
Chapter 8
Hierarchical Clustering

8.1 Agglomerative Versus Divisive Hierarchical Clustering,
and Dendrogram Representations

Hierarchical clustering is yet another technique for performing data exploratory
analysis. It is an unsupervised technique. In the former clustering chapter, we have
described at length a technique to partition a data-set X = {x1, . . . , xn} into a col-
lection of groups called clusters X = �k

i=1Gi by minimizing the k-means objective
function (i.e., the weighted sum of cluster intra-variances): in that case, we dealt with
flat clustering that delivers a non-hierarchical partition structure of the data-set. To
contrast with this flat clustering technique, we cover in this chapter another widely
used clustering technique: namely, hierarchical clustering.

Hierarchical clustering consists in building a binary merge tree, starting from
the data elements stored at the leaves (interpreted as singleton sets) and proceed by
merging two by two the “closest” sub-sets (stored at nodes) until we reach the root
of the tree that contains all the elements of X . We denote by Δ(Xi , X j ) the distance
between any two sub-sets of X , called the linkage distance. This technique is also
called agglomerative hierarchical clustering since we start from the leaves storing
singletons (the xi ’s) and merge iteratively subsets until we reach the root.

The graphical representation of this binary merge tree is called a dendrogram.
This word stems from the greek dendron that means tree and gramma the means
draw. For example, to draw a dendrogram, we can draw an internal node s(X ′) con-
taining a subset X ′ ⊆ X at height h(X ′) = |X ′|, where | · | denotes the cardinality
of X ′, that is, its number of elements. We then draw edges between this node s(X ′)
and its two sibling nodes s(X1) and s(X2) with X ′ = X1 ∪ X2 (and X1 ∩ X2 = ∅).
Figure8.1 depicts conceptually the process of drawing a dendrogram. There exists
several ways to visualize the hierarchical structures obtained by hierarchical cluster-
ing. For example, we may use special Venn diagrams using nested convex bodies, as
depicted in Fig. 8.2.

Figure8.3 shows such an example of a dendrogram that has been drawn from a
agglomerative hierarchical clustering computed on a data-set provided in the free
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Fig. 8.1 Drawing a dendrogram by embedding the nodes on the plane using a height function
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Fig. 8.2 Several visualizations of a dendrogram: dendrogram (left) and equivalent Venn diagram
(right) using nested ellipses (and disks)

multi-platform R language1 (GNU General Public License). The (short) R code for
producing this figure is the following:

d <− dist (as .matrix(mtcars) ) # find distance matrix
hc <− hclust (d,method="average" )
plot (hc , xlab="x" , ylab="height" , main="Hierarchical clustering (average

distance )" , sub="(cars )")

We have chosen the Euclidean distance D(xi , x j ) = ‖xi − x j‖ as the basic
distance between any two elements of X , and the minimum distance as the linkage
distance for defining the sub-set distance Δ(Xi , X j ) = minx∈X,y∈X j D(x, y). Here
is an excerpt of that data-set that describes some features for the car data-set:

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1

1Download and install R from the following URL: http://www.r-project.org/.

http://www.r-project.org/
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Fig. 8.3 Example of a dendrogram for a car data-set: the data elements are stored at the leaves of
the binary merge tree

Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
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Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Notice that the visual drawing of hierarchical clusterings, dendrograms, conveys
rich information for both qualitative and quantitative evaluations of various hierar-
chical clustering techniques that we shall present below.

To contrast with agglomerative hierarchical clustering, we also have divisive hier-
archical clustering that starts from the root containing all the data-set X , and splits
this root node into two children nodes containing respectively X1 and X2 (so that
X = X1∪ X2 and X1∩ X2 = ∅), and so on recursively until we reach leaves that store
in singletons the data elements. In the remainder, we concentrate on agglomerative
hierarchical clustering (AHC) that is mostly used in applications.

