
Information Processing Letters 59 (1996) 255-259

Information
Processing
Letters

Output-sensitive peeling of convex and maximal layers
Franck Nielsen ayb~l

a INRIA, BP93. 06902 Sophia-Antipolis cedex, France
b University of Nice, Part Valrose, 06304 Nice cedex, France

Received 8 August 1995; revised 10 June 1996
Communicated by M.T. Goodrich

Abstract

We give an output-sensitive algorithm to compute the first k convex or maximal layers in 0(n log I&) -time where Hk is
the number of points participating in the first k layers. Computing only the first k layers is interesting in various problems
that arise in computational geometry (k-sets and dually k-levels, k-hulls and dually k-belts), pattern recognition, statistics,
operations research, etc.

Keywords: Convex hulls; Computational geometry

1. Introduction and notations

Let S be a set of n planar points and C(S) its
first layer, i.e. a subset of S. Let St = S and Si+r =
&\L(&) for integer i > 1. The layers of S are defined
by the following ordered sequence: L(St) , . . ., .L(Sl)
where I is the first integer such that Sl+r = 8. We
successively investigate the case where L(S) is the set
V(S) of points of S on the boundary of the convex hull

C’FI(S) (Section 2, Fig. 1) and the maxima M (S) of
S (Section 3). Let hi = j&l and Hi = ‘&, hj denote
respectively the number of points of L(&) and the
number of points participating in the < i-layers. Let
Hc=O.WehaveHi=Hi-t+hifori> l.Weassume
in the sequel that S is in general position, i.e., all the
points are distinct and no three points are colinear.
Notice that in that case Hk > min{3k,n}. For a set
of n points in the euclidean plane lE*, the algorithms
have running time 0(n log Hk) using linear storage.

’ Email: franck.nielsen@sophia.inria.fr.

Computing the first k convex layers of a planar point

set has numerous applications [181 and is also used as
a first step when one computes k-hulls [41 (or dually
k-belts [51) or k-sets (or dually k-levels [61). A k-
set of S is a set S n H of size k for some halfspace H.
For any set S of points, the k-hull of S is the set of
points p such that for any line passing through p there
are at least k < [n/2] points in each closed halfspace.
It follows from the definition that the k-hull contains

the set of points Sk. k-hulls are also used in statistics
to measure the interiomess of a given set. Using our
output-sensitive algorithm (Section 2) for computing
the first k layers, we obtain an 0(n log Hk + (Hk +
fk) log* k)-time algorithm for computing the k-hull
of a n-point set where fk is the size of the k-hull and
Hk is the size of the first k convex layers (the previous
algorithm of [4] has running time O(n logn + (n +

fk) log*k)).
As already noticed by Everett et al. [63 in their algo-

rithm for computing the < k-levels: ‘I... we can remove
all layers deeper than kfrom consideration . ..“. so that

0020-0190/96/$12.00 Copyright @ 1996 Published by Elsevier Science B.V. All rights reserved.
PII SOO20-0190(96)00116-0

256 E Nielsen/Information Processing Letters 59 (1996) 255-259

Fig. 1. The first three layers of a set of 60 planar points.

we can replace their 0(n log n) preprocessing time by
a 0(n log Hk) preprocessing time to compute the (<
k) -sets (< k-levels) of a set of n points (respectively
lines) in the euclidean plane. This is to be compared
with the result of Chan [21: a 0(n log h + h 102 n)-
time algorithm is given to compute the h faces of the
kth level of n lines using the grouping scheme with ray

shooting procedures based on parametric search [11.
We first begin with an overview of the previous

algorithms that compute the convex layer decomposi-
tion, i.e., all the convex layers of a given set. One can
trivially compute the convex layer decomposition in
0(n2 log n) -time by successively peeling S using any
optimal planar convex hull algorithm. Another way
to proceed is to first create an n-monotone polygonal
chain and then to peel it in O(n2)-time by succes-
sively applying any linear-time convex hull algorithm
on simple polygons. Overmars and van Leeuwen
[16,171 gave a dynamic algorithm to maintain in
0(log2 n) time per insertion/deletion the convex hull

of n points. Their method leads straightforwardly to an
0(n log2 n) -time convex layers algorithm. Chazelle
[31 gave an optimal O(n log n) time algorithm to
compute the convex layer decomposition using the
hull tree of Overmars and van Leeuwen. His solution
relies upon an b(logn) amortized cost procedure
that maintains dynamically the convex hull of a set of
n points (although the insertion/deletion of a simple
point can cost linear time).

We consider the problem of computing only the first
k layers of the convex or maximal layers of a planar
point set in an output-sensitive manner.

