µ5,Σ5)

w3N(µ3,Σ3)
N(µ∗,Σ∗)

m(x) =
∑6

i=1 wi pµi,Σi

f(x) = pµ∗,Σ∗(x)

Fusion

. . .P1 P2 Pp−1 Pp

Master processus

Distributed estimation X = ⊎p
i=1Xi

X1 X2 Xp−1

Xp

θ̂1 θ̂2 θ̂p−1 θ̂p

θ̂

Figure 1. Application of centroids and centers in signal processing. (Left): information fusion and
mixture model simplification, a 2D Gaussian mixture model (GMM) is simplified to a single bivariate
normal distribution. (Right): distributed estimation, a data set is split among p processes Pis, which
first estimate the statistical model parameters θ̂is. Then, the processus models are aggregated to yield
a single consolidated model θ̂.

This paper is organized as follows: By interpreting in two different ways the closed-
form formula of the Jeffreys centroids for the particular case of sets of centered multivariate
normal distributions [29] (proof reported in Appendix B), we define the Gauss–Bregman
(GB) centers and the Jeffreys–Fisher–Rao (JFR) centers for sets of densities belonging to
an exponential family in Section 2. The Jeffreys centroid coincides with both the Gauss–
Bregman inductive center and the Jeffreys–Fisher–Rao center for centered multivariate
normal distributions but differ from each other in general. In Section 2.4, we study the
Gauss–Bregman inductive center [30] induced by the cumulant function of an exponential
family and prove the convergence under the separability condition of the generalized
Gauss double sequences in the limit (Theorem 3). This Gauss–Bregman center can be
easily approximated by limiting the number of iterations of a double sequence inducing
it. In Section 4, we report the generic formula for Jeffreys–Fisher–Rao centers for sets of
uni-order exponential families [13] and explicitly give the closed-form formula for the
categorical family and the multivariate normal family. A comparison of those proxy centers
with the numerical Jeffreys centroids is experimentally studied and visually illustrated
with some examples. Thus, we propose to use in applications (e.g., clustering) either the
fast Jeffreys–Fisher–Rao center when a closed-form formula is available for the family
of distributions at hand or the Gauss–Bregman center approximation with a prescribed
number of iterations as a drop-in replacement of the numerical Jeffreys centroids while
keeping the Jeffreys divergence. Some experiments of the JFR and GB centers are reported
for the Jeffreys centroid of categorical distributions in Section 5. Finally, we conclude this
paper in Section 6 with a discussion and a generalization of our results to the more general
setting of dually flat spaces of information geometry [14].

The core of this paper is followed by an Appendix section as follows: In Appendix A,
we explicitly give the algorithm outlined in [31] for numerically computing the Jeffreys
centroid of sets of categorical distributions. In Appendix B, we report a proof on the closed-
form formula of the Jeffreys centroid for centered normal distributions [29] that motivated
this paper. In Appendix C, we explain how to calculate in practice the elaborated closed-
form formula for the Fisher–Rao geodesic midpoint between two multivariate normal
distributions [32].

2. Proxy Centers for Jeffreys Centroids
2.1. Background on Jeffreys Centroids

A density pθ belonging to an exponential family [13] E can be expressed canoni-
cally as pθ(x) = exp(⟨θ, t(x)⟩ − F(θ))dµ(x), where t(x) is a sufficient statistic vector,
F(θ) = log

∫
exp(⟨θ, t(x)⟩)dµ(x) is the log-normalizer, and θ is the natural parameter
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belonging to the natural parameter space Θ. We consider minimal regular exponential fami-
lies [13] like the discrete family of categorical distributions (i.e., µ is the counting measure) or
the continuous family of multivariate normal distributions (i.e., µ is the Lebesgue measure).

The Jeffreys centroid of categorical distributions was first studied by Veldhuis [6], who
designed a numerical two-nested loops Newton-like algorithm [6]. A random variable
X following a categorical distribution Cat(p) for a parameter p ∈ ∆d in sample space
X = {ω1, . . . , ωd} is such that Pr(X = ωi) = pi. Categorical distributions are often used in
image processing to statistically model normalized histograms with non-empty bins. The
exact characterization of the Jeffreys centroid was given in [31].

We summarize the results regarding the categorical Jeffreys centroid [31] in the follow-
ing theorem:

Theorem 1 (Categorical Jeffreys centroid [31]). The Jeffreys centroid of a set of n categorical
distributions parameterized by P = {p1, . . . , pn} ∈ ∆d arranged in a matrix P = [pi,j] ∈ Rn×d

and weighted by a vector w = (w1, . . . , wn) ∈ ∆n is c(λ) = (c1(λ), . . . , cd(λ)) with

cj(λ) =
aj

W0

( aj
gj

e1+λ
) , ∀j ∈ {1, . . . , d},

where aj = ∑n
i=1 wi pi,j and gj =

∏n
i=1 p

wi
i,j

∑d
j=1 ∏n

i=1 p
wi
i,j

are the j-th components of the weighted arithmetic

and normalized geometric means, respectively; W0 is the principal branch of the Lambert W
function [33]; and λ ≤ 0 is the unique real value such that λ = −DKL(c(λ) : g).

Furthermore, a simple bisection search is reported in [31] §III.B that we convert into
Algorithm A1 in Appendix A, which allows one to numerically approximate the Jeffreys
centroid to arbitrary fine precision.

2.2. Jeffreys Centroids on Exponential Family Densities: Symmetrized Bregman Centroids

The Jeffreys divergence between two densities of an exponential family E = {pθ(x) =
exp(⟨t(x), θ⟩ − F(θ)) : θ ∈ Θ} with cumulant function F(θ) amounts to a symmetrized
Bregman divergence [28] (SBD):

DJ(pθ , pθ′) = SF(θ, θ′) := ⟨θ1 − θ2,∇F(θ1)−∇F(θ2)⟩.

Using convex duality, we have SF(θ, θ′) = SF∗(η, η′), where η = ∇F(θ) and F∗(η) =
⟨η, (∇F)−1(η)⟩ − F((∇F)−1(η)) is the Legendre–Fenchel convex conjugate. Thus, the Jef-
freys barycenter of P = {pθ1 , . . . , pθn} amounts to either a symmetrized Bregman barycen-
ter on the natural parameters Pθ = {θ1, . . . , θn} with respect to SF or a symmetrized
Bregman barycenter on the dual moment parameters Pη = {η1, . . . , ηn} with respect to SF∗ .

It was shown in [28] that the symmetrized Bregman barycenter θS of n weighted
points amounts to the following minimization problem involving only the sided Breg-
man centroids:

θS := arg min
θ∈Θ

∑
i

wiSF(θ, θi),

≡ arg min
θ∈Θ

BF(θ̄ : θ) + BF(θ : θ), (3)

where θ̄ = ∑i wiθi (right Bregman centroid) and θ = (∇F)−1(∑i wi∇F(θi)) (left Bregman
centroid). Those θ̄ and θ centers are centroids [28] with respect to the Bregman divergence
BF(θ1 : θ2) = F(θ1)− F(θ2)− ⟨θ1 − θ2,∇F(θ2)⟩ and reverse Bregman divergence: BF

∗(θ1 :
θ2) := BF(θ2 : θ1):
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θ̄ = arg min
θ

∑
i

wiBF(θi : θ),

θ = arg min
θ

∑
i

wiBF(θ : θi) = arg min
θ

∑
i

wiBF
∗(θi : θ).

In general, when H : Rm → R is a strictly convex differentiable real-valued function
of Legendre type [34], the gradient ∇H is globally invertible (in general, the implicit
inverse function theorem only locally guarantees the inverse function) and we can define a
quasi-arithmetic center of a point set P = {θ1, . . . , θn} weighted by w as follows:

Definition 1 (Quasi-arithmetic center). Let H = ∇F be the gradient of a strictly convex
or concave differentiable real-valued function F of Legendre type. The quasi-arithmetic center
cH(θ1, . . . , θn; w) is defined by

cH(θ1, . . . , θn; w) = H−1

(
n

∑
i=1

wi H(θi)

)
.

This definition generalizes the scalar quasi-arithmetic means [35] for univariate func-
tions h, which are continuous and strictly monotone. Quasi-arithmetic means (QAMs) are
also called f means or Kolmogorov–Nagumo means. Let m∇F(θ1, θ2) = c∇F(θ1, θ2; 1

2 , 1
2 ).

Notice that A(θ1, θ2) = ∇F∗(m∇F∗(η1, η2)) and A(η1, η2) = ∇F(m∇F(θ1, θ2)). That is,
the arithmetic mean in a primal representation amounts to a QAM in the dual representation.

Thus, we can solve for θS by setting the gradient of L(θ) = BF(θ̄ : θ) + BF(θ : θ) to
zero. In general, no closed-form formula is known for the symmetrized Bregman centroids,
and a numerical approximation method was reported in [28]. To circumvent the lack of
a closed-form formula of symmetrized Bregman centroids for clustering, Nock et al. [36]
proposed a mixed Bregman clustering where each cluster has two representative dual
Bregman centroids θ̄ = ∑i wiθi (right Bregman centroid) and θ = (∇F)−1(∑i wi∇F(θi))
(left Bregman centroid), and the dissimilarity measure is a mixed Bregman divergence
defined by

∆F(θ1 : θ : θ2) :=
1
2

BF(θ1 : θ) +
1
2

BF(θ : θ2).

Notice that minimizing Equation (3) amounts to minimizing the mixed Bregman diver-
gence:

min
θ

∆F(θ̄ : θ : θ).

