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Generalizing skew Jensen divergences and
Bregman divergences with comparative convexity

Frank Nielsen, Senior Member, IEEE Richard Nock, Non-member

Abstract—Comparative convexity is a generalization of ordi-
nary convexity based on abstract means instead of arithmetic
means. We introduce the generalized skew Jensen divergences
and their corresponding Bregman divergences with respect to
comparative convexity. To illustrate those novel families of diver-
gences, we consider the convexity induced by quasi-arithmetic
means, and report explicit formula for the corresponding Breg-
man divergences. In particular, we show that those new Bregman
divergences are equivalent to conformal ordinary Bregman di-
vergences on monotone embeddings, and further state related
results.

Index Terms—Convexity, regular mean, quasi-arithmetic
weighted mean, skew Jensen divergence, Bregman divergence,
conformal divergence.

I. INTRODUCTION

Let F : X → R be a real-valued function. Jensen [1]
introduced the notion of convexity of F using the following
midpoint convex property:

F (p) + F (q)

2
≥ F

(
p+ q

2

)
, ∀p, q ∈ X . (1)

A continuous function F obeying this midpoint convexity
implies its convexity property [2]:

∀p, q,∀λ ∈ [0, 1], F (λp+(1−λ)q) ≤ λF (p)+(1−λ)F (q).
(2)

When the inequality is strict for distinct points and λ ∈ (0, 1),
this inequality defines the strict convex property of F . Note
that a function satisfying only the midpoint convexity inequal-
ity may not be continuous [3], and hence not convex. Let C
denote the class of strictly continuous and convex real-valued
functions.

Convexity allows one to define classes of dissimilarity
measures parameterized by functional generators. Burbea and
Rao [4] studied the Jensen difference for F ∈ C as such a
family of dissimilarity measures:

JF (p, q):=
F (p) + F (q)

2
− F

(
p+ q

2

)
. (3)

A dissimilarity D(p, q) is proper iff D(p, q) ≥ 0 with equality
iff p = q. It follows from the strict midpoint convex property
of F that JF is proper. Nowadays, these Jensen differences
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are commonly called Jensen Divergences (JD), where a di-
vergence is a smooth dissimilarity measure inducing a dual
geometry [5]. One can further define the proper skew Jensen
divergences for α ∈ (0, 1), see [6], [7]:

JF,α(p : q):=(1−α)F (p)+αF (q)−F ((1−α)p+αq), (4)

with JF,α(q : p) = JF,1−α(p : q). The “:” notation emphasizes
the fact that the dissimilarity may be asymmetric. Another pop-
ular class of dissimilarities are the Bregman Divergences [8],
[9] (BDs):

BF (p : q):=F (p)− F (q)− (p− q)>∇F (q), (5)

where ∇F denotes the gradient of F . Let J ′F,α(p :

q):= 1
α(1−α)JF,α(p : q) denote the scaled skew JDs. Then it

was proved that BDs can be obtained as limit cases of skew
JDs [6], [7]:

BF (p : q) = lim
α→1−

J ′F,α(p : q), (6)

BF (q : p) = lim
α→0+

J ′F,1−α(p : q). (7)

II. JENSEN AND BREGMAN DIVERGENCES WITH
COMPARATIVE CONVEXITY

A. Comparative convexity

The notion of convexity can be generalized by observing
that two arithmetic means A(x, y) = x+y

2 are used in Eq. 1:
One in the domain of the function (ie., A(p, q) = p+q

2 ),
and the other one in the codomain of the function (ie.,
A(F (p), F (q)) = F (p)+F (q)

2 ). The branch of comparative
convexity [2] studies classes CM,N of (M,N)-strictly convex
functions F that satisfies the following generalized strict
midpoint convex inequality:

F ∈ CM,N ⇔ F (M(p, q)) < N(F (p), F (q)), ∀p, q ∈ X ,
(8)

where M and N are two abstract means defined on the domain
X and codomain R, respectively. In the reminder, we shall
assume F continuously differentiable.

