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The Kullback–Leibler Divergence Between Lattice 
Gaussian Distributions

1 Introduction
It is well-known that the multivariate Gaussian 
distributions N (µ,�) are continuous distribu-
tions with support Rd which maximize Shannon’s 
differential entropy under mean µ and covariance 
matrix � constraints1. Similarly, the d-variate lat-
tice Gaussian distribution N�(µ,�) can be 
defined as the distribution supported on a lattice2 
� = �(L) = LZd = {Lz : z ∈ Z

d} which maxi-
mizes Shannon’s entropy for the prescribed mean 
µ and covariance matrix � , where Zd denotes the 
d-dimensional integer lattice and 
L = [l1 | . . . | ld] is a lattice basis of d column 
vectors li ’s arranged in the lattice basis matrix � . 
We consider full-rank lattices satisfying 
det(L)  = 0 , and the lattice Zd is called the 
d-dimensional integer lattice. Two lattices �(L) 
and �(L′) are equal if and only if there exists a 
unimodular matrix U (i.e., a square matrix with 
integer entries and determinant ±1 ) such that 
L = L′U  . For example, the second lattice 

L′ =
[
1 2
1 1

]

 of Fig. 2 is equal to the integer lattice 
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Abstract | A lattice Gaussian distribution of given mean and covari-
ance matrix is a discrete distribution supported on a lattice maximiz-
ing Shannon’s entropy under these mean and covariance constraints. 
Lattice Gaussian distributions find applications in cryptography and in 
machine learning. The set of Gaussian distributions on a given lattice 
can be handled as a discrete exponential family whose partition function 
is related to the Riemann theta function. In this paper, we first report a 
formula for the Kullback–Leibler divergence between two lattice Gauss-
ian distributions and then show how to efficiently approximate it numeri-
cally either via Rényi’s α-divergences or via the projective γ-divergences. 
We illustrate how to use the Kullback-Leibler divergence to calculate the 
Chernoff information on the dually flat structure of the manifold of lattice 
Gaussian distributions.
Keywords: Lattice Gaussian distribution, Discrete exponential family, Riemann theta function, Statistical 
divergence, Information geometry
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2 because L′ = U × L with unimodular matrix 

U =
[
1 2
1 1

]

 ( det(U) = −1).

The set {N�(µ,�)} of lattice Gaussian dis-
tributions form a discrete exponential family1 
(Chapter 2) since they are maximum entropy dis-
tributions. The probability mass function (pmf) 
pµ,� is written canonically as

where ζ(µ,�) denotes the natural parameter 
corresponding to the ordinary parameteriza-
tion � = (µ,�) , s(x) = (x, xx⊤) are the sufficient 
statistics, and 

〈
ζ , ζ ′

〉
 is the following compound 

vector-matrix inner product between ζ = (ζ1, ζ2) 
and ζ ′ = (ζ ′1, ζ

′
2) (with ζ1, ζ ′1 ∈ R

d and ζ2, ζ ′2 ∈ Pd , 
the open cone of positive-definite matrices):

The term P�(µ,�) = ∑

l∈� exp
(〈
ζ(µ,�), s(l)

〉)
 

in the denominator of the pmf is called the 

pµ,�(l) =
1

P�(µ,�)
exp

(〈
ζ(µ,�), s(l)

〉)
, (l ∈ �)

〈
ζ , ζ ′

〉
:= ζ⊤1 ζ ′1 + tr(ζ⊤2 ζ ′2).
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partition function. The discrete natural expo-
nential family G� = {N�(ζ )} is a regular 
and minimal exponential family3 of order 
D = d(d+3)

2  : That is, the natural parameter 
space Rd × Pd is open and the D + 1 functions 
1, x1, . . . , xi, . . . , xd , x

2
1, . . . , xixj , . . . , x

2
d are lin-

early independentA4. When � = Z
d , the lattice 

Gaussian distributions are called the discrete 
Gaussian distributions or the discrete normal dis-
tributions5 with pmf written as

The canonical decomposition of exponen-
tial families is not unique: For example, we can 
choose sα(x) = αs(x) (for any non-zero scalar α ) 
and adjust accordingly ζα = 1

α
ζ so that the inner 

product remains invariant: �s(x), ζ � = �sα(x), ζα� . 
To link the partition function of lattice Gauss-
ian distributions to the Riemann Theta func-
tion6, we consider the following sufficient statistic 
t(x) =

(
2πx,−πxx⊤

)
 with corresponding natu-

ral parameter ξ . Notice that the natural param-
eter ξ cannot be expressed easily as a function of 
(µ,�) . Thus the lattice Gaussian distributions are 
mathematically different to handle than the con-
tinuous Gaussian distributions where conversions 
between ordinary to natural parameters are avail-
able in closed-form (see Appendix B of7). Using 
the (ξ , t(x)) parameterization for the discrete 
exponential family of lattice distributions Nd

Z
(ξ) , 

we get the following pmf decomposition:

where the partition function is

Although the partition function is not available as 
a bounded-size formula of ξ because it is an infi-
nite summation over the elements of Zd , it can 
nevertheless be conveniently expressed as

pζ (z) =
1

P
Zd (ζ )

exp (�ζ , s(z)�), (z ∈ Z
d).

(1)

pξ (z) =
1

Z
Zd (ξ)

exp

(

2π

(

−1

2
z⊤ξ2z + z⊤ξ1

))

, (z ∈ Z
d),

Z
Zd (ξ) =

∑

z∈Zd

exp

(

2π

(

−1

2
z⊤ξ2z + z⊤ξ1

))

.