We can apply round after round Jarvis’s algorithm
191 to get an output-sensitive algorithm with run-
ning time 0(nHk) . Kirkpatrick and Seidel [131 gave
an optimal output-sensitive algorithm to compute the
convex hull of a set of n points in O(n log hi)-time.
We can use successively that algorithm to compute
the first k layers in time (Et, (n - Hi-1) log hi) =

0(nk log(Hk/k)) using Holder’s inequality 2 . This
algorithm is therefore optimal if k = 0(1) . However,
in pattern recognition [111, one wants to remove some
of the first layers in order to eliminate noise of the in-
put set and to get the real shape of the set of points.
The number of layers we want to remove depends on

the size of the set (the number of available data) so
that generally k is a function of n.

We present below an 0(n log Hk)-time algorithm
to compute the < k-maximal or convex layers.

2. Computing the first k convex layers

2.1. The power of grouping

2.1. I. Principles
Our algorithm basically uses the grouping scheme,

i.e., a general paradigm to obtain output-sensitive al-
gorithms, independently developed by Chan [21 and
Nielsen [151. It consists in grouping the points into
balanced-size sets and in preprocessing each group in
order to answer queries efficiently. Finally, we build

the solution stepwise by querying these groups. For
each query, we first determine in each group the local
result of that query and then deduce the global result

of the query by merging these local results (e.g., se-
lecting one of them).

2.1.2. Answeiing queries
What is a query for the convex hull problem? We

consider a group P of p points. Given a query point
Q, with the property that Q 4 C’FI(P), we want to
determine the two segments issued from Q and tangent
to Ev%(P) , the boundary of the convex hull CX(P) .

We preprocess P into a hull tree [16,181 in time
O(p logp) (see Fig. 2), so that given a query point
Q we can determine in 0(logp) the two tangent seg-

2 We can state Hlilder’s inequality as follows:

max~,+~=p{logpl + low2) < 2logW2).

E Nielsen/Information Processing Letters 59 (1996) 255-259 257

The upper hull tree 7

Fig. 2. The upper hull tree of a set of 16 points.

query point
Right tangent segment

Fig. 3. A query (in one of the groups): given a point Q outside

the convex hull, deternine its two tangent segments.

ments linking Q to XX(P) (see Fig. 3). Main-
taining dynamically under deletion the group P re-
quires 0(log2 p) time per insertion/deletion. (Note
that once the data-structures are built, we will only
delete points from them in our algorithm).

2.2. The algorithm given an estimate of the
output-size

Assume that we know a good estimate h, < n1f4
of the output-size of the < k-layers. Let Layers(k, h,)
be the algorithm described below:

Preprocessing. Group the data points in [n/he1
balanced-size groups of size at most h,. For each
group &, build the upper and lower hull trees. Let
2.4i and Ci be respectively the upper and lower hull

trees of the points of !&.
Computing a layer. If k = 0 then HALT. Otherwise,
find the two extremal points PI and 9 that have
respectively the smallest and largest x-coordinate of
the current set of points (x(S) < x(P2)). Let P

be initially point 9. Let T? be any vertical vector.

l Upper Hull. For each group Gj, find the right
tangent segment PPj given the query point P
by querying the upper hull tree Uj. Among the
[n/he1 groups, select the right tangent segment

[PPi] whose angle with the vector 7T’ is mini-
mized. Add Pi to the current layer and remove Pi
from both the upper and the lower hull trees, Ui

and Li, of its group &. Let -;T’ = s and P be

Pi. If P # P2 then go to step Upper Hull.
l Lower Hull. symmetric case.

l Next Layer. k c k - 1. Go to step computing a
layer.

Let c(n, h) denote the time complexity of the above
algorithm. Grouping the points into [n/he1 balanced
groups of size at most h, and computing their up-
per and lower hull trees cost 0([n/he, h, log h,) =
0(n log h,) . We may assume, without loss of gener-
ality, that the kth layer is not empty, i.e., hk > 0).
Consider the cost of computing the ith layer:

We first find the two-extreial points PI and P2
by computing in each group Qi the extremal points

Pl,i and P2.i with x(Pl,i) 6 x(P2.i). Then, we se-
lect among those candidates, the extremal points in
0([n/h,])-time. Finding the Pl,iS and P2,iS costs
0([n/he1 log h,) time by querying, for example,
the upper hull trees.
Computing the upper and lower ith layers costs
O([n/he1 hi log2 h,). Indeed, each time we find a
new point belonging to the ith layer we answer
[n/he1 queries and remove a point from one of the
groups (which has size less than h,) .