An abstract mean M(p, q) aggregates two values to produce
an intermediate quantity that satisfies the innerness prop-
erty [10]:

min{x, y} ≤M(x, y) ≤ max{x, y}. (9)

There are many families of means. For example, the family of
power means Pδ (Hölder means [11]) is defined by:

Pδ(x, y) =

(
xδ + yδ

2

) 1
δ

, (10)
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The arithmetic, harmonic and quadratic means are obtained
for δ = 1, δ = −1, and δ = 2, respectively. To
get a continuous family of power means for δ ∈ R,
we define for δ = 0, P0(x, y) =

√
xy, the geomet-

ric mean. Notice that power means satisfy the innerness
property, and include in the limit cases the minimum and
maximum values: limδ→−∞ Pδ(x, y) = min{x, y} and
limδ→∞ Pδ(x, y) = max{x, y}. Moreover, the power means
are ordered, Pδ(x, y) ≤ Pδ′(x, y) for δ′ ≥ δ, a property gener-
alizing the well-known inequality of arithmetic and geometric
means [10].

There are many ways to define parametric family of
means [10]: For example, Appendix B presents the Stolarksy,
Lehmer and Gini means, with the Gini means including the
power means. Means can also be parameterized by monotone
functions: Let us cite the quasi-arithmetic means [12]–[14],
the Lagrange means [15], the Cauchy means [16], etc.

B. Generalized skew Jensen divergences

We shall introduce univariate divergences for X ⊂ R in the
remainder. Multivariate divergences for X ⊂ Rd can be built
from univariate divergences component-wise.

Definition 1 (Comparative Convexity Jensen Divergence):
The Comparative Convexity Jensen Divergence (ccJD) is de-
fined for a midpoint (M,N)-strictly convex function F : I ⊂
R→ R by:

JM,N
F (p, q):=N(F (p), F (q)))− F (M(p, q)) (11)

It follows from the strict midpoint (M,N)-convexity that the
ccJDs are proper: JM,N

F (p, q) ≥ 0 with equality iff p = q.
To define generalized skew Jensen divergences, we need

(i) to consider weighted means (see [2], p. 3 for the generic
construction of a weighted mean), and (ii) to ensure that
the divergence is proper. This restrict weighted means to be
regular:

Definition 2 (Regular mean): A mean M is said regular
if it is (i) symmetric (M(p, q) = M(q, p)), (ii) continu-
ous, (iii) increasing in each variable, and (iv) homogeneous
(M(λp, λq) = λM(p, q),∀λ > 0).

Power means are regular: They belong to a broader family of
regular means, the quasi-arithmetic means. A quasi-arithmetic
mean is defined for a continuous and strictly increasing
function f : I ⊂ R→ J ⊂ R as:

Mf (p, q):=f
−1
(
f(p) + f(q)

2

)
. (12)

These means are also called Kolmogorov-Nagumo-de Finetti
means [12]–[14]. By choosing f(x) = x, f(x) = log x
or f(x) = 1

x , we obtain the Pythagorean arithmetic,
geometric, and harmonic (power) means, respectively. A
quasi-arithmetic weighted mean is defined by Mf (p, q; 1 −
α, α):=f−1 ((1− α)f(p) + αf(q)) for α ∈ [0, 1]. Let
Mα(p, q):=M(p, q; 1−α, α) denote a shortcut for a weighted
regular mean.

A continuous function F satisfying the midpoint (M,N)-
convex property for regular means M and N is (M,N)-
convex (Theorem A of [2]):

Nα(F (p), F (q)) ≥ F (Mα(p, q)),∀p, q ∈ X ,∀α ∈ [0, 1].
(13)

Thus we can define a proper divergence for a strictly (M,N)-
convex function when considering regular weighted means:

Definition 3 (Comparative Convexity skew Jensen Diver-
gence): The Comparative Convexity skew α-Jensen Diver-
gence (ccsJD) is defined for a strictly (M,N)-convex function
F ∈ CM,N : I → R by:

JM,N
F,α (p : q):=Nα(F (p), F (q))− F (Mα(p, q)), (14)

where M and N are regular weighted means, and α ∈ (0, 1).
Thus Eq.4 can be interpreted as JF,α(p : q) =
Aα(F (p), F (q)) − F (Aα(p, q)) = JA,AF,α (p : q), where
Aα(x, y) = (1 − α)x + αy denotes the weighted arithmetic
mean. For regular weighted means, we have JM,N

F,α (q, p) =

JM,N
F,1−α(p : q) since the weighted means satisfy Mα(p, q) =
M1−α(q, p). This generalized ccsJD can be extended to a
positively weighted set of values by defining a notion of
diversity [4], [17] as:

Definition 4 (Comparative Convexity Jensen Diversity In-
dex): Let {(wi, xi)}ni=1 be a set of n positive weighted values
so that

∑n
i=1 wi = 1. Then the Jensen diversity index with

respect to the strict (M,N)-convexity of a function F for
regular weighted means is:

JM,N
F (x1, . . . , xn;w1, . . . , wn):=

N({(F (xi), wi)}i)− F (M({(xi, wi)}i)). (15)

When both means M and N are set to the arithmetic
mean, this diversity index has also been called the Bregman
information [18] in the context of k-means clustering.