(2)Z
Zd (ξ) = θ(−iξ1, iξ2),

where the complex-valued Riemann theta func-
tion6 is the holomorphic function defined by its 
Fourier series as follows:

where Hd denotes the Siegel upper space 
of symmetric complex matrices with pos-
itive-definite imaginary parts8. A symmet-
ric complex matrix with positive-definite 
imaginary part is called a Riemann matrix9, 

10. Thus the Siegel upper space is the set of all 
Riemann matrices. Agostini and Améndola5 
consider complex-valued discrete Gaussian dis-
tributions (Definition 2.3 of5) by relaxing the 
parameter ξ to belong to (Cd ×Hd)\�d , where 
�d := {(ω,�) ∈ C

d ×Hd : θ(ω,�) = 0} is the 
so-called universal theta divisor11. They report 
in Proposition 3 of5 of the equivalence of com-
plex-valued discrete Gaussian distributions, and 
deduce from that proposition that the natural 
parameter space is a quotient space for complex-
valued discrete Gaussian distributions. In this 
paper, we consider real-valued lattice Gaussian 
distributions and Proposition 3 of5 proves that 
the natural parameter space is � = R

d × Pd.
In practice, there exists efficient techniques to 

approximate the Riemann theta function12 with 
many available software packages that imple-
ment them in various programming languages 
(e.g., package Theta.jl in Julia13). We refer 
to14 (Chapter 22) for a basic introduction of 
approximation techniques of the Riemann theta 
functions, to15 for approximations of the Jacobi’s 
theta function for the univariate case d = 1 , and 
to12 (Theorem 2) for guaranteed ǫ-approxima-
tions using lattice points falling inside ellipsoids 
to approximate the infinite Riemann Theta sums.

Let pξ (z) = p̃ξ (z)
Z
Zd

(ξ)
 where p̃ξ (z) denotes the 

unnormalized pmf:

Figure 1 displays the plots of two 1D discrete 
normal unnormalized pmfs and two 2D discrete 
unnormalized pmfs.

The univariate discrete normal distribu-
tion was historically first mentioned by Lisman 
and Van Zuylen16 (1972), and later studied by 
Kemp17 (1997). The relationship of its partition 
function ZZ with the Jacobi theta function was 
pointed out by Szablowski18 (2001), and later 

θ :Cd ×Hd → C

θ(ω,�) :=
∑

z∈Zd

exp

(

2π i

(
1

2
z
⊤�z + z

⊤ω
))

,

(3)

p̃ξ (z) = exp

(

2π

(

−1

2
z⊤ξ2z + z⊤ξ1

))

.

A Definition: n univariate functions f1(x), . . . , fn(x) are said to 
be linearly dependent if there exists n constants c1, . . . , cn , not 
all zero, such that 

∑
n

i=1 ci fi(x) = 0 for some x belonging to an 
interval I ⊂ R . Otherwise, the functions are said linearly inde-
pendent.
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fully extended to Riemann multivariate theta 
function by Agostini and Améndola5 (2019). 
Furthermore, Agostini and Améndola5 extended 
the discrete Gaussian distributions to complex-
valued pmfs by allowing the parameter ξ1 ∈ C

d 
and the parameter ξ2 to range in the Siegel 
upper space Hd instead of the positive-define 
matrix cone Pd . Doing so allowed them to use 
the quasi-periodicity properties of the Riemann 
theta functions to deduce corresponding prop-
erties for the complex-valued Gaussian distri-
butions. Namely, the Riemann theta function 
enjoys the following quasiperiodicity property:

•   periodicity in ω with integer periods: 

•  

 and
•   quasi-periodicity: 

•  

 for any u, v ∈ Z
d.

θ(ω + u,�) = θ(ω,�),

θ(ω +�v,�) = exp

(

−2π i

(
1

2
v
⊤�v + v

⊤ω
))

θ(ω,�),

A statistical model P := {pξ : ξ ∈ �} is said 
identifiable4 when the mapping ξ  → pξ is one-to-
one. When ξ ∈ C

d ×Hd , the discrete Gaussian 
model is not identifiable (i.e., there can exist two 
parameters ξ and ξ ′ such that pξ (z) = pξ ′(z) ). 
But the real-valued discrete Gaussian model is 
identifiable when ξ ∈ R

d × Pd.
A key property of Gaussian distributions is 

that the family is invariant under the action of 
affine automorphisms of Rd . Similarly, the fam-
ily of discrete Gaussian distributions is invariant 
under the action of affine automorphisms of Zd 
(Proposition 3.55):

The parity property of discrete Gaussians follows 
(Remark 3.75):

The discrete normal distributions play an 
important role as the counterpart of the nor-
mal distributions in robust implementations 
on finite-precision arithmetic computers of 
algorithms designed for cryptography19 and 

∀α ∈ GL(d,Z), αXξ = Xα−⊤ξ1,α−⊤ξ2α−1 .

X−ξ1,ξ2 ∼ −Xξ .

y

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10

Figure 1: Plot of unnormalized discrete normal distributions: Top: pξ on the 1D integer lattice Z clipped at 
[−10, 10] for ξ = (0, 0.3) (left) and ξ = (0.25, 0.15) (right). Notice that when ξ1 ∈ Z , the discrete normal is sym-
metric (left) but not for ξ1  ∈ Z (right). Bottom: p̃ξ on the 2D integer lattice Z2 clipped at [−7, 7] × [−7, 7] : (Left) 
ξ1 = (0, 0) and ξ2 = diag

(
1
10
, 1
10

)

 , (right) ξ1 = (0, 0) and ξ2 = diag
(

1
10
, 1
2

)

.
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differential privacy20–22. Recently, the discrete 
normal distributions have also been elicited as 
marginalized distributions in a particular type 
of Boltzmann machines with continuous visible 
states and discrete hidden states23 in machine 
learning.