Thus, computing the < k-layers costs:

O([e]h,loghti) +O([tl(k+khi)log2h,)
i=l

=O(nlogh,) +O(Tlog2h,).

In the sequel, we will choose h, (h, < n) such
that Hi < h,. Thus, the algorithm runs in time
0(n log Hk) since in that case 0(n(Hk/h,) log h,) =
O(n). (Notice that if we only choose h, 2 Hk then
our algorithm runs in time 0(n log2 Hk) .)

Another interesting feature of the algorithm is that
we can determine whether Hk > p or not for a given
integer p in O(n logp). Indeed, we choose h, = p2

258 E Nielsen /Information Processing Letters 59 (I 996) 255-259

and we stop the queries as soon as we have computed
min{p, Hk} points belonging to the first k convex lay-
ers. Denote by Test(p) that algorithm.

2.3. The final algorithm

We put together the basic procedures seen so far.
The goal is to determine quickly a good estimate h, of
Hk, that is to find h, such that Hi < h, 6 n. Then, we
run the Layers(he, k) algorithm. The final algorithm

is described below:

l Initializing. Let i = 0 and h, = (2*‘) * = 4.
a Computing a good estimate. While (A < Hk)

doi+i+landh,= (2*‘)*. If h, > n then run
Chazelle’s algorithm [31.

l Computing the < k-layers. Call algorithm

Layers(k, h,).

Note that the test (fi < Hk) is performed using

algorithm Test (A) described above in 0(n log h,) -
time. When we get out of the while-loop, we have the
desired inequalities: Hi < h,. We have to assert that

h, < n. This means that in the worst-case when we

exit the while-loop, we have h, = (Hi - 1)* Q Hi.
Therefore, if Hk < n114 then we get h, < n.

Let c(n, Hk) denote the running time of the previ-
ous algorithm. Clearly, we have:

c(n,Hk) =0(l) +G E’rl10g22i)

+WnlOgh,),

c(n,Hk) =O(nlOg&), if kfk < n”4.

If Hk > n’j4 we run Chazelle’s algorithm [3] and
find the < k-layers in O(nlogn) = O(nlogHk).

3. Computing the first k maximal layers

In this section, we just re-phrase the previous al-
gorithm in a context of maximal layers. More pre-
cisely, we change the query problem of the last prob-
lem. Notice that in the case of the < k-maximal lay-
ers, we have ,C(S) = M(S) where M(S) is the

set of maxima points of S, that is all the points of S
that are not dominated by any other, where a point P
dominates a point Q if x(P) > x(Q) and y(P) >

Fig. 4. A query (in one of the groups): given a point Q above

the first layer of the maxima points, determine the first (rightmost

abscissa) point of the first layer that is to the left of Q.

y(Q) (see [19,14,12,7,8,10]). ThemaximaM(S) =

{Ml = (xI,yl),...*Mi = (Xi, yi)} of a point set
S can be arranged into a staircase structure as fol-
lows: we join two consecutive maxima points Mk =

(xk,yk) and MI = (Xr,JJ[), with xk < Xj Or Xj > Xl
by the two iso-oriented segments [(xk, yk) , (Xk, yi)]

and [(xk,YI), (-wy~)l (see Fig. 4).
We group the initial set S of n points into [n/p]

balanced-size groups of size at most p. We compute
for each group Gi, 1 < i < [n/p], a data-structure
that allows to maintain dynamically its first maximal
layer [lo]. The total cost of the preprocessing step is

O([n/pip logp) = O(n logp). The maximal layer of
a set of p points can be maintained dynamically both
under insertion/deletion in 0(logp) [lo]. (Note that
we only delete points from our data-structures in the
grouping strategy described below). We describe the
algorithm MaximaLayers(k, p) below:

Preprocessing. Group the points into [n/p] groups
of size at most p. For each group Gii. compute the
data-structure that allow to maintain dynamically
the first maximal layer of &Yi using the algorithm of
Kapoor [lo].
Computing a maximal layer. If k = 0 then HALT.
l Initializing. Find the rightmost abscissa point Pinit

of the points clustered into groups by querying
each group and selecting the overall rightmost
abscissa point. Set P to Pinit.

l Querying. For each group Gi, “ray shoot” from
P horizontally to the left until it hits a staircase

E Nielsen/Information Processing Letrers 59 (1996) 255-259 259

of the first layer of maximas of !Z. Let Pi be the
point of Bi at the top of this staircase (if it does
not hit any staircase then set Pi to (-00, +OO)) .
Let P’ be the point which has the highest X-
coordinate among the Pi’S. If P’ = (-00, +CO)
then skip to step Next layer. Otherwise, add P’
to the current maximal layer and remove P’ from
the data-structure of its group. Set P +- P’. Go
to Querying.

l Next layer. k + k - 1. Go to Computing a max-
imd layer.