C. Generalized Bregman divergences

By analogy to the ordinary setting, let us define the (M,N)-
Bregman divergence as the limit case of a scaled skew
(M,N)-ccsJDs. Let J ′M,N

F,α (p : q) = 1
α(1−α)J

M,N
F,α (p : q).

Definition 5 ((M,N)-Bregman divergence): For regular
weighted means M and N , the (M,N)-Bregman divergence
is defined for a strictly (M,N)-convex function F : I → R
by

BM,N
F (p : q) := lim

α→0+
J ′
M,N
F,α (p : q). (16)

It follows from the symmetry J ′F,α(p : q) = J ′F,1−α(q : p)
that we get the reverse Bregman divergence as:

BM,N
F (q : p) = lim

α→1−
J ′
M,N
F,α (p : q). (17)

Note that a generalization of Bregman divergences has also
been studied by Petz [19] to get generalized quantum relative
entropies when considering the arithmetic weighted means:
Petz defined the Bregman divergence between two points p
and q of a convex set C sitting in a Banach space for a given
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function F : C → B(H) (Banach space induced by a Hilbert
space H) as:

BF (p : q):=F (p)−F (q)− lim
α→0+

1

α
(F (q+α(p−q))−F (q)).

(18)
This last equation can be rewritten in our framework as BF (p :
q) = limα→1−

1
1−αJ

A,A
F,α (p, q) (A referring to the Arithmetic

mean, see Section II-A).
In order to have well-defined (M,N)-Bregman divergences,

we need to prove that (1) the limits of Eq. 16 and Eq. 17 exist,
and (2) that those divergences are proper: BM,N

F (q : p) ≥ 0
with equality iff p = q.

III. QUASI-ARITHMETIC BREGMAN DIVERGENCES

For a strictly continuously monotone function, let
Mγ,α(x, y) = γ−1((1−α)γ(x)+αγ(y)) denote the weighted
quasi-arithmetic mean.

A. A direct formula

By definition, a function F ∈ CMρ,Mτ
is (ρ, τ)-convex

iff Mτ (F (p), F (q))) ≥ F (Mρ(p, q)). This midpoint (ρ, τ)-
convexity property with the continuity of F yields the more
general definition of (ρ, τ)-convexity Mτ,α(F (p), F (q))) ≥
F (Mρ,α(p, q)), α ∈ [0, 1] (See after eq. (12) for the def-
initions of Mτ,α and Mρ,α, for continuous and monotonic
functions τ and ρ, respectively). Let us study the generalized
Bregman Divergences Bρ,τF obtained when taking the limit:

Bρ,τF (q : p):= lim
α→0

Mτ,α(F (p), F (q)))− F (Mρ,α(p, q))

α(1− α)
.

(19)
We state the generalized Bregman divergence formula obtained
with respect to quasi-arithmetic comparative convexity:

Theorem 1 (Quasi-arithmetic Bregman divergences): Let
F : I ⊂ R → R be a real-valued strictly (ρ, τ)-convex
function defined on an interval I for two strictly monotone
and differentiable functions ρ and τ (with ρ′ and τ ′ the respec-
tive derivatives). The Quasi-Arithmetic Bregman divergence
(QABD) induced by the comparative convexity is:

Bρ,τF (p : q) =
τ(F (p))− τ(F (q))

τ ′(F (q))
− ρ(p)− ρ(q)

ρ′(q)
F ′(q),

= κτ (F (q) : F (p))− κρ(q : p)F ′(q), (20)

where primes denote derivatives and

κγ(x : y) =
γ(y)− γ(x)

γ′(x)
. (21)

Proof:
By taking the first-order Taylor expansion of τ−1(x) at x0,

we get τ−1(x) 'x0 τ
−1(x0)+ (x−x0)(τ−1)′(x0). Using the

property of the derivative of an inverse function, (τ−1)′(x) =
1

(τ ′(τ−1)(x)) , it follows that the first-order Taylor expansion of
τ−1(x) is τ−1(x) ' τ−1(x0)+(x−x0) 1