Let us extend the definition of discrete Gauss-
ian distributions to arbitrary full-rank lattice 
Gaussian distributions:

Definition 1 (Lattice Gaussian distribution) A 
lattice Gaussian random variable X ∼ N�(ξ) has 
the following pmf:

where the partition function

is related to the Riemann theta function by:

pξ (l) =
1

θ�(ξ)
exp

(

2π

(

−1

2
l⊤ξ2l + l⊤ξ1

))

, l ∈ �,

θ�(ξ) :=
∑

l∈�
exp

(

2π

(

−1

2
l⊤ξ2l + l⊤ξ1

))

,

(4)θ�(ξ) = θ(−iL⊤ξ1, iL⊤ξ2L),

with i ∈ C such that i2 = −1.
Figure 2 displays some examples of lattices 

and plots a 2D lattice Gaussian distribution. In 
the remainder, we consider ξ to belong to the 
parameter space � = R

d × Pd . Hence, all pmfs 
pξ (l) are real-valued. Notice that by definition, 
we have θ�(ξ) =

∑

l∈� p̃ξ (l).
In practice, we can approximate efficiently the 

Riemann theta function by replacing the infinite 
summation by a finite summation over a selected 
region R of integer lattice points12, 13:

When R = Zd , we have θ̃ (ξ ;R) = θ(ξ) . For 
example, the method proposed in12 to approxi-
mate the theta function consists in choosing the 
integer lattice points falling inside an ellipsoid 
Eξ for calculating θ̃ (ξ ;Rξ ) with Rξ = Eξ ∩ Z

d . A 
theta ellipsoid with its integer lattice points Rξ is 
illustrated in Fig. 3.

The paper is organized as follows: First, we 
consider the maximum likelihood estimator 
for the lattice Gaussian distributions in Sect. 2. 
This let us introduce the dual moment param-
eterization of exponential families, and describe 
methods to perform numerically parameter 
conversions when handling lattice Gaussian dis-
tributions. Then we report a formula for the 
cross-entropy and the Kullback-Leibler diver-
gence (KLD) between two lattice Gaussian 
distributions in  Sect. 3 (Proposition 1 and Prop-
osition 2). In practice, we show how to approxi-
mate the KLD in Sect. 4 using asymptotic limits of 
either the Rényi α-divergences24 (Proposition 4) 
or the γ-divergences25 (Proposition 7). Finally, we 

θ̃ (ξ ;R) =
∑

x∈R
exp

(

2π

(

−1

2
x⊤ξ2x + x⊤ξ1

))

.

(0, 0)

(1, 1)

(2, 0) (0, 0)

(2, 1)

(1, 1)

Figure 2: Top: Two examples of lattices with their 
basis defining fundamental parallelepipeds: the 
left lattice is a subset of Z2 while the second lat-
tice coincides with Z2 although L  = I2 , the 2× 2 
identity matrix. Bottom: Lattice Gaussian N�(ξ) 
with � = LZ2 obtained for L =

[
1 1
0 1

]

 , and ξ1 = (0, 0) 

and ξ2 = diag(0.1, 0.5) . The lattice points are dis-
played in blue and the unnormalized pmf values 
at the lattice points are shown in red.

Z2

Figure 3: Approximating the function θ
Zd (ξ) by 

summing on the integer lattice points falling inside 
an ellipsoid Eξ : θ(ξ) ≃ θ̃ (ξ ; Eξ ∩ Z

2).
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illustrate the use of the KLD for calculating the 
Chernoff information between two lattice Gauss-
ian distributions in Sect. 5. Chernoff information 
characterizes the best error exponent in Bayesian 
hypothesis testing26. The Chernoff information 
can also be used in information fusion tasks (e.g., 
fusion of mixtures of lattice Gaussian distribu-
tions following the work described in Julier27 for 
merging Gaussian mixture models).

2 �Maximum�Likelihood�Estimator�
and Parameter�Conversions

2.1  Parameterizations of the Lattice 
Gaussian Distributions

The log-normalizer F�(ξ) := log θ�(ξ) is a real-
analytic convex function3 which is also called the 
cumulant function since the cumulant generating 
function KXξ

(u) (cgf, see1, page 30) of Xξ ∼ pξ is

The geometric moments of the sufficient 
statistics can be retrieved from the par-
tial derivatives of the cgf28. In particular, we 
have η := Epξ [t(x)] = ∇F�(ξ) . There exists 
a bijection between the set of natural param-
eters ξ and the set of moment parameters 
η(ξ) = Epξ [t(x)] = ∇F�(ξ) for regular minimal 
exponential families. Moreover, the log-normal-
izer F�(ξ) is a Legendre-type function and hence 
its convex conjugate function F∗

�(η) obtained 
from the Legendre-Fenchel transformation is also 
of Legendre-type29:

with ξ = ∇F∗
�(η) . Thus a pmf of a lattice Gauss-

ian family can either be parameterized by the 
ordinary mean-covariance parameter � = (µ,�) , 
the natural parameter ξ , or its corresponding dual 
moment parameter η.

By definition of pξ as a maximum entropy 
distribution with mean µ and covari-
ance matrix � , we have Epξ [x] = µ and 
Covpξ [x] = Epξ [(x − µ)(x − µ)⊤] = � . There-
fore we can express the moment parameter using 
the ordinary parameters as

Notice that we can also use other alternative 
parameterizations like τ = (a,B) for a ∈ R

d , 
B ∈ Pd with the following pmf30:

KXξ
(u) : = log

(

E[exp(u⊤t(x))]
)

= F�(ξ + u)− F�(ξ).

F∗
�(η) := �ξ , η� − F�(ξ),

η1 =Epξ [2πx] = 2π µ,

η2 =Epξ [−πxx⊤] = −π (� + µµ⊤).