8.2 Strategies to Define a Good Linkage Distance

Let D(xi , x j ) denote the elementary distance between any two elements of X (for
example, the Euclidean distance). In order to select at each stage of the hierarchical
clustering the closest pair of sub-sets, we need to define a sub-set distanceΔ(Xi , X j )

between any two sub-sets of elements. Of course, when both sub-sets are singletons
Xi = {xi } and X j = {x j }, we should have Δ(Xi , X j ) = D(xi , x j ). We present
below three such common linkage functions:

1. Single Linkage (SL):

Δ(Xi , X j ) = min
xi ∈Xi ,x j ∈X j

D(xi , x j )

2. Complete Linkage (CL) (or diameter):

Δ(Xi , X j ) = max
xi ∈Xi ,x j ∈X j

D(xi , x j )

3. Group Average Linkage (GAL):

Δ(Xi , X j ) = 1

|Xi ||X j |
∑

xi ∈Xi

∑

x j ∈X j

D(xi , x j )

Figure8.4 visualizes pictorially those three different linkage functions.
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Single Linkage
SL (minimum distance)

Complete Linkage
CL, diameter

Group Average
GA, mean distance

Fig. 8.4 Illustrating the common linkage functions defining distances between sub-sets: single
linkage, complete linkage and group average linkage

There exist many other sub-set distances Δ that are commonly called linkage
distances because they literally allow one to link sub-trees representing the sub-sets
in the dendrogram representation.

8.2.1 A Generic Algorithm for Agglomerative Hierarchical
Clustering

We summarize below the principle of the generic agglomerative hierarchical clus-
tering (AHC) for a prescribed linkage distance Δ(·, ·) (user-defined and relying on
yet another used-defined element distance):

Algorithm AHC

• Initialize for each data element xi ∈ X its cluster singleton Gi = {xi } in a list
• While there remains two elements in the list, do:

– Choose Gi and G j so that Δ(Gi , G j ) is minimized among all pairs,
– Merge Gi, j = Gi ∪ G j , and

add Gi, j to the list, and
remove Gi and G j from the list.

• Return the remaining group in the list (Groot = X ) as the dendrogram root.

Since we start from n = |X | leaves to finish with a root containing the full set
X , we perform exactly n − 1 merge operations. A straightforward implementation
of this AHC algorithm yields a cubic time complexity, in O(n3). Depending on the
linkage distance, we can optimize this naive algorithm and obtain far better time
complexities.
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Observation 4 Notice that in general the dendrogram may not be unique for a link-
age distance function: Indeed, there can be several “closest” pairs of subsets, but we
choose only one pair at each iteration and reiterate (thus breaking the symmetry, say,
by introducing a lexicographic order on the pairs). In other words, if we had applied
a permutation σ on the elements of X , and re-run the AHC algorithm, we could
have obtained another dendrogram in output. For numerical data, we can slightly
perturbate the initial data-set by adding some small random noise drawn uniformly
in (0, ε) to bypass this problem. However, for categorical data, the problem still
remains and therefore careful attention should be given to handle this problem.

The standard optimized AHC algorithm is called SLINK [1], and has a quadratic
complexity, in O(n2) time. Single-linkage AHC yields a “chaining phenomenon” in
dendrograms as depicted in Fig. 8.5. The AHC algorithmwith complete linkage (also
called diameter linkage) is called CLINK [2], and can be computed in O(n2 log n)

time. One disadvantage of complete linkage is that it is very sensitive to outliers
(that is, artifact data that should have been removed beforehand when possible—
the cleaning stage of data-sets). At first glance, the group average AHC is more
computationally costly to compute but can also be optimized as well to get a sub-
cubic time complexity. Usually, we recommend in applications the group average
AHC algorithm that does not produce chaining phenomena and is more robust to
noisy input.

8.2.2 Choosing the Appropriate Elementary Distance
Between Elements

The base distance function D(·, ·) plays a crucial role on the shape of dendrograms.
This distance function is a dissimilarity measure that evaluates how different element
xi is from element x j (for any pair of elements). Although we often use the Euclidean
distance, we can also choose other metric distances2 like the city block distance
(called the Manhattan distance or the L1-norm induced distance3):

D1(p, q) =
d∑

j=1

|p j − q j |

Recall that we use the super-script notation x = (x1, . . . , x j , . . . , xd) for an attribute
vector x with d components: the x j ’s are the coordinates of a d-dimensional vector x .