By using the dual parameterization η = ∇F(θ) (with dual domain H = {∇F(θ) : θ ∈ Θ})
and the dual Bregman divergence BF∗(η1 : η2) = F∗(η1)− F∗(η2)− ⟨η1 − η2,∇F⟩∗(η1) =
BF(θ2 : η1), we have

θS := arg min
θ∈Θ

∑
i

wiSF(θ, θi),

ηS = arg min
η∈H

∑
i

wiSF∗(η, ηi),

≡ arg min
η∈H

BF∗(η : ∇F(θ̄)) + BF∗(∇F(θ) : η). (4)

Since ∇F(θ̄) = (∇F∗)−1(∑i wi∇F∗(ηi)) = η and ∇F(θ) = ∇F((∇F)−1 ∑i wiηi) = η̄, we
obtain the dual equivalent optimization problem:

θS = ∇F∗(ηS) = arg min
θ∈Θ

BF(θ̄ : θ) + BF(θ : θ),

or
ηS = ∇F(θS) = arg min

η∈H
BF∗(η̄ : θ) + BF∗(η : η).



Entropy 2024, 26, 1008 6 of 29

However, a remarkable special case is the family of multivariate normal distributions
centered at the origin for which the Jeffreys centroid was reported in closed form in [29].
Let N0 = {pΣ : Σ ∈ Sym++(R, d)} be the exponential family with sufficient statistics
t(x) = − 1

2 (x, xx⊤), natural parameter θ = Σ−1 (the precision matrix) where the covariance
matrix belongs to the cone Sym++(R, d) of symmetric positive-definite matrices, inner
product ⟨X, Y⟩ = tr(XY), and F(θ) = − 1

2 log det(θ). In that case, the Jeffreys divergence
amounts to a symmetrized Bregman log-det (ld) divergence between the corresponding
natural parameters:

DJ(pΣ, pΣ′) =
1
2

tr
((

Σ′−1 − Σ−1)(Σ− Σ′
))

=:
1
2

Sld(Σ
−1, Σ′−1

).

Using the standard covariance matrix parameterization Σ, we can further express the
Jeffreys divergence between two multivariate normal distributions pΣ and pΣ′ as

DJ(pΣ, pΣ′) =
d

∑
i=1

(√
λi −

1√
λi

)2
,

where λis are the eigenvalues of Σ−1Σ′. The symmetrized log-det divergence Sld is also
called the symmetrized Stein loss [37,38]. When d = 1, this divergence is the symmetrized
Itakura–Saito divergence also called the COSH distance [28]. The Jeffreys centroid can
be characterized using the Fisher–Rao geometry [39] of N0 as the Fisher–Rao geodesic
midpoint of the sided Kullback–Leibler centroids as follows:

Theorem 2 ([29]). The Jeffreys centroid C of a set of n centered multivariate normal distribu-
tions P = {pΣ1 , . . . , pΣn} weighted with wi ∈ ∆n amounts to the symmetrized log-det Breg-
man centroid for the corresponding weighted set of positive-definite precision matrices Pθ =
{P1 = Σ−1

1 , . . . , Pn = Σ−1
n }. The symmetrized log-det Bregman barycenter C is the Riemannian

geodesic midpoint A#H of the arithmetic barycenter A = ∑n
i=1 wiPi and harmonic barycenter

H =
(

∑n
i=1 wiP−1

i

)−1
where X#Y := X

1
2

(
X−

1
2 Y X−

1
2

) 1
2 X

1
2 is the matrix geometric mean [40]

G(X, Y) = X#Y:

C = (
n

∑
i=1

wiPi)#

(
n

∑
i=1

wiP−1
i

)−1

. (5)

Since the proof of this result mentioned in [29] was omitted in [29], we report a proof
involving matrix analysis in full detail in Appendix B.

Next, we shall define two types of centers for sets of densities of a prescribed exponen-
tial family based on two different interpretations of Equation (5). We call them centers and
not centroids because those points are defined by a generic structural formula instead of
solutions of minimization problems of average divergences of Equation (1).

2.3. The Jeffreys–Fisher–Rao Center

Since an exponential family E = {pθ(x)} induces the Riemannian manifold (M, g)
with the Fisher metric g expressed in the θ-parameterization by the Fisher information
matrix ∇2F(θ) and Fisher–Rao geodesics γ(p, q, t) defined with respect to the Levi-Civita
connection ∇̄ (induced by g), we shall define the Jeffreys–Fisher–Rao center onM using
the Fisher–Rao geodesics as follows:

Definition 2 (Jeffreys–Fisher–Rao (JFR) center). The Jeffreys–Fisher–Rao center θJFR of a set
{pθ1 , . . . , pθn} of weighted densities by w ∈ ∆n is defined as the Fisher–Rao midpoint of the sided
Kullback–Leibler centroids θ̄ = ∑i wiθi and θ = (∇F)−1(∑i wi∇F(θi)):

θJFR = θ̄#θ, (6)
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where p#q = γ
(

p, q, 1
2

)
.

Equation (6) is a generalization of Equation (5); therefore, the JFR center matches the
Jeffreys centroid for same-mean multivariate normal distributions (Theorem 2).

Let Pθ = {θ1, . . . , θn} and Pη = {η1, . . . , ηn}, where η = ∇F(θ) and
θ = ∇F∗(η). Denote by JFRF(Pθ ; w) the JFR center of θ-coordinate θJFR. Then, JFRF∗(Pη ; w)
= ∇F(θJFR) := ηJFR.

2.4. Gauss–Bregman Inductive Center

Another remarkable property of the Jeffreys centroid for a set {pµ,Σ1 , . . . , pµ,Σn} of
same-mean multivariate normal distributions weighted by w ∈ ∆n with arithmetic and
harmonic means A = ∑n

i=1 wiΣ−1
i and H = (∑n

i=1 wiΣi)
−1 on the precision matrices

Σ−1
1 , . . . , Σ−1

n , respectively, is that we have the following invariance of the Jeffreys cen-
troid (see Lemma 17.4.4 of [29]):

G(A, H) = G
(

A + H
2

, 2 (A−1 + H−1)−1
)

. (7)

Nakamura [41] defined the following double sequence scheme converging to the
matrix geometry mean G(P, Q) for any two symmetric positive-definite matrices P and Q:

Pt+1 = A(Pt, Qt) :=
Pt + Qt

2
,

Qt+1 = H(Pt, Qt) := 2 (P−1
t + Q−1

t )−1,

initialized with P0 = P and Q0 = Q. We have limt→∞ Pt = limt→∞ Qt = P#Q = G(P, Q).
Let P∞ = limt→∞ Pt and Q∞ = limt→∞ Qt. That is, the geometric matrix mean can be
obtained as the limits of a double sequence of means. We can thus approximate G(P, Q) by
stopping the double sequence after T iterations to obtain

G(T)(P, Q) = A(PT , QT) ≈ G(P, Q).

Notice that we can recover those iterations from the invariance property of Equation (7):
Indeed, we have

G(P0, Q0) = G(A(P0, Q0)︸ ︷︷ ︸
=:P1

, H(P0, Q0)︸ ︷︷ ︸
=:Q1

) = G(A(P1, Q1)︸ ︷︷ ︸
=:P2

, H(P1, Q1)︸ ︷︷ ︸
=:Q2

) = . . . , (8)

and ∥Pt − Qt∥ =
√

tr((Pt −Qt)(Pt −Qt)) decreases [41] as the number of iterations t
increases. Thus, by induction, G(P0, Q0) = G(P∞, Q∞) with P∞ = Q∞. Since G(X, X) = X
(means are reflexive), it follows that G(P0, Q0) = P∞ = Q∞. It is proved in [41] that the
convergence rate of the sequence of double iterations is quadratic. This type of mean has
been called an inductive mean [30,42] (or compound mean [43]) and originated from the
Gauss arithmetic–geometric mean [44].

Our second interpretation of the geometric matrix mean of Equation (5) is to consider
it as an inductive mean [30] and to generalize this double sequence process to pairs/sets of
densities of an exponential family as follows:

Definition 3 (Gauss–Bregman (A,∇F) center). Let P = {pθ1 , . . . , pθn} be a set of n distribu-
tions of an exponential family with the cumulant function F(θ) weighted by a vector w ∈ ∆n. Then,
the Gauss–Bregman inductive center θGB is defined as the limit of the double sequence:
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θ̄t+1 = A(θ̄t, θt) :=
θ̄t + θt

2
,

θt+1 = m∇F(θ̄t, θt) := (∇F)−1
(
∇F(θ̄t) +∇F(θt)

2

)
,

initialized with θ̄0 = θ̄ = ∑n
i=1 wiθi (right Bregman centroid) and θ0 = θ = ∇F−1(∑n

i=1 wi∇F(θi))
(left Bregman centroid). That is, we have

θGB = lim
t→∞

θ̄t = lim
t→∞

θt. (9)

Let θGB = GBF(θ̄, θ). Then, we have ηGB = GBF∗(η̄, θ̄) = ∇F(θGB). The Gauss–
Bregman center cGB has θ-coordinates θGB and η-coordinates ηGB.

Algorithm 1 describes the approximation of the Gauss–Bregman inductive center by
stopping the double sequence when the iterated centers are close enough to each other.
We shall prove the matching convergence of those θ̄t and θt sequences under separability
conditions in Section 2.4.

Algorithm 1: Gauss–Bregman inductive center.
Input: A set P = {pθ1 , . . . , pθn} of weighted densities with w ∈ ∆n of an

exponential family with cumulant function F(θ), natural parameters θi’s lie
in an inner product space (Θ, ⟨·, ·⟩).

