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Abstract 

We give an output-sensitive algorithm to compute the first k convex or maximal layers in 0( n log I&) -time where Hk is 
the number of points participating in the first k layers. Computing only the first k layers is interesting in various problems 
that arise in computational geometry (k-sets and dually k-levels, k-hulls and dually k-belts), pattern recognition, statistics, 
operations research, etc. 
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1. Introduction and notations 

Let S be a set of n planar points and C(S) its 
first layer, i.e. a subset of S. Let St = S and Si+r = 
&\L( &) for integer i > 1. The layers of S are defined 
by the following ordered sequence: L( St ) , . . ., .L( Sl) 
where I is the first integer such that Sl+r = 8. We 
successively investigate the case where L(S) is the set 
V(S) of points of S on the boundary of the convex hull 

C’FI( S) (Section 2, Fig. 1) and the maxima M (S) of 
S (Section 3). Let hi = j&l and Hi = ‘&, hj denote 
respectively the number of points of L(&) and the 
number of points participating in the < i-layers. Let 
Hc=O.WehaveHi=Hi-t+hifori> l.Weassume 
in the sequel that S is in general position, i.e., all the 
points are distinct and no three points are colinear. 
Notice that in that case Hk > min{3k,n}. For a set 
of n points in the euclidean plane lE*, the algorithms 
have running time 0( n log Hk) using linear storage. 

’ Email: franck.nielsen@sophia.inria.fr. 

Computing the first k convex layers of a planar point 

set has numerous applications [ 181 and is also used as 
a first step when one computes k-hulls [ 41 (or dually 
k-belts [ 51) or k-sets (or dually k-levels [ 61). A k- 
set of S is a set S n H of size k for some halfspace H. 
For any set S of points, the k-hull of S is the set of 
points p such that for any line passing through p there 
are at least k < [n/2] points in each closed halfspace. 
It follows from the definition that the k-hull contains 

the set of points Sk. k-hulls are also used in statistics 
to measure the interiomess of a given set. Using our 
output-sensitive algorithm (Section 2) for computing 
the first k layers, we obtain an 0( n log Hk + (Hk + 
fk) log* k)-time algorithm for computing the k-hull 
of a n-point set where fk is the size of the k-hull and 
Hk is the size of the first k convex layers (the previous 
algorithm of [4] has running time O(n logn + (n + 

fk) log*k)). 
As already noticed by Everett et al. [ 63 in their algo- 

rithm for computing the < k-levels: ‘I... we can remove 
all layers deeper than kfrom consideration . ..“. so that 
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Fig. 1. The first three layers of a set of 60 planar points. 

we can replace their 0( n log n) preprocessing time by 
a 0( n log Hk) preprocessing time to compute the ( < 
k) -sets (< k-levels) of a set of n points (respectively 
lines) in the euclidean plane. This is to be compared 
with the result of Chan [ 21: a 0( n log h + h 102 n)- 
time algorithm is given to compute the h faces of the 
kth level of n lines using the grouping scheme with ray 

shooting procedures based on parametric search [ 11. 
We first begin with an overview of the previous 

algorithms that compute the convex layer decomposi- 
tion, i.e., all the convex layers of a given set. One can 
trivially compute the convex layer decomposition in 
0( n2 log n) -time by successively peeling S using any 
optimal planar convex hull algorithm. Another way 
to proceed is to first create an n-monotone polygonal 
chain and then to peel it in O(n2)-time by succes- 
sively applying any linear-time convex hull algorithm 
on simple polygons. Overmars and van Leeuwen 
[ 16,171 gave a dynamic algorithm to maintain in 
0( log2 n) time per insertion/deletion the convex hull 

of n points. Their method leads straightforwardly to an 
0( n log2 n) -time convex layers algorithm. Chazelle 
[ 31 gave an optimal O(n log n) time algorithm to 
compute the convex layer decomposition using the 
hull tree of Overmars and van Leeuwen. His solution 
relies upon an b( logn) amortized cost procedure 
that maintains dynamically the convex hull of a set of 
n points (although the insertion/deletion of a simple 
point can cost linear time). 

We consider the problem of computing only the first 
k layers of the convex or maximal layers of a planar 
point set in an output-sensitive manner. 

We can apply round after round Jarvis’s algorithm 
191 to get an output-sensitive algorithm with run- 
ning time 0( nHk) . Kirkpatrick and Seidel [ 131 gave 
an optimal output-sensitive algorithm to compute the 
convex hull of a set of n points in O(n log hi)-time. 
We can use successively that algorithm to compute 
the first k layers in time (Et, (n - Hi-1 ) log hi) = 

0( nk log( Hk/k) ) using Holder’s inequality 2 . This 
algorithm is therefore optimal if k = 0( 1) . However, 
in pattern recognition [ 111, one wants to remove some 
of the first layers in order to eliminate noise of the in- 
put set and to get the real shape of the set of points. 
The number of layers we want to remove depends on 

the size of the set (the number of available data) so 
that generally k is a function of n. 