2Satisfying the symmetry (D(p, q) = D(q, p)), the law of indiscernibility (D(p, q) = 0 if and
only if p = q), and the triangular inequality (for all triples D(p, q) ≤ D(p, r) + D(q, r)). See
Sect. 8.5 that introduces ultra-metrics.
3A norm ‖.‖ induces a distance D(p, q) = ‖p − q‖.
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Fig. 8.5 Comparisons of
dendrograms obtained from
agglomerative hierarchical
clustering for three
commonly used linkage
functions: single linkage
(top), complete linkage
(middle) and group average
linkage (bottom)
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We can also use the Minkowski distances that generalize both the Euclidean dis-
tance (for m = 2) and the Manhattan distance (for m = 1):

Dm(p, q) =
⎛

⎝
d∑

j=1

|p j − q j |m
⎞

⎠

1
m

= ‖p − q‖m, m ≥ 1

When the data coordinates have different scale factors, or are correlated, we better
use the Mahalanobis distance4:

DΣ(p, q) =
√

(p − q)�Σ−1(p − q) = D2(L� p, L�q)

with the precision matrix (inverse of the covariance matrix) Σ−1 = L�L being
factorized by the Cholesky matrix (matrix L is a lower triangular matrix). That
is, the Mahalanobis distance DΣ(p, q) amounts to compute a traditional Euclidean
distance D2(L� p, L�q) after an affine change of variable: x ← L�x . Matrix Σ

is called the covariance matrix, and its inverse matrix Σ−1 is called the precision
matrix. We can estimate the covariance matrix from a data-set sample x1, . . . , xn by
computing:

Σ = 1

n − 1

n∑

i=1

(xi − x̄)(xi − x̄)�,

with x̄ = 1
n

∑n
i=1 xi the empirical mean, also called the sample mean.

For categorical data (that is non-numerical), we often use an agreement distance
like the Hamming distance:

DH (p, q) =
d∑

j=1

1[p j �=q j ]

where 1[a �=b] = 1 if and only if a �= b, and zero otherwise. That is, the Hamming
distance counts the number of times corresponding attributes are different from each
other. The Hamming distance is a metric distance.

Often, we can link a similarity measure to a dissimilarity measure, and vice-versa.
For example, considering the Hamming distance on d-dimensional binary vectors,
we can define the corresponding similarity measure by SH (p, q) = d−DH (p,q)

d (with
0 ≤ SH (p, q) ≤ 1, and maximal similarity when p = q).

There exist many other distance functions that have been used in a broad panel
of applications. Let us cite the Jaccard distance DJ (A, B) = |A∩B|

A∪B defined on sets,

4A metric distance that is symmetric and satisfies the triangle inequality.
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the edit distance for finding distance between combinatorial structures (like texts or
DNA sequences), the cosine distance Dcos(p, q) = 1 − p�q

‖p‖‖q‖ (very useful when
analyzing a corpus of texts with documents represented by a frequency histogram of
word occurrences), etc.

8.3 Ward Merging Criterion and Centroids

One can also take a sub-set distanceΔ according to the centroids of the sub-sets. This
criterion allows us to implement a variance minimization process. This yields the
Ward linkage function: to merge Xi (ni = |Xi |) with X j (n j = |X j |), we consider
the following Ward criterion:

Δ(Xi , X j ) = ni n j

ni + n j
‖c(Xi ) − c(X j )‖2

where c(X ′) denotes the centroid of subset X ′ ⊆ X : c(X ′) = 1
|X ′|

∑
x∈X ′ x (we

may consider weighted points too). Observe that the distance between two elements
induced from the sub-set distanceΔ is merely half of the squared Euclidean distance:
Δ({xi }, {x j }) = D(xi , x j ) = 1

2‖xi − x j‖2. Figure8.6 illustrates visually the differ-
ence between the dendrograms obtained from the group average AHC and from the
Ward AHC (of minimal variance).