In that case, observe that Epτ [x] �= µ and 
Covpτ [x] �= � for τ = (µ,�).

2.2  Maximum Likelihood Estimator
Let v1, . . . , vm be a set of m identically and inde-
pendently distributed variables sampled from pξ . 
The estimating equation for the maximum likeli-
hood estimator (mle, see1, page 135) is

Thus we get the following estimating equation 
when considering the lattice Gaussian family:

To get the corresponding natural parameter of η̂ , 
we shall use the equivariance property of the mle:

Since F∗
�(η) is not available in closed-form, we 

need to numerically approximate it as ξ̃ ≈ F∗
�(η) 

by solving the following gradient system:

2.3  Converting Moment Parameters 
to Natural Parameters and Vice Versa

Given the moment parameter η , we may approxi-
mate ξ = ∇F∗(η) by solving the gradient sys-
tem η = ∇F(ξ) . For example, one way to solve 
the gradient system is by using the technique 
described in31 (with corresponding Matlab® code 
publicly available in32) that we summarize as 
follows:

First, let us choose the following canonical 
parameterization of the densities of an exponen-
tial family of order D with cumulant function 
F(ψ) and sufficient statistics ti(x)’s:

That is, ψ0 = F(ψ) and ψi = −ξi for 
i ∈ {1, . . . ,D} . The parameter ψ is an augmented 

pτ (l) ∝ exp

(

−1

2
(x − a)⊤B−1(x − a)

)

.

η̂ = 1

m

m∑

i=1

t(vi).

η̂1 =
2π

m

n∑

i=1

xi = 2π µ̂,

η̂2 =− π

m

n∑

i=1

xix
⊤
i = −π (�̂ + µ̂µ̂⊤).

ξ̂ = ∇F∗
�(η̂).

η = ∇F�(ξ).

pψ(x) := exp

(

−
D∑

i=0

ψiti(x)

)

.
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natural parameter which includes the log-nor-
malizer in its first coefficient ψ0.

Let Ki(ψ) := Epθ [ti(x)] = ηi denote the set 
of D + 1 non-linear equations for i ∈ {0, . . . ,D} 
(with t0(x) = 1 and η0 = 1 ). The method of31 
converts iteratively pη to pψ using an approxi-
mate Newton’s method for solving the sys-
tem of equations Ki(ψ) = ηi . We initialize ψ(0)

i  
for i ∈ {1, . . . ,D} and calculate numerically 
ψ

(0)
0 = F(ψ(0)).

At iteration t with current estimate 
ψ(t) , we use the following first-order Taylor 
approximation:

Let H(ψ) denote the (D + 1)× (D + 1) matrix:

We have

We update as follows:

We implemented this method for d-variate dis-
crete normal distributions with D = d(d+3)

2  and 

t1(x) = x1, . . . , td(x) = xd , td+1(x) = − 1
2
x1x1,

td+2(x) = − 1
2
x1x2, . . . , tD(x) = − 1

2
xdxd . We 

approximated Hij = −Epψ [ti(x)tj(x)] of Eq. 5 
using the theta ellipsoid integer lattice points.

By definition, the d-variate standard discrete 
normal distribution N

Zd (0, I) has zero mean 
and identity covariance matrix: Its correspond-
ing natural parameters ξstd can be approximated 
numerically as ξstd ≃ (0, 0.1591549× I)5, where 
I denotes the d × d identity matrix.

Reciprocally, given a natural parameter ξ , we 
may estimate its corresponding dual moment 
parameter η = ∇F(ξ) = Epξ [t(x)] . We can either 
use derivatives of F(ξ) (e.g., the derivatives of 
the Riemann theta function13), or estimate the 
parameter as η̃ = 1

m

∑m
i=1 t(vi) where v1, . . . , vm 

are m i.i.d variates sampled from pξ . Sampling 
from multivariate discrete normal distributions 
is studied in23, 33.

Ki(ψ) ≈ Ki(ψ
(t))+ (ψ − ψ(t))⊤∇Ki(ψ

(t)).

H(ψ) :=
[

∂

∂ψj
Ki(ψ)

]

ij

.

(5)Hij(ψ) = Hji(ψ) = −Epψ [ti(x)tj(x)].

(6)

ψ(t+1) = ψ(t) +H−1(ψ(t))






η0 − K0(ψ
(t))

...

ηD − KD(ψ
(t))




.

3 �A�Formula�for the�Kullback–Leibler�
Divergence�Between�Lattice�Gaussian�
Distributions

The Kullback–Leibler divergence (KLD, Eq. 2.26 
of26, page 19) between two pmfs r(x) and s(x) 
with support X  is defined by

The KLD is also called the relative entropy 
because it can be expressed as the difference 
between the cross-entropy and the entropy:

where H[r : s] denotes the cross-entropy

and H [r] = H [r : r] is Shannon’s entropy.
It was shown in34 that the cross-entropy 

between two densities pξ and pξ ′ of an exponen-
tial family can be expressed as

In particular, when ξ ′ = ξ , we get

Hence, we get the following propositions:

Proposition 1 The cross-entropy between two 
discrete normal distributions pξ ∼ N�(µ,�) and 
pξ ′ ∼ N�(µ

′,�′) is

Proposition 1 generalizes Proposition 4.4 of5.

Proposition 2 The Kullback–Leibler diver-
gence between two lattice Gaussian distributions 
pξ ∼ N�(µ,�) and p′ξ ∼ N�(µ

′,�′) is:

Notice that we use the mixed (�, ξ)-param-
eterizations in the above formula. We now con-
sider two fast approximation techniques that 
bypass the need of the �-parameterization.