Input: The distance is defined as ∥θ − θ′∥ =
√
⟨θ − θ′, θ − θ′⟩

Input: A precision parameter ϵ > 0
Output: A numerical approximation of the symmetrized Bregman centroid
/* Arithmetic weighted mean on natural parameters */
θ̄0 = ∑n

i=1 wiθi ;
/* Dual weighted mean */
θ0 = ∇F−1(∑n

i=1 wi∇F(θi)) ;
t← 0;
/* Iterate until close to convergence */
while |θ̄t − θt| > ϵ do

θ̄t+1 = θ̄t+θt
2 ;

θt+1 = ∇F−1
(
∇F(θ̄t)+∇F(θt)

2

)
;

t← t + 1;
end
return θ̄t−1;

For example, the Gauss–Bregman center of two categorical distributions p = (p1, . . . , pd)
and p′ = (p′1, . . . , p′d) on a sample space X of d elements is obtained for the cumu-

lant function F(θ) = log(1 + ∑d−1
i=1 eθi ) with gradient ∇F(θ) =

[
ηi =

eθi

1+∑d−1
j=1 eθj

]
i

where

θ = (θ1 = log p1
pd

, . . . , θd−1 = log pd−1
pd

) is the natural parameter. The reciprocal gradient is

(∇F)−1(η) =

[
log ηi

1−∑d−1
j=1 ηj

]
i
.

We may also compute the Gauss–Bregman center of two categorical distributions
Cat(p) and Cat(p′) using iterations of arithmetic means at and geometric normalized
means gt:
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ai
t+1 = A(ai

t, gi
t) :=

ai
t + gi

t
2

, ∀i ∈ {1, . . . , d}

ui
t+1 =

√
ai

tg
i
t, ∀i ∈ {1, . . . , d},

gi
t+1 =

ui
t+1

∑d
j=1 uj

t+1

, ∀i ∈ {1, . . . , d},

where the uts are unnormalized geometric means and the gt represents normalized geo-
metric means. We initialize the sequence with a0 = p and g0 = p′, and the Gauss–Bregman
center is obtained in the limit mCat

GB (p, p′) = limt→∞ at = limt→∞ gt. See Algorithm 2.
The Jeffreys centroid of a set of centered multivariate normal distributions is the

Gauss–Bregman center obtained for the generator F(θ) = − 1
2 log det(θ), the cumulant

function of the exponential family of centered normal distributions.

Algorithm 2: Gauss–Bregman inductive center for sets of categorical distributions.
Input: A set of weighted categorical distributions: Pw = {p1, . . . , pn} with

w ∈ ∆n and pi ∈ ∆d. Let pi,j denote the j-th component of pi.
Input: A precision parameter ϵ > 0
Input: Distance is chosen as total variation 1

2∥ · ∥1
Output: A numerical approximation of the SKL centroid/Jeffreys centroid c
/* Arithmetic weighted mean (normalized) */

aj
0 = ∑n

i=1 wi pi,j for i ∈ {1, . . . , d} for j ∈ {1, . . . , d} ;
/* Normalized geometric weighted mean */

gj
0 =

∏n
i=1 p

wi
i,j

∑d
j=1 ∏n

i=1 p
wi
i,j

for j ∈ {1, . . . , d} ;

t← 0;
/* Iterate until close to convergence */
while ∥at − gt∥1 > 2ϵ do

/* Arithmetic mean */

ai
t+1 =

ai
t+gi

t
2 , ∀i ∈ {1, . . . , d}

/* Non-normalized geometric mean */

ui
t+1 =

√
ai

tg
i
t, ∀i ∈ {1, . . . , d}

/* Normalized geometric mean */

gi
t+1 =

ui
t+1

∑d
j=1 uj

t+1

, ∀i ∈ {1, . . . , d}

t← t + 1;
end
return a(t−1);

Figure 2 displays the arithmetic and normalized geometric and numerical Jeffreys,
Jeffreys–Fisher–Rao, and Gauss–Bregman centroids/centers for a set of 32 trinomial dis-
tributions. We may consider normalized intensity histograms of images (modeled as
multinomials with one trial) quantized with d = 256 bins; that is, a normalized histogram
with d bins is interpreted as a point in ∆d and visualized as a polyline with d − 1 line
segments. Figure 3 (left) displays the various centroids and centers obtained for an input
set consisting of two histograms (the commonly used Barbara and Lena images, which
have been used in [31]). Notice that the JFR center (purple) and GB center (yellow) are close
to the numerical Jeffreys centroid (green). We also provide a close-up window in Figure 3
(right).
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Figure 2. Visualizing the arithmetic and normalized geometric and numerical Jeffreys, Jeffreys–Fisher–
Rao, and Gauss–Bregman centroids/centers in red, blue, green, purple, and yellow, respectively.
(Left): input set consists of n = 2 trinomial distributions (black) with parameters chosen randomly.
(Right): input set consists of n = 32 trinomial distributions (black) with parameters ( 1

2 , 1
2 ) and

(0.99, 0.005, 0.005). The numerical Jeffreys centroid (green) is time consuming to calculate using
the Lambert W function. However, the Jeffreys centroid can be well approximated by either the
Jeffreys–Fisher–Rao center (purple) or the inductive Gauss–Bregman center (yellow). Point centers
are visualized with different radii in order to distinguish them easily.

Figure 3. (Left): Displaying the arithmetic and normalized geometric and numerical Jeffreys, Jeffreys–
Fisher–Rao, and Gauss–Bregman centroids/centers in red, blue, green, purple, and yellow, respec-
tively. Input sets are two normalized histograms with d = 256 bins plotted as polylines with 255 line
segments (black). Observe that the Jeffreys–Fisher–Rao center (purple) and Gauss–Bregman center
(yellow) approximates the Jeffreys centroid (green) well, which is more computationally expensive to
calculate. (Right): close-up window on the first left bins of normalized histograms.

Notice that we can experimentally check the quality of the approximation of the
Gauss–Bregman center to the Jeffreys centroid by defining the symmetrized Bregman
centroid energy:

EF(θ) := ⟨θ − θ̄,∇F(θ)⟩ − ⟨θ,∇F(θ̄)⟩,

and checking that ∇EF(θ):

∀i, ∂i

(
d

∑
i=1

(θi − θ̄i)∂iF(θ)− θi∂iF(θ̄)

)
= 0, (10)

∂iF(θ) + (θi − θ̄i)∂
2
i F(θ)− ∂iF(θ̄) +

(
∑
j ̸=i

(θj − θ̄j)∂i∂jF(θ)− ∂iθj∂jF(θ̄)

)
= 0 (11)

is close to zero, where ∂l := ∂
∂θl

.
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Next, we study these two new types of centers and how well they approximate the
Jeffreys centroid.

3. Gauss–Bregman Inductive Centers: Convergence Analysis and Properties

Let F(θ) be a strictly convex and differentiable real-valued function of Legendre
type [45] defined on an open parameter space Θ. Then, the gradient map θ 7→ η(θ) = ∇F(θ)
is a bijection with the reciprocal inverse function ] η 7→ θ(η) = ∇F∗(η) = (∇F)−1(η)
where F∗(η) = ⟨η,∇F−1(η)⟩ − F(∇F−1(η)) is the Legendre–Fenchel convex conjugate.
For example, we may consider the cumulant functions of regular exponential families.

We define the Gauss–Bregman center θGB of a set {θ1, . . . , θn} weighted by w ∈ ∆n as
the limits of the sequences θ̄1, . . . and θ1, . . . defined by

θ̄t+1 = A(θ̄t, θt) :=
θ̄t + θt

2
, (12)

θt+1 = m∇F(θ̄t, θt) := (∇F)−1
(
∇F(θ̄t) +∇F(θt)

2

)
, (13)

initialized with θ̄0 = θ̄ = ∑n
i=1 wiθi and θ0 = θ = ∇F−1(∑n

i=1 wi∇F(θi)). That is, we have

θGB = lim
n→∞

θ̄t = lim
n→∞

θt.

Such a center has been called an inductive mean by Sturm [30]. See [42] for an overview
of inductive means. Figure 4 geometrically illustrates the double sequence iterations
converging to the Gauss–Bregman mean.

θ̄0 =
∑n

i=1 wiθi

θ0 = ∇F−1 (
∑n

i=1 wi∇F (θi))

θ̄1 =
θ̄0+θ0

2

θ1 = (∇F )−1
(

∇F (θ̄0)+∇F (θ0)

2

)θGB
θ̄2

θ2

Θ

Figure 4. Geometric illustration of the double sequence inducing a Gauss–Bregman center in the limit.

Theorem 3. The Gauss–Bregman (A,∇F) center with respect to a Legendre type function F(θ) is
well defined (i.e., the double sequence converges) for separable Bregman generators.

Proof. We need to prove the convergence of {θ̄t} and {θt} to the same finite limit. When
F(θ) is univariate, the convergence of the inductive centers was reported in [43]. We need
to prove that the double iterations of Equation (13) and Equation (13) converge.

Let us consider the following cases:

1. When the dimension is one, the quasi-arithmetic mean m f ′ for f , a strictly convex and
differentiable function, lies between the minimal and maximal argument (i.e., this is
the definition of a strict mean):

min{θ1, θ2} ≤ m f ′(θ1, θ2) ≤ max{θ1, θ2}.

Thus, we have

|θ̄t+1 − θt+1| ≤
1
2
|θ̄t − θt|,

and it follows that |θ̄t+1 − θt+1| ≤ 1
2t |θ̄0 − θ0|. Thus, we have quadratic convergence

of scalar (A, f ′) means. See Figure 5.
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θ̄t θt

θ̄t+1 = A(θ̄t, θt) θt+1 = m∇F (θ̄t, θt)

|θ̄t+1 − θt+1| < 1
2 |θ̄t − θt|

θ̄t+1 θt+1

Figure 5. Illustration of the double sequence convergence for scalar Gauss–Bregman (A, m∇F) mean.