Notice that we can always define the similarity S(Xi , X j ) between two sub-sets
by defining S(Xi , X j ) = −Δ(Xi , X j ). The merging steps of a path sequence of
length l in the tree dendrogram are said monotonous when we have the property
that S1 ≥ S2 ≥ · · · ≥ Sl . A hierarchical clustering is said non-monotonous when
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Fig. 8.6 Comparing dendrograms obtained for (a) the group average linkage, and (b) Ward linkage
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Fig. 8.7 Example of an inversion phenomenon in a dendrogram obtained when using Ward’s
criterion for hierarchical clustering on a toy data-set of a triple of elements

there exists at least one inversion, say Si < Si+1, on a path from the leaves to the
root of the dendrogram. The Ward AHC is not monotonous because there can exist
inversions. However, the single linkage, complete linkage and group average linkage
are all guaranteed to be monotonous.

When we draw the nodes of the merge tree (i.e., nodes of the dendrogram) using a
height function defined as the similarity, an inversion in a dendrogram can be noticed
graphically by the fact that one horizontal height line can be lower than another
horizontal height line for a former merging operation. Indeed, this contradicts the
fact the nodes on a path from a leaf to the root should be y-monotonous. Figure8.7
illustrates an inversion in a dendrogram.

8.4 Retrieving Flat Partitions from Dendrograms

From a dendrogram, we can extract many different flat partitions. Figure8.8 illus-
trates this concept by displaying two constant-height cuts that induce respective
partitions of the data sets. Note that the cutting path on the dendrogram does not
need to be at constant height in general (see Sect. 8.8).

8.5 Ultra-metric Distances and Phylogenetic Trees

A distance function D(·, ·) is called a metric if it satisfies the following three axioms:

Law of indiscernibility. D(x, y) ≥ 0 with equality iff. x = y,
Symmetry. D(x, y) = D(y, x)

Triangular inequality. D(x, y) ≤ D(x, z) + D(z, y),

The Euclidean distance and the Hamming distance are two examples of metric
distances. Beware that the squared Euclidean distance is not a metric although it is
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Fig. 8.8 Retrieving flat partitions from a dendrogram: we choose the height for cutting the den-
drogram. At a given height, we obtain a flat clustering (that is a partition of the full data-set). The
cut path does not need to be at a constant height. Thus a dendrogram allows one to obtain many flat
partitions. Here, we show two different cuts at constant height, for h = 0.75 and h = 1.8

symmetric and satisfies the law of indiscernibility. Indeed, the triangular inequality
is not anymore satisfied when we take the square of the Euclidean distance (however,
recall that the squaredEuclidean distance is used to define the potential function of the
k-means inflat clustering in order to get centroids andminimizes of cluster variances).
The law of indiscernibility can further be split into two sub-axioms: The law of non-
negativity D(p, q) ≥ 0, and the law of reflexivity: D(p, q) = 0 ⇔ p = q.

Hierarchical clustering is tightly linked to a class of distances called the class of
ultra-metrics. A distance is said ultra-metric if it is a metric and further ensures that:

D(x, y) ≤ max
z

(D(x, z), D(z, y)).

Let us now explain the link between ultra-metrics and hierarchical clustering:
In evolution theory, species evolve with time, and the distance between species is
represented by a so-called phylogenetic tree. Let us write for short Di, j = D(xi , x j ).
A tree is said additive if and only if we can attach to each edge a weight so that for
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each pair of leaves, the distance between them is equal to the sum of the distances
of the edges linking them. A tree is said ultra-metric when the distance between two
leaves, say i and j , and their common ancestor, say k, is equal: Di,k = D j,k . We
can draw an ultra-metric tree by choosing the height distance 1

2 Di, j for visualizing a
dendrogram. This distance can be interpreted s a clock time among all the elements
of X (for species, it represents the biological time).