DKL[r : s] :=
∑

x∈X
r(x) log

r(x)

s(x)
.

DKL[r : s] = H [r : s] −H [r],

H [r : s] := −
∑

x∈X
r(x) log s(x),

H [pξ : pξ ′ ] = F�(ξ
′)−

〈
ξ ′, η

〉
.

H [pξ : pξ ] = H [pξ ] = F�(ξ)− �ξ , η� = −F∗
�(η).

(7)
H [pξ : pξ ′ ] = log θ�(ξ

′)− 2πµ⊤ξ ′1

+ π tr
(

ξ ′2(� + µµ⊤)
)

.

(8)

DKL[pξ : pξ ′ ] = log

(
θ�(ξ

′)
θ�(ξ)

)

− 2πµ⊤(ξ ′1 − ξ1)

+ π tr
(

(ξ ′2 − ξ2)(� + µµ⊤)
)

.
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4 �Approximating�and Estimating�the�
Kullback–Leibler�Divergence

4.1  Approximating the Kullback–Leibler 
Divergence via Rényi α‑Divergences

The Rényi α-divergence24 between pmf r(x) and 
pmf s(x) on support X  is defined for any posi-
tive real α  = 1 by

When both pmfs are from the same discrete 
exponential family with log-normalizer F(ξ) , 
the Rényi α-divergence amounts to a α-skewed 
Jensen divergence35, 36 between the correspond-
ing natural parameters:

where

Indeed, let

Then we have the following lemma:

Proposition 3 For two pmfs pξ and pξ ′ of a dis-
crete exponential family with log-normalizer F(ξ) 
with αξ + βξ ′ ∈ � , we have

Proof We have

since 
∑

x∈X pαξ+βξ ′(x) = 1 when αξ + βξ ′ ∈ � . 
 �

Thus we get the following proposition:

Dα[r : s] :=
1

α − 1
log

(
∑

x∈X
r(x)αs(x)1−α

)

,

= 1

α − 1
log

(

Es

[(
r(s)

s(x)

)α])

,

(α > 0,α �= 1).

Dα[pξ : pξ ′ ] =
1

1− α
JF ,α(ξ : ξ ′),

JF ,α(ξ : ξ ′) :=αF(ξ)+ (1− α)F(ξ ′)

− F(αξ + (1− α)ξ ′).

Iα,β [r : s] =
∑

x∈X
r(x)αs(x)β , α,β ∈ R.

Iα,β [pξ : pξ ′ ] = exp
(
F(αξ + βξ ′)

−(αF(ξ)+ βF(ξ ′))
)
.

Iα,β [pξ : pξ ′ ] =
∑

x∈X
exp(�t(x),αξ � − αF(ξ))

exp(
〈
t(x),βξ ′

〉
− βF(ξ ′)),

=eF(αξ+βξ ′)−(αF(ξ)+βF(ξ ′))

∑

x∈X
e�t(x),αξ+βξ ′�−F(αξ+βξ ′)

︸ ︷︷ ︸

=1

,

Proposition 4 The Rényi α-divergence between 
two Gaussian lattice distributions pξ and pξ ′ for 
α > 0 and α  = 1 is

Proof We have

Plugging log θ�(αξ + (1− α)ξ ′) = (α + 1− α)

log θ�(αξ + (1− α)ξ ′) in the right-hand-side 
equation yields the result. Notice that we can also 
express equivalently the Rényi divergences as

�

When α = 1
2 , Rényi α-divergence amounts to 

twice the symmetric Bhattacharyya diver-
gence37: D 1

2
[r : s] = 2DBhattacharyya[r, s] with:

The Bhattacharyya divergence is the negative 
logarithm of the Bhattacharyya coefficient:

and the squared Hellinger divergence is related 
to the Bhattacharyya coefficient as follows:

Thus we get the following proposition:

Proposition 5 The squared Hellinger distance 
between two lattice Gaussian distributions pξ and 
pξ ′ is

Now, the Rényi α-divergences tend asymp-
totically to the KLD when α → 1 . Hence in 
practice, we can approximate the KLD between 

(9)

Dα[pξ : pξ ′ ] =
1

1− α

(

α log
θ�(ξ)

θ�(αξ + (1− α)ξ ′)

+(1− α) log
θ�(ξ

′)
θ�(αξ + (1− α)ξ ′)

)

.

Dα[pξ : pξ ′ ] =
1

1− α

(
α log θ�(ξ)+ (1− α)

log θ(ξ ′)− log θ�(αξ + (1− α)ξ ′)
)
.

Dα[pξ : pξ ′ ] =
1

1− α
log

θ�(ξ)
αθ�(ξ

′)1−α

θ�(αξ + (1− α)ξ ′)
.

DBhattacharyya[r, s] := − log

(
∑

x∈X

√

r(x)s(x)

)

.

ρBhattacharyya[r, s] :=
∑

x∈X

√

r(x)s(x),

D
2
Hellinger[r, s] =

1

2

∑

x∈X
(
√

r(x)−
√

s(x))2

= 1− ρBhattacharyya[r, s].

D2
Hellinger[pξ , pξ ′ ] = 1−

θ�

(
ξ+ξ ′
2

)

√
θ�(ξ)θ�(ξ ′)

.
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two lattice Gaussians distributions by the Rényi 
α-divergence for α = 1− ǫ for sufficient small 
value of ǫ  = 0.