2. When F(θ) is multivariate and separable, i.e., F(θ) = ∑d
i=1 fi(θ

i) where θ = (θ1, . . . , θd)

are the components of θ ∈ Rd and the fis are scalar strictly convex and differentiable
functions, we can apply case 1 dimension-wise to obtain the quadratic convergence.

3. Otherwise, we consider the multivariate quasi-arithmetic center m∇F(θ, θ′) with the
uniform weight vector w = ( 1

2 , 1
2 ). One problem we face is that the quasi-arithmetic

center m∇F(θ, θ′) for θ ̸= θ′ may lie outside the open bounding box of Rd with
diagonal corners θ and θ′:

θm = (min{θ1, θ′
1}, . . . , min{θd, θ′

d}), θM = (max{θ1, θ′
1}, . . . , max{θd, θ′

d}).

Indeed, in the 2D case, we may consider θ = (x, y) and θ′ = (x′, y). Clearly, the open
bounding box is empty, and the midpoint m∇F(θ, θ′) lies outside this box. Yet, we are
interested in the convergence rate when θ′ ≈ θ.
In general, we shall measure the difference between two iterations by the squared
norm distance induced by the inner product:

∥A(θ, θ′)−m∇F(θ, θ′)∥2 = ⟨A(θ, θ′)−m∇F(θ, θ′), A(θ, θ′)−m∇F(θ, θ′)⟩.

Let mGB
F (θ1, θ2) denote the Gauss–Bregman center of θ1 and θ2, A(θ1, θ2) =

θ1+θ2
2 the

arithmetic mean, and m∇F(θ1, θ2) = (∇F)−1
(
∇F(θ1)+∇F(θ2)

2

)
the quasi-arithmetic center.

By construction, the Gauss–Bregman center enjoys the following invariance property
generalizing Lemma 17.4.4 of [29] in the case of the log det generator:

Property 1. We have mGB
F (θ1, θ2) = mGB

F (A(θ1, θ2), m∇F(θ1, θ2)).

Proof. Similar to the cascaded inequalities of Equation (8), we have

mGB
F (θ1, θ2) = mF

GB(A(θ1, θ2)︸ ︷︷ ︸
=:θ(1)1

, m∇F(θ1, θ2)︸ ︷︷ ︸
=θ

(1)
2

) = . . . (14)

In the limit t→ ∞, we have mGB
F (θ1, θ2) = mGB

F (θ
(∞)
1 , θ

(∞)
2 ) = mGB

F (θ
(∞−1)
1 , θ

(∞−1)
2 ) =

. . . Since ∞− 1 = ∞, we obtain the desired invariance property:

mGB
F (θ1, θ2) = mGB

F (A(θ1, θ2), m∇F(θ1, θ2)).

Note that when F(θ) is univariate, the Gauss–Bregman mean mGB
F (θ1, θ2) converges

at a quadratic rate [43]. In particular, when F(θ) = − log θ (Burg negentropy), we have
F′(θ) = − 1

θ (mF′ is the harmonic mean) and the Gauss–Bregman mean is the arithmetic–
harmonic mean (AHM) which converges to the geometric mean, a simple closed-form
formula. Notice that the geometric mean g =

√
xy of two scalars x > 0 and y > 0 can be

expressed using the arithmetic mean a = x+y
2 and the harmonic mean h = 2xy

x+y : g =
√

ah.

But when F(θ) = θ log θ − θ (Shannon negentropy), the Gauss–Bregman mean mGB
F (θ1, θ2)

coincides with the Gauss arithmetic–geometric mean [44] (AGM) since F′(θ) = log θ
and mF′(θ1, θ2) =

√
θ1θ2, the geometric mean. Thus, mGB

F (θ1, θ2) is related to the elliptic
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integral K of the first type [44]: there is no closed-form formula for the AGM in terms of
elementary functions as this induced mean is related to the complete elliptic integral of the
first kind K(·):

AGM(x, y) =
π

4
x + y

K
(

x−y
x+y

) , (15)

where K(u) =
∫ π

2
0

dθ√
1−u2 sin2(θ)

is the elliptic integral. Thus, it is difficult, in general,

to report a closed-form formula for the inductive Gauss–Bregman means even for univariate
generators F(θ).

The Jeffreys centroid of x > 0 and y > 0 with respect to the scalar Jeffreys divergence
DJ(p, q) = (p− q) log p

q admits a closed-form solution [31]:

c =
a

W0

(
a
g e
) (16)

where a = x+y
2 and g =

√
xy and W0 is the principal branch of the Lambert W function [33].

This example shows that the Gauss–Bregman center does not coincide with the Jeffreys
centroid in general (e.g., compare Equation (15) with Equation (16)).

4. Jeffreys–Fisher–Rao Centers: Generic Structural Formula and Some
Closed-Form Formula
4.1. Jeffreys–Fisher–Rao Center for Uni-Parametric Statistical Models

Consider a set P = {pθ1 , . . . , pθn} of n parametric distributions where θ ∈ Θ ⊂ R
is a scalar parameter. Let w = (w1, . . . , wn) ∈ ∆n be a weight vector on P such that the
weight of pθi is wi. The distributions pθs may not necessarily belong to an exponential
family (e.g., the Cauchy scale family). The Fisher–Rao geometry [46,47] of the parametric
family of distributions F = {pθ : θ ∈ Θ} (the statistical model) can be modeled as a
Riemannian manifold with the Fisher metric g(θ) = I(θ) defined by the Fisher information
I(θ) = Eθ [(log pθ(x))2] = −Eθ [∇2 log pθ(x)]. When F is an exponential family with the
cumulant function F(θ), we have I(θ) = F′′(θ).

The underlying geometry of (F , g(θ) = I(θ)) is Euclidean after a change in variable
η(θ) =

√
I(θ) since we can write the metric tensor as follows:

g(θ) =
√

I(θ) × 1︸︷︷︸
=gEuclidean

,×
√

I(θ).

Thus, the Riemannian Fisher–Rao distance is the Euclidean distance expressed in the
h(θ)-coordinate system with h(θ) =

∫ θ
θ0

√
I(u)du, and we have the Fisher–Rao distance

given by
ρ(pθ1 , pθ2) = |h(θ1)− h(θ2)|.

When F is an exponential family with the cumulant function f (θ), we have I(u) =
f ′′(u).

We summarize the result on the JFR center in the following theorem:

Theorem 4 (Jeffreys–Fisher–Rao centroid in uni-order exponential families). The Jeffreys–
Fisher–Rao centroid θS of n densities pθ1 , . . . , pθn of an exponential family of order one with the
log-normalizer f (θ) for θ ∈ Θ, the natural parameter space, and weight vector w ∈ ∆n is

θS = mh(θ̄, θ), (17)

where mh(θ̄, θ) = h−1
(

h(θ̄)+h(θ)
2

)
is the quasi-arithmetic mean [35] of the dual left and right KL

centroids θ̄ = ∑n
i=1 wiθi = θR and θ = ( f ′)−1(∑n

i=1 wi f ′(θi)) with respect to the scalar monotone
function h =

∫ θ
θ0

√
f ′′(u)du for any θ ∈ Θ.
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Proof. Since the Fisher information is I(θ) = f ′′(θ), we have h(θ) =
∫ θ

θ0

√
f ′′(u)du. The

Riemannian center of mass [48] minimizes

θS = arg min
θ

n

∑
i=1

wiρ
2(θi, θ).

But in the h-parameterization, the Riemannian centroid, amounts to a Euclidean center
of mass/centroid in the h-Cartesian coordinate system:

h(θS) =
n

∑
i=1

wih(θi).

Therefore, we have θS = h−1(∑i wih(θi)) =: mh(θ1, . . . , θn; w1, . . . , wn), a weighted
quasi-arithmetic mean. Since the Jeffreys centroid amounts to a symmetrized Bregman
centroid of the left and right Bregman centroids [28], θ = m f ′(θ1, . . . , θn; w1, . . . , wn) and
θ̄ = ∑i wiθi. It follows that the Jeffreys–Fisher–Rao center is θJFR = mh(θ̄, θ) after using
Property 3.

4.2. Jeffreys–Fisher–Rao Center for Categorical Distributions

Recall from Theorem 1 that the Jeffreys centroid c = (c1, . . . , cj, . . . , cd) of a set of n
categorical distributions with parameters arranged in the matrix [pi,j] is given by

cj(λ) =
aj

W0

( aj
gj

e1+λ
) , ∀j ∈ {1, . . . , d},

where aj = ∑n
i=1 wi pi,j and gj =

∏n
i=1 p

wi
i,j

∑d
j=1 ∏n

i=1 p
wi
i,j

are the components of the weighted arithmetic

and normalized geometric means, respectively, and W0 is the principal branch of the
Lambert W function [33]. The optimal λ ≤ 0 is unique and satisfies λ = −DKL(cj(λ) : g).

Let c(λ) = (c1(λ), . . . , cd(λ)). Let LJ(p) denote the Jeffreys loss function to minimize
to find the optimal Jeffreys centroid:

LJ(p) =
n

∑
i=1

wiDJ(pi, p) (18)

We say that p is a (1 + ϵ) approximation of the exact Jeffreys centroid c when we have

LJ(c) ≤ LJ(p) ≤ (1 + ϵ)LJ(c).

It was shown in [31] that c̃ = c(0), called the unnormalized Jeffreys center, yields a s(λ)− 1
approximation on c where s(λ) = ∑j cj(λ) ≤ 1.