Using the structure of Kapoor [lo], we can delete a
point in a group Gi in 0(logp) time. The “ray shoot-
ing” operations (one per group) used in the querying
stage can easily be done in 0((n/p) logp) -time. In-
deed, for a group Ei and a query point Q we want to
find among the points of the first maximal layer, the
one that is above y(Q) and has the highest abscissa.
This may be easily implemented using a binary search.
(Alternatively, we can also simulate an insertion of
Q into the data-structure of Gi in order to find its left
neighbor.)

As before, we can study the complexity of the previ-
ous algorithm. Its running time is 0((n/p) Hk logp) +
0(n logp) . We then find a good estimate p such that
Hk < p < Hi and run the algorithm with that esti-
mate. We finally end up with an O(n log Hk)-time
algorithm.

Acknowledgment

I am very thankful to my supervisors, Jean-Daniel
Boissonnat and Mariette Yvinec, whose valuable com-
ments on this paper led to a much clearer presentation.
I also greatly appreciated the comments of an anony-
mous referee.

References

[1] P.K. Agarwal and J. MatouSek, Ray shooting and parametric
search, SIAM J. Cornput. 22 (4) (1993) 794-806.

[6] H. Everett, J.-M. Robert and M. van Kreveld, An optimal
algorithm for the (< k)-levels, with applications to
separation and transversal problems, in: Proc. 9th Ann. ACM
Symp. on Compurarional Geometry (1993) 38-46.

[7] G. Frederickson and S. Rodger, A new approach to the
dynamic maintenance of maximal points in a plane, Discrete
Comput. Geom. 5 (1990) 365-374.

[8] R. Janardan, On the dynamic maintenance of maximal points
in the plane, Inform. Process. Lea. 40 (1991) 59-64.

191 R.A. Jarvis, On the identification of the convex hull of a
finite set of points in the plane, Inform. Process. L.ert. 2
(1973) 18-21.

[Z] T.M.Y. Chan, Output-sensitive results on convex hulls,
extreme points and related problems, in: Proc. I Zrh Ann.
ACM Symp. on Computarionnl Geometry (1995) 10-19.

[3] B. Chazelle, On the convex layers of a planar set, IEEE
Trans. Inform. Theory 31 (1985) 509-517.

[4] R. Cole, M. Sharir and C.K. Yap, On k-hulls and related
problems, SIAh! J. Cornput. 16 (1987) 61-77.

[51 H. Edelsbnmner and E. Welzl, Constructing belts in
two-dimensional arrangements with applications, SIAM J.
Comput. 15 (1986) 271-284.

[lo] S. Kapoor, Dynamic maintenance of maximas of 2-d point
sets, in: Proc. 10th Ann. ACM Symp. on Computational
Geometry (1994) 140-149.

[111 D.G. Kirkpatrick and J.D. Radke, A framework for
computational morphology, in: G.T. Toussaint, ed.,
Computational Geometry (North-Holland, Amsterdam,
1985) 217-248.

[121 D.G. Kirkpatrick and R. Seidel, Output-size sensitive
algorithms for finding maximal vectors, in: Proc. 1st Ann.
ACM Symp. on Compurarional Geometry (1985) 89-96.

[131 D.G. Kirkpatrick and R. Seidel, The ultimate planar convex
hull algorithm?, SIAM J. Comput. 15 (1986) 287-299.

[141 H.T. Kung, F. Luccio and F.P. Preparata, On finding the
maxima of a set of vectors, J. ACM 22 (1975) 469-476.

[151 F. Nielsen and M. Yvinec, Output-sensitive convex hull
algorithms of planar convex objects, Research Rept. 2575,
INRIA, BP93, 06902 Sophia-Antipolis, France, 1995.

[161 M.H. Overmars and J. van Leeuwen, Dynamically
maintaining configurations in the plane, in: Proc. 12th Ann.
ACM Symp. on Theory of Computing (1980) 135-145.

[171 M.H. Overmars and J. van Leeuwen, Maintenance of
configurations in the plane, J. Comput. System Sci. 23 (198 1)
166-204.

[181 F.P. Preparata and M.I. Shamos, Compurarional Geometry:
An Introduction (Springer, New York, 1985).

[191 F.F. Yao, On finding the maximal elements in a set of plane
vectors, Rept. R-667, Dept. of Computer Science, University
of Illinois, Urbana, 1974.