Proposition 6 The Kullback–Leibler divergence 
between two lattice Gaussian distributions pξ and 
pξ ′ can be approximated by the Rényi α-divergence 
for α = 1− ǫ and ǫ  = 0 close to 0:

Let �ǫ(ξ : ξ ′) :=
∣
∣DKL[pξ : pξ ′ ] − D1−ǫ [pξ : pξ ′ ]

∣
∣ 

denote the absolute value of the error of the 
approximation. Since DKL[pξ : pξ ′ ] = BF�(ξ

′ : ξ) 
and D1−ǫ[pξ : pξ ′ ] = 1

ǫ
JF�,1−ǫ(ξ : ξ ′) , we have:

In practice, the error �ǫ(ξ : ξ ′) is also related to 
the numerical errors incurred when calculating 
approximations of Theta functions13.

Since Rényi α-divergences are non-decreas-
ing with α24, we obtained both lower and upper 
bounds of the KLD.

4.2  Approximating the Kullback–
Leibler Divergence via Projective γ
‑Divergences

The γ-divergences25, 38 between two pmfs p(x) 
and q(x) defined over the support X  for a real 
γ > 1 is defined by:

The γ-divergences are projective divergences, i.e., 
they satisfy the following identity:

We use the vector notation �D to indicate that this 
divergence is projective. Thus let us rewrite 
p(x) = p̃(x)

Zp
 and q(x) = q̃(x)

Zq
 where p̃(x) and q̃(x) 

DKL[pξ : pξ ′ ] ≃ D1−ǫ[pξ : pξ ′ ]

= 1

ǫ
JF�,1−ǫ(ξ : ξ ′) = 1

ǫ
log

θ�(ξ)
1−ǫθ�(ξ

′)ǫ

θ�((1− ǫ)ξ + ǫξ ′)

�ǫ(ξ : ξ ′) =
∣
∣
∣
∣
log

θ�(ξ
′)

θ�(ξ)
− 1

θ�(ξ)

〈
ξ ′ − ξ ,∇θ�(ξ)

〉

−1

ǫ
log

θ�(ξ)
1−ǫθ�(ξ

′)ǫ

θ�((1− ǫ)ξ + ǫξ ′)

∣
∣
∣
∣
,

=
∣
∣
∣
∣

1

ǫ
log

θ�((1− ǫ)ξ + ǫξ ′)
θ�(ξ)

−
〈
ξ ′ − ξ ,∇θ�(ξ)

〉∣
∣.

�Dγ [p : q] := 1

γ (γ − 1)

log

((∑

x∈X pγ (x)
) (∑

x∈X qγ (x)
)γ−1

(∑

x∈X p(x)qγ−1(x))
)γ

)

,

(γ > 1).

�Dγ [p : p′] = �Dγ [�p : �′p′], (∀�, �′ > 0).

are unnormalized pmfs, and Zp and Zq their 
respective normalizers. Then we have

Let us define

Then the γ-divergence can be written as:

Consider p = pξ and q = pξ ′ two pmfs belonging 
to the lattice Gaussian exponential family, and let

Provided that ξ + (γ − 1)ξ ′ ∈ � , we have follow-
ing the proof of Proposition 3 that

where F�(ξ) = log θ�(ξ) denotes the cumulant 
function of the Gaussian distributions on lattice 
� . That is, we have

and therefore, we can express the γ-divergences as

Notice that the exact values of the infinite sum-
mations Ĩγ

(
ξ : ξ ′

)
 depend on the Riemann theta 

function.
Now, the γ-divergences tend asymptotically to 

the Kullback–Leibler divergence between normal-
ized densities when γ → 125, 38: 

limγ→1
�Dγ [p̃ : q̃] = DKL

[
p̃
Zp

: q̃
Zq

]

 . Let us notice 

that the KLD is not a projective divergence, and 
that for small enough γ > 1 , we have 
ξ + (γ − 1)ξ ′ always falling inside the natural 
parameter space � . Moreover, we can approxi-
mate the infinite summation using a finite region 
of integer lattice points Rξ ,ξ ′:

�Dγ [p : p′] = �Dγ [p̃ : p̃′].

Iγ [p : q] :=
∑

x∈X
p(x)q(x)γ−1.

�Dγ [p : q] = �Dγ [p̃ : q̃]

= 1

γ (γ − 1)
log

(
Iγ [p̃ : p̃] Iγ [q̃ : q̃]γ−1

Iγ [p̃ : q̃]γ
)

.

Ĩγ
(
ξ : ξ ′

)
= Iγ

[
p̃ξ : p̃ξ ′

]
.

Ĩγ
(
ξ : ξ ′

)
=
∑

l∈�
p̃ξ (l)p̃ξ ′ (l)

γ−1,

=
∑

l∈�
exp(

〈
ξ + (γ − 1)ξ ′, t(x)

〉
),

= exp(F�(ξ + (γ − 1)ξ ′))
∑

l∈�
pξ+(γ−1)ξ ′ (l)

︸ ︷︷ ︸

=1

,

= exp(F�(ξ + (γ − 1)ξ ′)),

Ĩγ
(
ξ : ξ ′

)
= θ�(ξ + (γ − 1)ξ ′),

(10)

�Dγ [pξ : pξ ′ ] =
1

γ (γ − 1)
log

(
θ�(γ ξ) θ�(γ ξ

′)γ−1

θ�(ξ + (γ − 1)ξ ′)γ

)

.
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For example, we can use the theta ellip-
soids12 Eξ and Eξ ′ used to approximate θ(ξ) 
and θ(ξ ′) , respectively (Fig. 3): We choose 
Rξ ,ξ ′ = (Eξ ∪ Eξ ′) ∩ Z

d . In practice, this approxi-
mation of the Iγ summations scales well in high 
dimensions. Overall, we get our approximation of 
the KLD between two lattice Gaussian distribu-
tions summarized in the following proposition:

Proposition 7 The Kullback–Leibler divergence 
between two lattice Gaussian distributions pξ and 
pξ ′ can be approximated:

Ĩγ ,Rξ ,ξ ′ (ξ : ξ ′) :=
∑

x∈Rξ ,ξ ′
p̃ξ p̃ξ ′(x)

γ .