Since the Fisher–Rao geodesic midpoints on the categorical Fisher–Rao manifold are
known in closed form [49], we give the mathematical expression of the JFR center as
follows:

Theorem 5 (JFR centroid of categorical distributions). Let Pw = {p1, . . . , pn} be a set of n
probability mass functions weighted by w ∈ ∆n with pi = (pi,1, . . . , pi,d) ∈ ∆d for i ∈ {1, . . . , n}
and w ∈ ∆n. Then, the JFR barycenter c minimizing is unique and given by the following formula:

cj =
(
√aj +

√gj)
2

2 (1 + ∑d
l=1
√aj
√gj)

, ∀j ∈ {1, . . . , d}, (19)

where a = (a1, . . . , ad) = ∑n
i=1 wi pi is the weighted arithmetic mean and g = (g1, . . . , gd) is the

normalized weighted geometric mean with components gj =
∏n

i=1 p
wi
i,j

∑d
j=1 ∏n

i=1 p
wi
i,j

for i ∈ {1, . . . , d}.
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Notice that the JFR center differs from the Jeffreys centroid, which requires the use of
the Lambert W function [33]. However, we noticed that for practical applications, the JFR
centroid approximates the Jeffreys centroid well and is much faster to compute (see the
experiments in Section 5).

4.3. Jeffreys–Fisher–Rao Center for Multivariate Normal Distributions

Let P = {pµ1,Σ1 , . . . , pµn ,Σn} be a set of n probability density functions (PDFs) of d-
variate normal distributions weighted by w ∈ ∆n, where the PDF of a multivariate normal
distribution of mean µ and the covariance matrix Σ is given by

pµ,Σ =
1

(2π)
d
2
√

det(Σ)
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

Let λi = (µi, Σi) be the ordinary parameterization of normal distributions pµi ,Σi . The
family F = {pµ,Σ(x) : µ ∈ Rd, Σ ∈ Sym++(R, d)} of multivariate normal distributions
forms an exponential family with the dual natural θ- and moment η-parameterizations [7]
given by

θ(λ) = (θv, θM) =

(
Σ−1µ,

1
2

Σ−1
)

,

η(λ) =
(

µ, µµ⊤ + Σ
)

,

when choosing the sufficient statistic t(x) = (x, xx⊤). The Jeffreys divergence between two
d-variate normal distributions N(µ1, Σ1) and N(µ2, Σ2) is given by the formula

DJ(pµ1,Σ1 , pµ2,Σ2) = (µ2 − µ1)⊤(Σ−1
1 + Σ−1

2 )(µ2 − µ1) + tr
(

Σ−1
1 Σ2 + Σ−1

2 Σ1

)
− 2d.

The left and right Kullback–Leibler barycenters amount to the corresponding right
and left Bregman barycenters [28] induced by the cumulant function

F(θ) = F(θv, θM) =
1
2

(
d log π − log det(θM) +

1
2

θ⊤v θ−1
M θv

)
,

and the gradient of F(θ) defines the dual moment parameter with

η(θ) = ∇F(θ) =
(

1
2

θ−1
M θv,

1
2

θ−1
M −

1
4
(θ−1

M θv)(θ
−1
M θv)

⊤
)

.

The reciprocal gradient is given by

θ(η) = θ(ηv, ηM) = (∇F)−1(η) =

(
θv = −(ηM + ηvη⊤v )−1ηv, θM = −1

2
(ηM + ηvη⊤v )−1

)
.

The Gauss–Bregman center is a (A, m∇F)-inductive center, which can be approximated
by carrying a prescribed number T of iterations of the Gauss–Bregman double sequence.

Although the Rao distance between two d-variate normal distributions is not available
in closed form when d > 1 [50,51], the Jeffreys–Fisher–Rao center can be computed in closed
form. Indeed, the sided Kullback–Leibler centroids of multivariate normal distributions
amount to reverse-sided Bregman centroids [28], and the Fisher–Rao geodesic midpoint
between two multivariate normal distributions was recently reported in [32]. Appendix C
concisely describes the method of Kobayashi [32], which allows one to obtain the Fisher–
Rao midpoints of multivariate normal distributions. An implementation of that algorithm
is available in the Python software library pyBregMan [52].

Thus, the Jeffreys–Fisher–Rao center is available in closed form:
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Theorem 6 (JFR center of MVNs). The Jeffreys–Fisher–Rao center of a finite set of weighted
multivariate normal distributions is available in closed form.

Note that the Fisher–Rao distance between normal distributions is invariant under
the action of the positive affine group [50], as are the Jeffreys centroid, the JFR center,
and the GB center. Figure 6 shows several examples of the JFR and GB centers of two
univariate normal distributions. We can observe that those centers are close to each other
although they are distinct when the normal distributions do not share the same means and
covariance matrices.

Figure 6. Visualization of the Jeffreys–Fisher–Rao center and Gauss–Bregman center of two univariate
normal distributions (black circle). The exponential geodesic and mixture geodesics are shown in red
and blue, respectively, with their corresponding midpoints. The Jeffreys–Fisher–Rao is the Fisher–Rao
midpoint (green) lying on the Fisher–Rao geodesics (purple). The inductive Gauss–Bregman center is
displayed in yellow with double size in order to ease its comparison with the Jeffreys–Fisher–Rao
center.

Figure 7 shows the various centroids/centers between two bivariate normal dis-
tributions displayed as ellipsoids centered as their means. Observe that the inductive
Gauss–Bregman center is visually closer than the Jeffreys–Fisher–Rao center to the Jef-
freys centroid.

Figure 8 displays the various centroids and centers for pairs of bivariate normal
distributions centered at the same mean. Figure 9 shows the centroids and centers for pairs
of bivariate normal distributions with the same covariance matrix.
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Figure 7. Centroids and centers between a pair of bivariate normal distributions (black). Each
normal distribution N(µ, Σ) (parameterized by a 5D parameter θ) is displayed as a 2D ellipsoid
E(µ, Σ) = {(x − µ)⊤Σ−1(x − µ) = l} for a prescribed level l > 0 in the sample space R2. Blue,
red, purple, yellow, and green ellipsoids correspond to m-geodesic midpoint, e-geodesic midpoint,
Jeffreys–Fisher–Rao midpoint, Gauss–Bregman inductive mean, and numerical Jeffreys centroid
(symmetrized Bregman centroid), respectively.

Figure 8. Centroids and centers between a pair of bivariate centered normal distributions (black).
Each normal distribution N(µ, Σ) with a prescribed µ (parameterized by a 3D parameter θ) is
displayed as a 2D ellipsoid. The red and blue ellipsoids correspond to the e-geodesic and m-geodesic
midpoints, respectively. The green ellipsoid is the exact Jeffreys centroid which coincide perfectly
with the inductive Gauss–Bregman center (yellow) and Jeffreys–Fisher–Rao center (purple). Thus
these three green, yellow, and purple matching ellipsoids are rendered superposed in an overall
shade of brown.
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Figure 9. Centroids and centers between a pair of bivariate-centered normal distributions (black).
Each normal distribution N(µ, Σ) with a prescribed covariance matrix Σ (parameterized by a 2D
parameter θ) is displayed as a 2D ellipsoid. The red and blue ellipsoids correspond to the e-geodesic
and m-geodesic midpoints, respectively. The inductive Gauss–Bregman (yellow) and Jeffreys–Fisher–
Rao center (purple) do not coincide.

Remark 1. In general, an exponential family may be characterized equivalently by two convex
functions: (1) its log-normalizer F(θ) or (2) its partition function Z(θ) = exp(F(θ)), which is
log-convex and hence also convex [53]. It has been shown that the Bregman divergence BZ for
Z =

√
det(θ) (convex) corresponds to the reverse extended Kullback–Leibler divergence between

unnormalized PDFs of normal distributions:

BZ(θ1 : θ2) = D+
KL( p̃λ(θ2)

: p̃λ(θ1)
),

where p̃µ,Σ = exp
(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)

and the extended KLD between two positive mea-
sures is given by

D+
KL(m1 : m2) =

∫ (
m1(x) log

m1(x)
m2(x)

+ m2(x)−m1(x)
)

dµ(x).

Remark 2. We may further define yet another center for multivariate normal distributions
by considering the Fisher–Rao isometric embedding of the Fisher–Rao d-variate normal man-
ifold M = {pµ,Σ} into the Fisher–Rao (d + 1)-variate centered manifold N+

0 = {qP(y) =

p0,P(y) : P ∈ Sym++(R, d + 1)} using Calvo and Oller mapping [50]:
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f (µ, Σ) :=
[

Σ + µµ⊤ µ

µ⊤ 1

]
.

Let M̄ = { f (p) : p ∈ M} denote the embedded submanifold of codimension one in N+
0 .

The Calvo–Oller center is then defined by taking the Fisher–Rao midpoints qCO of qP1 and qP2 ,
projecting qCO onto M̄ as q′CO and converting q′CO into pCO ∈ M using the inverse mapping
f−1 [51].

The Fisher orthogonal projection of a (d + 1)× (d + 1) matrix P ∈ N+
0 onto the submanifold

M̄ is performed as follows: Let β = Pd+1,d+1 and write P =

[
Σ + βµµ⊤ βµ

βµ⊤ β

]
. Then, the

orthogonal projection at P ∈ P onto M̄ is
[

Σ + µµ⊤ µ⊤

µ 1

]
. See [51] for details of the Calvo

and Oller embedding/projection method.