The group average AHC guarantees to produce an ultra-metric tree. We shall
call this hierarchical clustering that embeds the nodes of the tree with its height the
Unweighted Pair Group Method using arithmetic Averages algorithm (or UPGMA,
for short). We write in pseudo-code this algorithm below:

Algorithm UPGMA :

• For all i , initialize xi to its cluster Ci = {xi }, and set this node leaf to height 0.
• While there remains at least two clusters:

– Find the closest pair of clusters Ci and C j that minimizes the group average
distance Δi, j ,

– Define a new cluster Ck = Ci ∪ C j and compute the distance Δk,l for all l,
– Add a node k to the children Ci and C j , and set the height of that node to

1
2Δ(Ci , C j ),

– Remove both Ci and C j from the cluster list, and reiterate until we get two
remaining clusters.

• For the last two clusters Ci and C j , set the root node at height 1
2Δ(Ci , C j ).

Theorem 9 When the matrix distance M = [Di, j ]i, j with Di, j = D(xi , x j ) of a
data-set X satisfies the ultra-metric property, then there exists a unique ultra-metric
tree that can be built with the UPGMA algorithm.

Phylogenetic trees are often used when modeling the evolution of species: We
associate to the vertical axis the chronological time of evolution, as depicted in
Fig. 8.9. The UPGMA allows to build such an ultra-metric tree. However let us
emphasize that data-sets are often noisy and therefore the matrix distance is often not
ultra-metric since corrupted. Another drawback is that we need to consider thematrix
of pairwise distances that requires a quadratic memory space, and can therefore only
be limited to reasonable size data-sets (but not big data as is!).

8.6 Notes and References

There exist many hierarchical clustering algorithms. Let us cite SLINK [1] (Single
Linkage, 1973), CLINK [2] (Complete Linkage, 1977), and a general survey [3] pro-
viding a high-level abstraction of hierarchical clustering. Although that flat clustering
minimizing the k-means objective function is NP-hard (even in the plane), it has been
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Fig. 8.9 Dendrograms and phylogenetic trees for visualizing the evolution of species

recently proved (2012) that we can extract from a single linkage hierarchical cluster-
ing the optimal k-means clustering provided that some stability criterion is satisfied,
see [4] (the extraction of theflat partition is performedusing dynamic programming to
find the best non-constant height dendrogram cut). The hierarchical clustering that
minimizes Ward’s variance criterion and its related criteria have been thoroughly
investigated in [5, 6]. Various hierarchical clustering algorithms (including SLINK,
CLINK and Ward) can be unified in the generic Lance-Williams framework, see
[7] and Sect. 8.8. Uniqueness and monotonic properties of hierarchical clustering
have been studied in [8]. Although that hierarchical clustering algorithms are a pri-
ori harder to parallelize compare to flat clustering techniques (like k-means), let us
mention this work [9] that reports an efficient parallel algorithm. We refer to [10] for
an explanation of the divisive hierarchical clustering technique that maximizes the
notion of modularity. Distances is at the core of many algorithms: we recommend
the encyclopedia of distances [11] for a compact review of main distances.

8.7 Summary

Agglomerative hierarchical clustering differs from partition-based clustering since it
builds a binary merge tree starting from leaves that contain data elements to the root
that contains the full data-set. The graphical representation of that tree that embeds the
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nodes on the plane is called a dendrogram. To implement a hierarchical clustering
algorithm, one has to choose a linkage function (single linkage, average linkage,
complete linkage, Ward linkage, etc.) that defines the distance between any two
sub-sets (and rely on the base distance between elements). A hierarchical clustering
is monotonous if and only if the similarity decreases along the path from any leaf
to the root, otherwise there exists at least one inversion. The single, complete, and
average linkage criteria guarantee the monotonic property, but not the often used
Ward’s criterion. From a dendrogram, one can extract many data-set partitions that
correspond to flat clustering output. Phylogenetic trees used to model the evolution
of species are ultra-metric trees. Hierarchical clustering using the average linkage
guarantees to build an ultra-metric tree when the base distance between any two
elements is ultra-metric.

8.8 Exercises

Exercise 1 (Checking the ultra-metric property of a distance matrix) Let M denote
a square matrix of dimension n × n that stores at index (i, j) the distance D(xi , x j )

between element xi and element x j .