We present below an 0( n log Hk)-time algorithm 
to compute the < k-maximal or convex layers. 

2. Computing the first k convex layers 

2.1. The power of grouping 

2.1. I. Principles 
Our algorithm basically uses the grouping scheme, 

i.e., a general paradigm to obtain output-sensitive al- 
gorithms, independently developed by Chan [ 21 and 
Nielsen [ 151. It consists in grouping the points into 
balanced-size sets and in preprocessing each group in 
order to answer queries efficiently. Finally, we build 

the solution stepwise by querying these groups. For 
each query, we first determine in each group the local 
result of that query and then deduce the global result 

of the query by merging these local results (e.g., se- 
lecting one of them). 

2.1.2. Answeiing queries 
What is a query for the convex hull problem? We 

consider a group P of p points. Given a query point 
Q, with the property that Q 4 C’FI( P), we want to 
determine the two segments issued from Q and tangent 
to Ev%( P) , the boundary of the convex hull CX( P) . 

We preprocess P into a hull tree [ 16,181 in time 
O(p logp) (see Fig. 2), so that given a query point 
Q we can determine in 0( logp) the two tangent seg- 

2 We can state Hlilder’s inequality as follows: 

max~,+~=p{logpl + low2) < 2logW2). 
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The upper hull tree 7 

Fig. 2. The upper hull tree of a set of 16 points. 

query point 
Right tangent segment 

Fig. 3. A query (in one of the groups): given a point Q outside 

the convex hull, deternine its two tangent segments. 

ments linking Q to XX(P) (see Fig. 3). Main- 
taining dynamically under deletion the group P re- 
quires 0( log2 p) time per insertion/deletion. (Note 
that once the data-structures are built, we will only 
delete points from them in our algorithm). 

2.2. The algorithm given an estimate of the 
output-size 

Assume that we know a good estimate h, < n1f4 
of the output-size of the < k-layers. Let Layers( k, h,) 
be the algorithm described below: 

Preprocessing. Group the data points in [n/he1 
balanced-size groups of size at most h,. For each 
group &, build the upper and lower hull trees. Let 
2.4i and Ci be respectively the upper and lower hull 

trees of the points of !&. 
Computing a layer. If k = 0 then HALT. Otherwise, 
find the two extremal points PI and 9 that have 
respectively the smallest and largest x-coordinate of 
the current set of points (x(S) < x(P2)). Let P 

be initially point 9. Let T? be any vertical vector. 

l Upper Hull. For each group Gj, find the right 
tangent segment PPj given the query point P 
by querying the upper hull tree Uj. Among the 
[n/he1 groups, select the right tangent segment 

[PPi] whose angle with the vector 7T’ is mini- 
mized. Add Pi to the current layer and remove Pi 
from both the upper and the lower hull trees, Ui 

and Li, of its group &. Let -;T’ = s and P be 

Pi. If P # P2 then go to step Upper Hull. 
l Lower Hull. symmetric case. 

l Next Layer. k c k - 1. Go to step computing a 
layer. 

Let c( n, h) denote the time complexity of the above 
algorithm. Grouping the points into [n/he1 balanced 
groups of size at most h, and computing their up- 
per and lower hull trees cost 0( [n/he, h, log h,) = 
0( n log h,) . We may assume, without loss of gener- 
ality, that the kth layer is not empty, i.e., hk > 0). 
Consider the cost of computing the ith layer: 

We first find the two-extreial points PI and P2 
by computing in each group Qi the extremal points 

Pl,i and P2.i with x( Pl,i) 6 x( P2.i). Then, we se- 
lect among those candidates, the extremal points in 
0( [n/h,] )-time. Finding the Pl,iS and P2,iS costs 
0( [n/he1 log h,) time by querying, for example, 
the upper hull trees. 
Computing the upper and lower ith layers costs 
O( [n/he1 hi log2 h,). Indeed, each time we find a 
new point belonging to the ith layer we answer 
[n/he1 queries and remove a point from one of the 
groups (which has size less than h,) . 

Thus, computing the < k-layers costs: 

O([e]h,loghti) +O([tl(k+khi)log2h,) 
i=l 

=O(nlogh,) +O(Tlog2h,). 

In the sequel, we will choose h, (h, < n) such 
that Hi < h,. Thus, the algorithm runs in time 
0( n log Hk) since in that case 0( n( Hk/h,) log h,) = 
O(n). (Notice that if we only choose h, 2 Hk then 
our algorithm runs in time 0( n log2 Hk) .) 

Another interesting feature of the algorithm is that 
we can determine whether Hk > p or not for a given 
integer p in O(n logp). Indeed, we choose h, = p2 
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and we stop the queries as soon as we have computed 
min{p, Hk} points belonging to the first k convex lay- 
ers. Denote by Test(p) that algorithm. 