5. Experiments

We run all experiments on a Dell Inspiron 5502 Core i7-116567@2.8Ghz using compiled
Java programs. For each experiment, we consider a set of n = 2 uniformly randomized
histograms with d bins (i.e., points in ∆d) and calculate the numerical Jeffreys centroid,
which requires the time-consuming Lambert W function, the GB center, and the JFR center.
For each prescribed value of d, we run 10000 experiments to collect various statistics like
the average and maximum approximations and running times. The approximations of the
JFR and GB methods are calculated either as the approximation of the Jeffreys information
(Equation (18)) or as the approximation of the centers with respect to the numerical Jeffreys
centroids measured using the total variation distance. Table 1 is a verbatim export of our
experimental results when we range the dimension of histograms for d = 2 to d = 256
by doubling the dimension at each round. The inductive GB center is stopped when the
total variation 1

2∥at − gt∥1 ≤ 10−8.
We observe that the JFR center is faster to compute than the GB center but the GB

center is of higher quality (i.e., a better approximation with a lower ϵ) than the JFR center
to approximate the numerical Jeffreys centroid.

Another test consists of choosing d = 3 and the following two 3D normalized his-
tograms: ( 1

3 , 1
3 , 1

3 ) and (1− α, α/2, α/2) for α ∈ {10−1, 10−2, . . . , 10−7, 10−8}. Table 2 reports
the experiments. The objective is to find a setting where both the JFR and GB centers are
distinguished from the Jeffreys centroid. We see that as we decrease α, the approximation
factor ϵ gets worse for both the JFR center and the GB center. The JFR center is often faster
to compute than the GB inductive center, but the approximation of the GB center is better
than the JFR approximation.

Finally, we implemented the Gauss–Bregman and Jeffreys–Fisher–Rao centers and
Jeffreys centroid using multi-precision arithmetic. We report the following experiments
using 200-digit precision arithmetic for the following input of two normalized histograms:
p = (0.1, 0.9) and q = (0.8, 0.2). We report the various first 17-digit mantissas obtained
with the corresponding Jeffreys information:

• Jeffreys center: (0.42490383904214813, 0.575096160957851866)
Jeffreys information: 1.2490723231955352.

• Gauss–Bregman center: (0.42490383904276856, 0.575096160957231439)
Jeffreys information: 1.2490723231955353.

• Jeffreys–Fisher–Rao center: (0.42490390202906282, 0.575096097970937175)
Jeffreys information: 1.2490723232068266.

The total variation distance between the Jeffreys centroid and the Gauss–Bregman
center is 6.204271148284087422350000686372 10−13.

The total variation distance between the Jeffreys centroid and the Jeffreys–Fisher–Rao
center is 6.298691469047911984039363762611 10−8.
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Table 1. Experiments for JFR and GB centers approximating the numerical Jeffreys centroid.

dim. Jeffreys–Fisher–Rao Center Gauss–Bregman Center
Avg Info ϵ Max Info ϵ Avg TV Max TV Avg Time × speed Avg Info ϵ Max Info ϵ Avg TV Max TV Avg Time × Speed

d = 2 5.662 × 10−6 6.386 × 10−3 8.735 × 10−5 5.005 × 10−2 1.614 × 10−7 82.541 1.507 × 10−4 9.745 × 10−2 6.304 × 10−4 5.005 × 10−2 5.072 × 10−7 26.258
d = 4 1.283 × 10−5 5.294 × 10−3 1.690 × 10−4 3.969 × 10−2 1.418 × 10−7 182.309 4.696 × 10−4 7.695 × 10−2 1.431 × 10−3 3.969 × 10−2 1.623 × 10−7 159.304
d = 8 2.766 × 10−5 6.970 × 10−3 2.210 × 10−4 3.470 × 10−2 1.772 × 10−7 292.125 1.011 × 10−3 9.677 × 10−2 2.033 × 10−3 3.470 × 10−2 1.955 × 10−7 264.680
d = 16 3.531 × 10−5 8.544 × 10−3 2.325 × 10−4 2.450 × 10−2 6.318 × 10−7 224.370 1.388 × 10−3 9.231 × 10−2 2.275 × 10−3 2.450 × 10−2 7.208 × 10−7 196.660
d = 32 4.123 × 10−5 5.242 × 10−3 2.457 × 10−4 1.230 × 10−2 4.811 × 10−7 462.754 1.674 × 10−3 5.398 × 10−2 2.449 × 10−3 1.230 × 10−2 5.457 × 10−7 408.007
d = 64 4.747 × 10−5 3.437 × 10−3 2.486 × 10−4 9.756 × 10−3 9.789 × 10−7 578.354 1.863 × 10−3 3.685 × 10−2 2.498 × 10−3 9.756 × 10−3 1.160 × 10−6 488.246
d = 128 5.020 × 10−5 2.540 × 10−3 2.491 × 10−4 6.580 × 10−3 5.874 × 10−6 477.412 1.937 × 10−3 2.374 × 10−2 2.522 × 10−3 6.580 × 10−3 6.605 × 10−6 424.609
d = 256 4.735 × 10−5 1.410 × 10−3 2.476 × 10−4 4.855 × 10−3 9.349 × 10−6 528.452 1.914 × 10−3 1.521 × 10−2 2.529 × 10−3 4.855 × 10−3 1.110 × 10−5 445.304

Table 2. Experiments for JFR and GB centers approximating the numerical Jeffreys centroid for the following setting of two normalized histograms of 3 bins: ( 1
3 , 1

3 , 1
3 )

and (1− α, α/2, α/2).

α Info. ϵ TV ϵ Avg Time × Speed Info. ϵ TV ϵ Avg Time × Speed

1.000 × 10−1 6.882 × 10−9 2.495 × 10−5 1.767 × 10−7 125.960 1.338 × 10−6 3.480 × 10−4 2.334 × 10−7 95.356
1.000 × 10−2 2.607 × 10−5 1.722 × 10−3 1.371 × 10−7 167.932 1.061 × 10−3 1.108 × 10−2 1.565 × 10−7 147.104
1.000 × 10−3 6.262 × 10−4 7.530 × 10−3 1.033 × 10−7 218.450 1.272 × 10−2 3.534 × 10−2 1.208 × 10−7 186.698
1.000 × 10−4 3.632 × 10−3 1.570 × 10−2 1.171 × 10−7 193.345 4.580 × 10−2 6.065 × 10−2 1.367 × 10−7 165.571
1.000 × 10−5 1.121 × 10−2 2.419 × 10−2 1.546 × 10−7 150.807 7.322 × 10−3 1.929 × 10−2 2.834 × 10−7 82.261
1.000 × 10−6 2.457 × 10−2 3.204 × 10−2 1.619 × 10−7 141.896 1.655 × 10−2 2.579 × 10−2 2.512 × 10−7 91.467
1.000 × 10−7 4.375 × 10−2 3.897 × 10−2 1.357 × 10−7 170.065 3.065 × 10−2 3.183 × 10−2 2.131 × 10−7 108.314
1.000 × 10−8 6.806 × 10−2 4.492 × 10−2 1.315 × 10−7 173.698 4.948 × 10−2 3.725 × 10−2 2.017 × 10−7 113.292
1.000 × 10−9 9.651 × 10−2 4.999 × 10−2 1.125 × 10−7 208.627 7.240 × 10−2 4.199 × 10−2 1.590 × 10−7 147.610
1.000 × 10−10 1.281 × 10−1 5.428 × 10−2 8.366 × 10−8 242.967 9.862 × 10−2 4.610 × 10−2 1.111 × 10−7 183.000
1.000 × 10−11 1.621 × 10−1 5.792 × 10−2 1.066 × 10−7 215.817 1.274 × 10−1 4.963 × 10−2 1.325 × 10−7 173.614
1.000 × 10−12 1.979 × 10−1 6.100 × 10−2 1.028 × 10−7 229.484 1.580 × 10−1 5.266 × 10−2 1.329 × 10−7 177.581
1.000 × 10−13 2.348 × 10−1 6.363 × 10−2 9.541 × 10−8 244.587 1.901 × 10−1 5.526 × 10−2 1.255 × 10−7 185.940
1.000 × 10−14 2.727 × 10−1 6.589 × 10−2 1.062 × 10−7 219.787 2.231 × 10−1 5.750 × 10−2 1.361 × 10−7 171.456
1.000 × 10−15 3.112 × 10−1 6.784 × 10−2 9.043 × 10−8 248.688 2.570 × 10−1 5.943 × 10−2 1.322 × 10−7 170.122
1.000 × 10−16 3.483 × 10−1 6.946 × 10−2 8.857 × 10−8 267.219 2.897 × 10−1 6.105 × 10−2 1.438 × 10−7 164.535
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The total variation distance between the Gauss–Bregman center and the Jeffreys–
Fisher–Rao center is 6.298629426336429143165140262604 10−8.

Although all those points are close to each other, they are all distinct points (note that
using the limited precision of the IEEE 754 floating point standard may yield a misleading
interpretation of experiments).

6. Conclusions and Discussion

In this work, we considered the Jeffreys centroid of a finite weighted set of densities of
a given exponential family E = {pθ(x) : θ ∈ Θ}. This Jeffreys centroid amounts to a sym-
metrized Bregman centroid on the corresponding weighted set of natural parameters of the
densities [28]. In general, the Jeffreys centroids do not admit closed-form formulas [28,31]
except for sets of same-mean normal distributions [29] (see Appendix B).

In this paper, we interpreted the closed-form formula for same-mean multivariate
normal distributions in two different ways:

• First, as the Fisher–Rao geodesic midpoint of the sided Kullback–Leibler centroids.
This interpretation lets us relax the midpoint definition to arbitrary exponential fami-
lies to define the Jeffreys–Fisher–Rao center (the JFR center of Definition 2);

• Second, as an inductive (A, m∇F) center using a multivariate Gauss-type double se-
quence, which converges to the Gauss–Bregman center (the GB center of Definition 3).
The latter definition yields an extension of Nakamura’s arithmetic–harmonic (A, H)
mean [41] to an arbitrary (A, m∇F) mean for which we proved convergence under
a separability condition in Theorem 3. Convergence proof remains to be performed
in the general case, although we noticed in practice convergence when ∇F(θ) is the
moment parameter of categorical or multivariate normal distributions.