(11)

DKL[pξ : pξ ′ ] ≈ �Dγ [pξ : pξ ′ ]

= 1

γ (γ − 1)
log

(

(Ĩγ ,Rξ (ξ : ξ) Ĩγ ,Rξ ′ (ξ ′ : ξ ′)γ−1

Ĩγ ,Rξ ,ξ ′ (ξ : ξ ′)γ

)

,

for γ > 1 close to 1 (say, γ = 1+ 10−5 ), where 
Rξ and Rξ ′ denote the integer lattice points fall-
ing inside the theta ellipsoids Eξ and Eξ ′ used 
to approximate the theta functions12 θ�(ξ) and 
θ�(ξ

′) , respectively.
Table 1 summarizes the various closed-for-

mula obtained for the statistical divergences 
between lattice Gaussian distributions consid-
ered in this paper.

Other statistical divergences like the projec-
tive Hölder divergences39 between lattice Gauss-
ian distributions can be obtained similarly in 
closed-form:

�DH
α,γ [r : s] :

=
∣
∣
∣
∣
∣
log

( ∑

x∈X r(x)γ /αs(x)γ /β

(∑

x∈X r(x)γ
)1/α(∑

x∈X s(x)γ
)1/β

)∣
∣
∣
∣
∣
,

(

γ > 0,
1

α
+ 1

β
= 1

)

,

Table 1: Summary of statistical divergences with corresponding formula for lattice Gaussian distributions 
with partition function θ�(ξ) . Ordinary parameterization �(ξ) = (µ = Epξ [X],� = Covpξ [X]) for X ∼ N�(ξ).

Divergence Definition

Closed-form formula for lattice Gaussians

Kullback–Leibler divergence DKL[pξ : pξ ′ ] =
∑

l∈� pξ (l) log
pξ (l)

pξ ′ (l)

DKL[pξ : pξ ′ ] = log
(
θ�(ξ

′)
θ�(ξ)

)

              −2πµ⊤(ξ ′1 − ξ1)+ π tr
(
(ξ ′2 − ξ2)(� + µµ⊤)

)

squared Hellinger divergence D2
Hellinger[pξ : pξ ′ ] = 1

2

∑

l∈�(
√

pξ (l)−
√

pξ ′ (l))
2

D2
Hellinger[pξ : pξ ′ ] = 1−

θ�

(
ξ+ξ ′
2

)

√
θ�(ξ)θ�(ξ ′)

Rényi α-divergence Dα[pξ : pξ ′ ] = 1
α−1

log
(∑

l∈� pξ (l)
αpξ ′ (l)

1−α
)

(α > 0,α  = 1) Dα[pξ : pξ ′ ] = α
1−α

log θ�(ξ)
θ�(αξ+(1−α)ξ ′) + log θ�(ξ

′)
θ�(αξ+(1−α)ξ ′)

limα→1 Dα[pξ : pξ ′ ] = DKL[pξ : pξ ′ ]
γ-divergence

�Dγ [pξ : pξ ′ ] = 1
γ (γ−1)

log

((
∑

l∈� p
γ
ξ (x)

)(
∑

l∈� p
γ

ξ ′ (l)
)γ−1

(
∑

l∈� pξ (l)p
γ−1

ξ ′ (l))
)γ

)

(γ > 1) �Dγ [pξ : pξ ′ ] = 1
γ (γ−1)

log
(
θ�(γ ξ) θ�(γ ξ

′)γ−1

θ�(ξ+(γ−1)ξ ′)γ

)

limγ→1
�Dγ [pξ : pξ ′ ] = DKL[pξ : pξ ′ ]

Hölder divergence �DH
α,γ [r : s] :=

∣
∣
∣
∣
log

(
∑

x∈X r(x)γ /α s(x)γ /β

(
∑

x∈X r(x)γ )
1/α

(
∑

x∈X s(x)γ )
1/β

)∣
∣
∣
∣

(γ > 0 , 1
α
+ 1

β
= 1) �DH

α,γ [pξ : pξ ′ ] =
∣
∣
∣
∣
∣
log

θ�(γ ξ)
1
α θ�(γ ξ

′)
1
β

θ�(
γ
α
ξ+ γ

β
ξ ′)

∣
∣
∣
∣
∣

Cauchy–Schwarz divergence �DCS[r : s] := − log
∑

x∈X r(x)s(x)√
(
∑

x∈X r2(x)) (
∑

x∈X s2(x))

(Hölder with α = β = γ = 2) �DCS[pξ : pξ ′ ] = log
√
θ�(2ξ)θ�(2ξ ′)
θ�(ξ+ξ ′)
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for α, γ > 0 . The Hölder divergences include 
the Cauchy–Schwarz divergence40 for 
γ = α = β = 2:

Since the natural parameter space � is a cone39, 
we get:

Thus we get the following closed-form for the 
Cauchy–Schwarz divergence between two lattice 
Gaussian distributions:

5 �Bayesian�Hypothesis�Testing�
and Chernoff�Information

We conclude with an application of the KLD 
in statistics which highlights the information-
geometric structure of the exponential family41. 
Chernoff information characterizes the error 
exponent in Bayesian hypothesis testing (see Sec-
tion 11.9 of26, page 384) and is also widely used in 
information fusion27. The Chernoff information 
between two pmfs r(x) and s(x) is defined by

Let α∗ denotes the best exponent: 
α∗ = arg minα∈[0,1]

∑

x∈X rα(x)s1−α(x) . When 
r(x) = pξ (x) and s(x) = pξ ′(x) are pmfs of a dis-
crete exponential family with cumulant function 
F(ξ) , we have (Theorem 1 of42):

where ξ∗ := α∗ξ + (1− α)ξ ′ , and BF (ξ : ξ ′) is 
the Bregman divergence43:

Thus calculating the Chernoff information 
amounts to first find the best value α∗ and sec-
ond to compute DKL[pξ∗ : pξ ] or equivalently 
DKL[pξ∗ : pξ ′ ].