• Design an algorithm that checks whether the distance matrix satisfies the ultra-
metric property or not,

• What is the time complexity of your algorithm?

Exercise 2 (Euclidean metric distance and Hamming metric distance)

• Prove that the Euclidean distance is a metric, but not the squared Euclidean dis-
tance.

• Prove that the Hamming distance satisfies the axioms of a metric.

• Prove that the distance D(p, q) =
(∑d

j=1 |p j − q j |m
) 1

m
for 0 < m < 1 is not

a metric (when m ≥ 1, recall that it is the m-norm induced Minkowski metric
distance).

Exercise 3 (Combining flat clustering with hierarchical clustering) Let X = {x1,
. . . , xn} be n data elements, each datum has d attributes.

• Give an algorithm that clusters hierarchically the data, and retrieve a partition of
at most l elements (for large l, it produces an over-clustering), and use after a
k-means algorithm on the centroids of these groups. What kind of applications
can you think of that strategy?

• What is the complexity of your algorithm? Explain its advantages compare to only
hierarchical clustering or to only partition-based clustering?
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Exercise 4 (Hierarchical clustering of Lance and Williams [7])

• State the hierarchical clustering algorithm using the following shortcut notations
Di j = Δ(Ci , C j ) and D(i j)k = Δ(Ci ∪ C j , Ck) for disjoint groups Ci , C j and Ck .

• A hierarchical clustering belongs to the Lance-Williams family if and only if it
can be written canonically as:

D(i j)k = αi Dik + α j D jk + βDi j + γ |Dik − D jk |,
with αi , α j , β, and γ parameters depending on the size of clusters. Prove thatWard
minimum variance criterion (D(xi , x j ) = ‖xi − x j‖2) for disjoint groups Ci , C j
and Ck yields the following formula:

D(Ci ∪ C j , Ck)

= ni + nk

ni + n j + nk
D(Ci , Ck) + n j + nk

ni + n j + nk
D(C j , Ck) − nk

ni + n j + nk
D(Ci , C j ).

• Deduce that Ward’s algorithm is a particular case Lance-Williams’s generic hier-
archical clustering with the following parameterization:

αl = nl + nk

ni + n j + nk
, β = −nk

ni + n j + nk
, γ = 0.

• Prove that Lance-Williams’ algorithm unify single linkage, complete linkage and
group average linkage.

Exercise 5 (Centroid-based hierarchical clustering for an arbitrary convex distance
function) For a convex distance D(·, ·), let us define the centroid of X as the unique
minimizer of minc

∑
x∈X D(x, c). Prove that the inversion phenomenon that can

happen for Ward criterion does not happen for the Euclidean distance nor for the
Manhattan distance (two examples of convex distances).

Exercise 6 (* Retrieving the best k-means flat partition from a hierarchical cluster-
ing [4]) Given a dendrogram, one can extract many different partitions:

• How many distinct partitions can be retrieved from a dendrogram?
• For a sub-set X ′, let us denote by c(X ′) the centroid of X ′ and by v(X ′) its variance:

v(X ′) = 1
|X ′|

∑
x∈X ′ x�x − (c(X ′)�c(X ′))2. Give a dynamic programming code

for retrieving the best k-means flat clustering from a dendrogram.What is the time
complexity of your algorithm?

Exercise 7 (* Cosine distances between documents and spherical k-means) Let p
and q be two vectors of d attributes, and consider the cosine distance: D(p, q) =
cos(θp,q) = 1 − p�q

‖p‖‖q‖ . The cosine distance is an angular distance that does not
account for the magnitude of vectors. For a collection of text documents, we model
a text t by its word frequency/counting vector f (t) (given a word dictionary).
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• Prove that the cosine distance is a metric,
• Design an agglomerative hierarchical clustering that allows one to cluster text
documents,

• Generalize the k-means flat clustering to a partition-based clustering algorithm
relying on the cosine distance. We shall consider attribute vector as a point set
lying on the unit sphere, and prove that the spherical centroid is the Euclidean
centroid projected back to the unit sphere (when all points are enclosed into the
same hemisphere). How to define the spherical centroid of two antipodal points
on the unit sphere centered at the origin?