In general, the Jeffreys, JFR, and GB centers differ from each other (e.g., the case of
categorical distributions). But for sets of same-mean normal distributions, they remarkably
coincide altogether: namely, this was the point of departure of this research. We reported
generic or closed-form formulas for the JFR centers of (a) uni-order parametric families
in Section 4.1 (Theorem 4), (b) categorical families in Section 4.2 (Theorem 5), and (c)
multivariate normal families in Section 4.3 (Theorem 6). Table 3 summarizes the new
results obtained in this paper and states references of prior work. Notice that in practice,
we approximate the Gauss–Bregman center by prescribing a number of iterations T ∈ N for
the Gauss–Bregman double sequence to obtain m(T)

GB . Prescribing the number of GB center

iterations T allows us to tune the time complexity of computing m(T)
GB while adjusting the

quality of the approximation of the Jeffreys centroid.

Table 3. Summary of the results: △ indicates a generic formula,
√

a closed-form formula, and
× no-known formula.

Family Jeffreys Jeffreys–Fisher–
Rao

Gauss–
Bregman

Exponential family Equation (2) Definition 2 Definition 3

One-dimensional exponential family × △ ×
Theorem 4 [43]

Categorical family △
√

×
[31] Theorem 5 Theorem 3

Normal family ×
√

×
[28] Theorem 6 Theorem 3

Centered normal family
√ √ √

[29] [29] [41]

In applications requiring the Jeffreys centroid, we thus propose to either use the
fast Jeffreys–Fisher–Rao center when a closed-form formula is available for the family of
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distributions at hand or use the Gauss–Bregman center approximation with a prescribed
number of iterations as a drop-in replacement of the numerical Jeffreys centroids while
keeping the Jeffreys divergence (the centers we defined are not centroids as we do not
exhibit distances from which they are population minimizers).

More generally, let us rephrase the results in a purely geometric setting using the
framework of information geometry [14]: let P1, . . . , Pn be a set of n points weighted
by a vector w ∈ ∆n on an m-dimensional dually flat space (M, g,∇,∇∗) with the ∇-
affine coordinate system θ(·) and dual ∇∗-affine coordinate system η(·), where ∇ and
∇∗ are two torsion-free dual affine connections. The Riemannian metric g is a Hessian
metric [54], which may be expressed in the θ-coordinate system as g(θ) = ∇2F(θ) or in
the dual coordinate system as g(η) = ∇2F∗(η), where F(θ) and F∗(η) are dual convex
potential functions related by the Legendre–Fenchel transform [14,54]. Let ηi = ∇F(θi) and
θi = ∇F∗(ηi) be the coordinates of point Pi in the η- and θ-coordinate systems, respectively.
An arbitrary point P can be either referenced in the θ-coordinate system (P = Pθ) or in
the η-coordinate system (P = Pη). Then, the Jeffreys–Fisher–Rao center is defined as the
midpoint with respect to the Levi-Civita connection ∇̄ = ∇+∇∗

2 = ∇g of g:

CJFR := γ∇̄(Cθ̄ , Cθ ,
1
2
) =: Cθ̄#Cθ . (20)

The point Cθ̄ is the centroid with respect to the canonical flat divergence D(P : Q) =
F(θ(P)) + F∗(η(Q)) − ∑m

i=1 θi(P)ηi(Q), and the point Cθ is the centroid with respect to
the dual canonical flat divergence D∗(P : Q) := D(Q : P). The canonical divergence
is expressed using the mixed coordinates θ/η but can also be expressed using the θ-
coordinates as an equivalent Bregman divergence D(P : Q) = BF(θ(P) : θ(Q)) or as
a reverse dual Bregman divergence D(P : Q) = BF∗(η(Q) : η(P)). This JFR center
CJFR approximates the symmetrized centroid with respect to the canonical symmetrized
divergence S(P, Q) = D(P : Q) +D(Q : P) (i.e., Jeffreys divergence when written using
the θ-coordinate system). This symmetrized divergence S(P, Q) can be interpreted as
the energy of the Riemannian length element ds along the primal geodesic γ(t) and dual
geodesic γ∗(t) (with γ(0) = γ∗(0) = P and γ(1) = γ∗(1) = Q), see [14]: S(P, Q) =∫ 1

0 ds2(γ(t))dt =
∫ 1

0 ds2(γ∗(t))dt. The Riemannian distance ρ(P, Q) corresponds to the
Riemannian length element along the Riemannian geodesic γ̄(t) induced by the Levi-Civita
connection ∇̄ = ∇+∇∗

2 : ρ(P, Q) =
∫ 1

0 ds(γ̄(t))dt.
The inductive Gauss–Bregman center CGB is obtained as a limit sequence of taking

iteratively the ∇midpoints and ∇∗ midpoints with respect to the ∇ and ∇∗ connections.
Those midpoints correspond to the right and left centroids Ct+1 and C∗t+1 with respect to
D(· : ·):

Ct+1 = γ∇

(
Ct, C∗t ,

1
2

)
,

C∗t+1 = γ∇∗

(
Ct, C∗t ,

1
2

)
,

initialized with θ(C0) = ∑n
i=1 wiθ(Pi) and η(C∗0) = ∑n

i=1 wiη(Pi). We have C0 = arg minC∈M
∑i wiD(Pi : C) and C∗0 = arg minC∈M ∑i wiD(Pi : C). Figure 10 geometrically illustrates
the double sequence of iteratively taking dual geodesic midpoints to converge toward
the Gauss–Bregman center CGB. Thus, the GB double sequence can be interpreted as a
geometric optimization technique. Figure 11 illustrates the JFR and GB centers on a dually
flat space. Notice that CJFR has coordinates JFRF(Pθ ; w) in the θ-chart and coordinates
JFRF∗(Pη ; w) in the η-chart. Similarly, CGB has coordinates GBF(θ̄, θ) in the θ-chart and
coordinates GBF∗(η̄, η) in the η-chart.
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θ(C̄0) =
∑n

i=1 wiθ(Pi)

η(C0) =
∑n

i=1 wiη(Pi)

C̄1 = γ∇(C̄0, C0,
1
2 )

C1 = γ∇∗(C̄0, C0,
1
2 )

(M, g,∇,∇∗)

CGBC̄2 = γ∇(C̄1, C1
, 1
2 )

C
2
= γ∇∗ (C̄1, C1

, 1
2 )

Figure 10. Illustration on a dually flat space of the double sequence inducing a Gauss–Bregman
center in the limit.

Pi

CR

CL
CJFR

CGB

Θ H

θi

θR = θ̄
θL = θ

θJFR

θGB

ηi

ηR = η

ηL = η̄ηJFR

ηGB

Dually flat space

Primal coordinate systemθ(·) Dual coordinate system η(·)

γ(CL, CR)

Figure 11. Illustration of the Jeffreys–Fisher–Rao and Gauss–Bregman centers a dually flat space. γ

denotes the Riemannian geodesic.

As a final remark, let us emphasize that choosing a proper mean or center depends on
the application at hand [55,56]. For example, in Bayesian hypothesis testing, the Chernoff
mean [57] is used to upper bound Bayes’ error and has been widely used in information fu-
sion [18] for its empirical robustness [58] in practice. Jeffreys centroid has been successfully
used in information retrieval tasks [6].
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Appendix A. Numerical Jeffreys Centroids for Categorical Distributions

Algorithm A1 implements the method described in [31] for numerically finely approx-
imating the Jeffreys centroid of a weighted set of categorical distributions.
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Algorithm A1: Numerical approximation of the SKL/Jeffreys centroid for cate-
gorical distributions.

Input: A set of weighted categorical distributions: Pw = {p1, . . . , pn} with
w ∈ ∆n and pi ∈ ∆d. Let pi,j denote the j-th component of pi.

Input: A precision parameter ϵ > 0
Output: A numerical approximation of the SKL centroid/Jeffreys centroid c
/* Arithmetic weighted mean (normalized) */
aj = ∑n

i=1 wi pi,j for i ∈ {1, . . . , d} for j ∈ {1, . . . , d} ;
/* Normalized geometric weighted mean */

gj =
∏n

i=1 p
wi
i,j

∑d
j=1 ∏n

i=1 p
wi
i,j

for j ∈ {1, . . . , d} ;

/* Initialize range where to find the optimal λ∗ */
λM = 0; λm = maxi∈{1,...,n}{ai + log gi} − 1 ;
/* Bisection search */
while |λM − λm| > ϵ do

λ = λm+λM
2 ;

/* W0 is the principal branch of Lambert W function */
cj(λ) =

aj

W0

(
aj
gj

e1+λ

) for i ∈ {1, . . . , d} ;

/* calculate the mass of c(λ) */
s(λ) = ∑d

j=1 cj;
if s(λ) > 1 then

/* Consider next range [λ, λM] */
lm = λ ;

else
/* Consider next range [λm, λ] */
λM = λ ;

end
end
λ = λm+λM

2 ;
cj(λ) =

aj

W0

(
aj
gj

e1+λ

) for i ∈ {1, . . . , d} ;

return c(λ);

Appendix B. Closed-Form Formula for the Symmetrized Log Det Centroids

Consider a set P = {P1, . . . , Pn} of n symmetric positive-definite matrices of the d-
dimensional SPD cone Sym++(d,R) weighted by a vector w = (w1, . . . , wn) ∈ ∆◦n such
that Pi has weight wi for i ∈ {1, . . . , n}. The log det divergence [59] is a Bregman diver-
gence induced by the strictly convex and differential generator Fld(X) = − log det(X) on
Sym++(d,R) equipped with the inner product ⟨X, Y⟩ = tr(XY) for X, Y ∈ Sym(d,R):

Dld(X : Y) = BFld(X : Y) = F(X)− F(Y)− ⟨X−Y,∇Fld(Y)⟩. (A1)

Since we have∇Fld(X) = −∇ log det(X) = −∇det(X)
det(X)

= −(X−1)⊤ (hence∇Fld(X) =

−X−1 for symmetric matrices), it follows that the log det divergence is

Dld(X : Y) = log det(YX−1) + tr((X−Y)Y−1),

= tr(XY−1)− log det(XY−1)− d,
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using the properties that det(X)det(Y) = det(XY), det(X−1) = 1
det(X)

, and tr(I) = d
where I denotes the d × d identity matrix. When d = 1, we recover the Itakura–Saito
divergence [45] obtained for FIS(x) = − log x (Burg negative entropy) with F′IS(x) = − 1

x :

DIS(x : y) = BFIS(x : y) =
x
y
− log

x
y
− 1, x, y > 0.