By modeling the exponential family as a mani-
fold G� = {pξ : ξ ∈ �} equipped with the Fisher 
information metric41, 44, we can characterize geo-
metrically the exact α∗ (Theorem 2 of42) from the 

�DCS[r : s] := − log

∑

x∈X r(x)s(x)
√

(
∑

x∈X r2(x)) (
∑

x∈X s2(x))
.

�DH
α,γ [pξ : pξ ′ ] =

∣
∣
∣
∣
∣
∣

log
θ�(γ ξ)

1
α θ�(γ ξ

′)
1
β

θ�(
γ
α
ξ + γ

β
ξ ′)

∣
∣
∣
∣
∣
∣

.

�DCS[pξ : pξ ′ ] = log

√
θ�(2ξ)θ�(2ξ ′)
θ�(ξ + ξ ′)

.

DChernoff [r, s] := − min
α∈[0,1]

log

(
∑

x∈X
rα(x)s1−α(x)

)

.

DChernoff [pξ , pξ ′ ] = BF (ξ : ξ∗) = BF (ξ
′ : ξ∗),

BF (ξ
′ : ξ) := F(ξ ′)− F(ξ)−

〈
ξ ′ − ξ ,∇F(ξ)

〉
.

unique intersection of an exponential geodesic 
γ e
ξ ,ξ ′ with a mixture bisector Bim(ξ , ξ ′) where

Thus we have

This geometric characterization yields a fast 
numerical approximation technique to obtain α∗ 
within a prescribed machine precision error42. 
Since the lattice Gaussian distributions form an 
exponential family with a dually flat structure41 
(also called a Hessian structure44), we can apply 
the above technique derived from information 
geometry to calculate numerically the Chernoff 
information between two lattice Gaussian dis-
tributions. More precisely, the geodesics γ e are 
called e-geodesics and are defined with respect to 
the exponential connection ∇e : The γ e-geodes-
ics are visualized as straight line segments in the 
natural parameter coordinate system. The mix-
ture bisector Bim is an autoparallel submanifold 
with respect to ∇m , the mixture connection41: 
The mixture bisectors are visualized as straight 
line segments in the moment parameter coordi-
nate system45.

As a final remark, let us state that knowing 
that the KLD between two lattice Gaussian distri-
butions amounts to a Bregman divergence is also 
helpful for a number of tasks like clustering46: For 
example, the left-sided KLD centroid of n lattice 
Gaussian distributions pξ1 , . . . , pξn amounts to a 
right-sided Bregman centroid which is always the 
center of mass of the natural parameters47:

6 �Conclusion�and Discussion
In this paper, we have considered the family 
of real-valued lattice Gaussian distributions 
(Definition 1) as a discrete exponential fam-
ily defined on a lattice support. We reported in 
Sect. 2.3 a Newton’s method to convert numeri-
cally a moment parameter to its correspond-
ing natural parameter. We then give formula to 
calculate the cross-entropy (Proposition 1), the 

γ e

ξ ,ξ ′ :={p�ξ+(1−�)ξ ′ ∝ p
�
ξp

1−�

ξ ′ : � ∈ (0, 1)},
Bim(ξ , ξ

′) :={pω ∈ M : DKL[pω : pξ ] = DKL[pω : pξ ′ ]}.

pξ∗ = γ e
ξ ,ξ ′ ∩ Bim(ξ , ξ

′).

ξ∗ = arg min
ξ

n∑

i=1

1

n
DKL[pξ : pξi ]

= arg min
ξ

n∑

i=1

1

n
BF (ξi : ξ),

⇒ξ∗ = 1

n

n∑

i=1

ξi.
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Kullback–Leibler divergence (Proposition 2), 
and the Rényi α-divergences (Proposition 4) 
between two lattice Gaussian distributions. 
Furthermore, we showed how to approximate 
numerically the Kullback-Leibler divergence 
between two lattice Gaussian distributions 
using either the Rényi α-divergences (Proposi-
tion 6) or the γ-divergences (Proposition 7). 
Finally, in Sect. 5, we consider the exponential 
family manifold structure41 of the lattice Gauss-
ian family, and show how to compute the Cher-
noff information which characterizes the best 
error exponent in Bayesian hypothesis testing26.

We leave for future work the analysis of the 
approximation errors and corresponding time 
complexities for computing the various sta-
tistical divergences reported in Table 1 when 
we approximate the Riemann Theta functions 
θ�(ξ) and θ�(ξ ′) with error ǫ > 0 (say, using the 
guaranteed approximation error of Theorem 2 
of9). In practice, approximating Riemann Theta 
functions scale up to dimensions 50 to 60. In 
high dimensions, one may also consider parsi-
monious models48 for the matrix parameter ξ2 
of lattice Gaussian distributions (which other-
wise shall require a quadratic number of coef-
ficients with the dimension to define). Another 
open question is how to choose the finite sub-
sets of lattice points Rξ , Rξ ′ and Rξ ,ξ ′ so that we 
get an upper bound ǫ > 0 of the approxima-
tion error of the Kullback-Leibler divergence 
DKL[pξ : pξ ′ ] . What is the best precision-com-
putation tradeoff one can achieve to guaran-
tee an ǫ-approximation of the Kullback-Leibler 
divergence?
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