Exercise 8 (* Hierarchical clustering for Bregman divergences [12]) Bregman
divergences are non-metric distances that are defined according to a strictly con-
vex and differentiable generator function F(x) by:

DF (x, y) = F(x) − F(y) − (x − y)�∇F(y),

where ∇F(y) =
(

d
dy1 F(y), . . . , d

dyd F(y)
)
denotes the gradient vector.

• Prove that for F(x) = x�x , the Bregman divergence amounts to the squared
Euclidean distance.

• Prove that Bregman divergences can never be a metric, and that the squaredMaha-
lanobis distance is a symmetric Bregman divergence.

• Generalize Ward’s criterion for Bregman divergences as follows:

Δ(Xi , X j ) = |Xi | × DF (c(Xi ), c(Xi ∪ X j )) + |X j | × DF (c(X j ), c(Xi ∪ X j )),

where c(Xl) is the center of mass of Xl . Check that for the Bregman generator
F(x) = 1

2 x�x , we get the usual Ward’s criterion.
• Report a Bregman hierarchical clustering algorithm. Can inversion phenomena
happen?

Exercise 9 (** Single linkage hierarchical clustering and minimum spanning tree
[13]) Give a naive implementation of the single linkage hierarchical clustering.
What is the time complexity of your naive algorithm? Given a planar point set
X = {x1, . . . , xn}, the Euclidean Minimum Spanning Tree (MST) is a tree with
nodes anchored at all points of X so that the sum of all tree edge lengths is min-
imized. Prove that the MST is a subgraph of the Delaunay triangulation (the dual
structure of the Voronoi diagram). Prove that the edge information contained in the
Euclidean minimum spanning tree allows one to easily deduce the structure of the
single linkage dendrogram. As a byproduct, report a quadratic time algorithm for
the single linkage hierarchical clustering.



References 211

References

1. Sibson,R.: SLINK:Anoptimally efficient algorithm for the single-link clustermethod.Comput.
J. 16(1), 30–34 (1973)

2. Defays, D.: An efficient algorithm for a complete link method. Comput. J 20(4), 364–366
(1977)

3. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput.
J. 26(4), 354–359 (1983)

4. Awasthi, P., Blum, A., Sheffet, Or.: Center-based clustering under perturbation stability. Inf.
Process. Lett. 112(1–2), 49–54 (2012)

5. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc.
58(301), 236–244 (1963)

6. Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method: Which algo-
rithms implement Ward’s criterion? J. Classif. 31(3), 274–295 (2014)

7. Lance, G.N., Williams, W.T., A general theory of classificatory sorting strategies. Comput.
J. 10(3), 271–277 (1967)

8. Byron J. T. Morgan., Andrew P.G. Ray.: Non-uniqueness and inversions in cluster analysis.
Appl. Stat. pp. 117–134 (1995)

9. Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21(8), 1313–1325
(1995)

10. Mark E.J. Newman.: Modularity and community structure in networks. In: Proceedings of the
National Academy of Sciences (PNAS), 103(23):8577–8582 (2006)

11. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2014). Third Edition
12. Telgarsky, M., Dasgupta, S.: Agglomerative Bregman clustering. In International Conference

on Machine Learning (ICML). icml.cc / Omnipress (2012)
13. Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. Appl.

Stat. pp. 54–64 (1969)


	8 Hierarchical Clustering
	8.1 Agglomerative Versus Divisive Hierarchical Clustering, and Dendrogram Representations
	8.2 Strategies to Define a Good Linkage Distance
	8.2.1 A Generic Algorithm for Agglomerative Hierarchical Clustering
	8.2.2 Choosing the Appropriate Elementary Distance Between Elements

	8.3 Ward Merging Criterion and Centroids
	8.4 Retrieving Flat Partitions from Dendrograms
	8.5 Ultra-metric Distances and Phylogenetic Trees
	8.6 Notes and References
	8.7 Summary
	8.8 Exercises
	References