The log det divergence is known in statistics as Stein’s loss [37,38] and has been used
for estimating covariance matrices. The log det divergence Sld satisfies the following
invariance properties:

• Inversion invariance: Sld(X−1, Y−1) = Sld(X, Y);
• Congruence invariance: for any invertible matrix A ∈ GL(d), we have

Sld(AXA⊤, AY−1 A⊤) = Sld(X, Y).

The Jeffreys’ symmetrized log det divergence (SLD) is thus

Sld(X, Y) = Dld(X : Y) + Dld(Y : X) = tr
((

Y−1 − X−1)(X−Y
))

, (A2)

= tr
(

X−1Y + Y−1X− 2I
)

. (A3)

When d = 1, the SLD corresponds to the COSH distance [60] (COSine Hyperbolic
distance, the symmetrized Itakura–Saito divergence) when d = 1:

DCOSH(x : y) =
(

y
x
− 1

x

)
=

x
y
+

y
x
− 2.

Consider a family Nµ =
{

pµ,Σ1 , . . . , pµ,Σn

}
of n multivariate normal distributions

centered at the same mean µ ∈ Rd with covariance matrices Σ1, . . . , Σn. The set of same-
mean normal distributions forms an exponential family with the natural parameter θ = Σ−1

(the precision matrix) corresponding to the sufficient statistics t(x) = − 1
2 xx⊤, and the log-

normalizer F(θ) = − 1
2 log det(θ). Thus, the Kullback–Leibler divergence between pµ,Σi

and pµ,Σj corresponds to a log det divergence [16]:

DKL[pµ,Σi , pµ,Σj ] = BF(θj : θi) = Dld(Σ
−1
j : Σ−1

i ),

and therefore the Jeffreys divergence DJ[pµ,Σi , pµ,Σj ] corresponds to the matrix COSH/
symetrized log-det divergence:

DJ [pµ,Σi , pµ,Σj ] = Sld(Σ
−1
i , Σ−1

j ) = tr
((

Σ−1
i − Σ−1

j )(Σj − Σi

))
. (A4)

The left KL centroid corresponds to a right Bregman centroid on the natural parameters
(the center of mass of the natural parameters), which corresponds to a weighted matrix
harmonic mean on the covariance matrices:

CKL
L = CBF

R =

(
n

∑
i=1

wiΣ−1
i

)−1

.

The right KL centroid is a left Bregman centroid (i.e., a quasi-arithmetic mean for
h(X) = −X−1 with h−1(Y) = −Y−1) which corresponds to the inverse of the weighted
arithmetic mean on the covariance matrices:

CKL
R = CBF

L =

(
n

∑
i=1

wiΣi

)−1

.

We state the remarkable case of the closed-form formula for the symmetrized Bregman
logdet centroid:
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Proposition A1 ([29]). The symmetrized log det centroid of a set Pw = {(wi, Pi)} of n weighted

positive-definite matrices is A#H where A = ∑i wiPi and H =
(

∑i wiP−1
i

)−1
are the weighted

arithmetic and harmonic means and A#B is the matrix geometric mean.

Since the proof was only briefly sketched in [29], we report a full-length proof for the
sake of completeness:

Proof. We have
min

X
∑

i
wiSld(X, Pi) ≡ min

X
tr
(

X−1 A + H−1X
)

.

Setting the gradient of the right-hand-side term to zero using matrix calculus [61] yields

∇Xtr
(

X−1 A + H−1X
)
= tr

(
∇X(X−1 A + H−1X)

)
= 0.

Using the matrix calculus property that ∇(M−1) = −M−1(∇M)M−1 for M = X−1 A,
we obtain

X−1 AX−1 − H−1 = 0.

That is, we need to solve the following Ricatti equation:

X−1 AX−1 = H−1.

The well-known Ricatti equation XA−1X = B solves [40] as X = A#B, and therefore
we obtain

X−1 = A−1#H−1.

Finally, we use the invariance property of the geometric mean under matrix inversion,
A−1#H−1 = A#H, to obtain the result Cld

S = A#H.

The Riemannian Hessian metric g(θ) induced by F(θ) = − 1
2 log det(θ) is

gθ(S1, S2) = tr
(

θ−1S1θ−1S2

)
,

where S1 and S2 are two symmetric matrices of the tangent space Tθ at θ. The metric tensor
g is commonly called the trace metric or Affine-Invariant Riemannian Metric (AIRM) [62].

It follows that the Riemannian geodesic midpoint is the matrix geometric mean [63]
given by

X#Y = X
1
2 (X−

1
2 Y X−

1
2 )

1
2 X

1
2 .

We have ρ(X, X#Y) = ρ(X#Y, Y), where ρ(·, ·) denotes the geodesic length distance
on the Riemannian manifold. The geodesic length is given by the following formula [64,65]:

ρ(P1, P2) =

∥∥∥∥log
(

P−
1
2

1 P2 P−
1
2

1

)∥∥∥∥
F
=

√√√√ d

∑
i=1

log2 λi

(
P−

1
2

1 P2 P−
1
2

1

)
,

where the λi(X)s are the generalized eigenvalues of X.
We state the theorem geometrically characterizing the Jeffreys centroid of a weighted

set of centered multivariate normal distributions.

Theorem A1 (The Jeffreys centroid of n weighted centered multivariate normal distribu-
tions). The Jeffreys centroid CS of a weighted set {pµ,Σi} of centered normal distributions N(µ, Σi)
with a weighted w ∈ ∆n corresponds to the midpoint of the Fisher–Rao geodesic linking the left and
right SKL centroids:

CS =

(
n

∑
i=1

wiΣi

)
#

(
n

∑
i=1

wiΣ−1
i

)−1

, (A5)
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where X#Y is the geometric matrix mean:

X#Y = X
1
2 (X−

1
2 Y X−

1
2 )

1
2 X

1
2 .

This result first appeared in [29] (Lemma 17.4.3, item 3) and also appeared in an
indirect but more general form in [66] (Theorem 5.3). Indeed, in [66], the authors define the
regularized symmetric log det divergence as follows:

Sϵ
ld(X, Y) = tr

(
(X−Y)

(
(Y + ϵI)−1 − (X + ϵI)−1

))
, ϵ > 0.

This extended definition of the symmetrized logdet divergence allows one to consider
degenerate semi-positive definite matrices.

Appendix C. Fisher–Rao Midpoint for Multivariate Normal Distributions

The expression of the Fisher–Rao geodesics for multivariate normal distributions
(MVNs) passing through two given d-variate normal distributions was elucidated in [32].
We give below the method for finding those Fisher–Rao MVN midpoints without the
underlying geometric explanation that relies on a Riemannian submersion in dimension
2d + 1 [32]. The Python software library pyBregMan [52] provides an implementation of
those Fisher–Rao MVN midpoints.

Fisher–Rao geodesic midpoint N = N(µ, Σ) of N0 = N(µ0, Σ0) and N1 = N(µ1, Σ1)

• For i ∈ {0, 1}, let G0 = M0 D0 M⊤0 and G1 = M1 D1 M⊤1 , where

D0 =

 Σ−1
0 0 0

0 1 0
0 0 Σ0

,

M0 =

 Id 0 0
µ⊤0 1 0
0 −µ0 Id

,

D1 =

 Σ−1
1 0 0

0 1 0
0 0 Σ1

,

M1 =

 Id 0 0
µ⊤1 1 0
0 −µ1 Id

,

where Id denotes the identity matrix of shape d× d. That is, matrices G0 and
G1 ∈ Sym+(2d + 1,R) can be expressed by block Cholesky factorizations.

• Consider the Riemannian geodesic midpoint G in Sym+(2d + 1,R) with respect to the trace
metric:

G = G
1
2
0

(
G−

1
2

0 G1G−
1
2

0

) 1
2

G
1
2
0 .

In order to compute the matrix power Gp for p ∈ R, we first calculate the Singular Value
Decomposition (SVD) of G: G = O L O⊤ (where O is an orthogonal matrix and
L = diag(λ1, . . . , λ2d+1) a diagonal matrix) and then obtain the matrix power as
Gp = O Lp O⊤ with Lp = diag(λp

1 , . . . , λ
p
2d+1).
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• Retrieve N = N(µ, Σ) from matrix G:

Σ = [G]−1
1:d,1:d,

µ = Σ [G]1:d,d+1,

where [G]1:d,1:d denotes the block matrix with rows and columns ranging from one to d
extracted from the (2d + 1)× (2d + 1) matrix G, and [G]1:d,d+1 is similarly the column
vector of Rd extracted from G.
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