2.3. The final algorithm 

We put together the basic procedures seen so far. 
The goal is to determine quickly a good estimate h, of 
Hk, that is to find h, such that Hi < h, 6 n. Then, we 
run the Layers( he, k) algorithm. The final algorithm 

is described below: 

l Initializing. Let i = 0 and h, = (2*‘) * = 4. 
a Computing a good estimate. While (A < Hk) 

doi+i+landh,= (2*‘)*. If h, > n then run 
Chazelle’s algorithm [ 31. 

l Computing the < k-layers. Call algorithm 

Layers( k, h,). 

Note that the test ( fi < Hk) is performed using 

algorithm Test ( A) described above in 0( n log h,) - 
time. When we get out of the while-loop, we have the 
desired inequalities: Hi < h,. We have to assert that 

h, < n. This means that in the worst-case when we 

exit the while-loop, we have h, = (Hi - 1 )* Q Hi. 
Therefore, if Hk < n114 then we get h, < n. 

Let c( n, Hk) denote the running time of the previ- 
ous algorithm. Clearly, we have: 

c(n,Hk) =0(l) +G E’rl10g22i) 

+WnlOgh,), 

c(n,Hk) =O(nlOg&), if kfk < n”4. 

If Hk > n’j4 we run Chazelle’s algorithm [3] and 
find the < k-layers in O(nlogn) = O(nlogHk). 

3. Computing the first k maximal layers 

In this section, we just re-phrase the previous al- 
gorithm in a context of maximal layers. More pre- 
cisely, we change the query problem of the last prob- 
lem. Notice that in the case of the < k-maximal lay- 
ers, we have ,C( S) = M(S) where M(S) is the 

set of maxima points of S, that is all the points of S 
that are not dominated by any other, where a point P 
dominates a point Q if x(P) > x(Q) and y(P) > 

Fig. 4. A query (in one of the groups): given a point Q above 

the first layer of the maxima points, determine the first (rightmost 

abscissa) point of the first layer that is to the left of Q. 

y(Q) (see [ 19,14,12,7,8,10] ). ThemaximaM(S) = 

{Ml = (xI,yl),...*Mi = (Xi, yi)} of a point set 
S can be arranged into a staircase structure as fol- 
lows: we join two consecutive maxima points Mk = 

(xk,yk) and MI = (Xr,JJ[), with xk < Xj Or Xj > Xl 
by the two iso-oriented segments [ (xk, yk) , (Xk, yi) ] 

and [(xk,YI), (-wy~)l (see Fig. 4). 
We group the initial set S of n points into [n/p] 

balanced-size groups of size at most p. We compute 
for each group Gi, 1 < i < [n/p], a data-structure 
that allows to maintain dynamically its first maximal 
layer [ lo]. The total cost of the preprocessing step is 

O( [n/pip logp) = O( n logp). The maximal layer of 
a set of p points can be maintained dynamically both 
under insertion/deletion in 0( logp) [ lo]. (Note that 
we only delete points from our data-structures in the 
grouping strategy described below). We describe the 
algorithm MaximaLayers( k, p) below: 

Preprocessing. Group the points into [n/p] groups 
of size at most p. For each group Gii. compute the 
data-structure that allow to maintain dynamically 
the first maximal layer of &Yi using the algorithm of 
Kapoor [ lo]. 
Computing a maximal layer. If k = 0 then HALT. 
l Initializing. Find the rightmost abscissa point Pinit 

of the points clustered into groups by querying 
each group and selecting the overall rightmost 
abscissa point. Set P to Pinit. 

l Querying. For each group Gi, “ray shoot” from 
P horizontally to the left until it hits a staircase 
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of the first layer of maximas of !Z. Let Pi be the 
point of Bi at the top of this staircase (if it does 
not hit any staircase then set Pi to ( -00, +OO) ) . 
Let P’ be the point which has the highest X- 
coordinate among the Pi’S. If P’ = (-00, +CO) 
then skip to step Next layer. Otherwise, add P’ 
to the current maximal layer and remove P’ from 
the data-structure of its group. Set P +- P’. Go 
to Querying. 

l Next layer. k + k - 1. Go to Computing a max- 
imd layer. 

Using the structure of Kapoor [ lo], we can delete a 
point in a group Gi in 0( logp) time. The “ray shoot- 
ing” operations (one per group) used in the querying 
stage can easily be done in 0( (n/p) logp) -time. In- 
deed, for a group Ei and a query point Q we want to 
find among the points of the first maximal layer, the 
one that is above y(Q) and has the highest abscissa. 
This may be easily implemented using a binary search. 
(Alternatively, we can also simulate an insertion of 
Q into the data-structure of Gi in order to find its left 
neighbor.) 

As before, we can study the complexity of the previ- 
ous algorithm. Its running time is 0( (n/p) Hk logp) + 
0( n logp) . We then find a good estimate p such that 
Hk < p < Hi and run the algorithm with that esti- 
mate. We finally end up with an O(n log Hk)-time 
algorithm. 
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