(τ ′(τ−1)(x0))
. Plugging

x0 = τ(p) and x = τ(p)+α(τ(q)−τ(p)), we get a first-order
approximation of the weighted quasi-arithmetic mean Mτ,α

when α→ 0:

Mτ,α(p, q) ' p+
α(τ(q)− τ(p))

τ ′(p)
. (22)

For example, when τ(x) = x (ie., arithmetic mean), we have
Aα(p, q) ' p + α(q − p), when τ(x) = log x (ie., geometric
mean), we obtain Gα(p, q) ' p+αp log q

p , and when τ(x) = 1
x

(ie., harmonic mean) we get Hα(p, q) ' p + α(p − p2

q ). For

the regular power means, we have Pα(p, q) ' p + α q
δ−pδ
δpδ−1 .

These are first-order weighted mean approximations obtained
for small values of α.

Now, consider the comparative convexity skew Jensen Di-
vergence defined by Jτ,ρF,α(p : q) = Mτ,α(F (p), F (q)) −
F (Mρ,α(p, q)), and apply a first-order Taylor expansion to
get F (Mρ,α(p, q))) ' F

(
p+ α(ρ(q)−ρ(p))

ρ′(p)

)
' F (p) +

α(τ(q)−τ(p))
τ ′(p) F ′(p). Thus it follows that the Bregman diver-

gence for quasi-arithmetic comparative convexity is Bρ,τF (q :

p) = limα→0 J
′τ,ρ
α (p : q) = τ(F (q))−τ(F (p))

τ ′(F (p)) − ρ(q)−ρ(p)
ρ′(p) F ′(p),

and the reverse Bregman divergence Bρ,τF (p : q) =
limα→1

1
α(1−α)J

τ,ρ
α (p : q) = limα→0

1
α(1−α)J

τ,ρ
α (q : p). �

Since power means are regular quasi-arithmetic means, we
get the following family of power mean Bregman divergences:

Corollary 1 (Power Mean Bregman Divergences): For
δ1, δ2 ∈ R\{0} with F ∈ CPδ1 ,Pδ2 , we have the family of
Power Mean Bregman Divergences (PMBDs):

Bδ1,δ2F (p : q) =
F δ2(p)− F δ2(q)
δ2F δ2−1(q)

− pδ1 − qδ1
δ1qδ1−1

F ′(q) (23)

A sanity check for δ1 = δ2 = 1 let us recover the ordinary
Bregman divergence.

B. Quasi-arithmetic Bregman divergences are proper

Appendix A proves that a function F ∈ Cρ,τ iff G = Fρ,τ =
τ ◦ F ◦ ρ−1 ∈ C. We still need to prove that QABDs are
proper: Bρ,τF (p : q) ≥ 0 with equality iff p = q. Defining the
ordinary Bregman divergence on the convex generator G(x) =
τ(F (ρ−1(x))) for a (ρ, τ)-convex function with G′(x) =
τ(F (ρ−1(x)))′ = 1

(ρ′(ρ−1)(x))F
′(ρ−1(x))τ ′(F (ρ−1(x))), we

get an ordinary Bregman divergence that is, in general, differ-
ent from the generalized quasi-arithmetic Bregman divergence
Bρ,τF : BG(p : q) 6= Bρ,τF (p : q) with:

BG(p : q) = τ(F (ρ−1(p)))− τ(F (ρ−1(q)))

−(p− q)F
′(ρ−1(q))τ ′(F (ρ−1(q)))

(ρ′(ρ−1)(q))
(24)

A sanity check shows that BG(p : q) = Bρ,τF (p : q) when
ρ(x) = τ(x) = x (since we have the derivatives ρ′(x) =
τ ′(x) = 1). Let us notice the following remarkable identity:

Bρ,τF (p : q) =
1

τ ′(F (q))
BG(ρ(p) : ρ(q)). (25)

This identity allows us to prove that QABDs are proper
divergences.

Theorem 2 (QABDs are proper): The quasi-arithmetic Breg-
man divergences are proper divergences.
Proof: BG is a proper ordinary BD, τ ′ > 0 a positive function
since τ is a strictly increasing function, and ρ(p) = ρ(q)
iff p = q since ρ is strictly monotonous. It follows that

1
τ ′(F (q))BG(ρ(p) : ρ(q)) ≥ 0 with equality iff p = q. �
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C. Conformal Bregman divergences on monotone embeddings

A closer look at Eq. 25 allows one to interpret the QABDs
Bρ,τF (p : q) as conformal divergences. A conformal diver-
gence [5], [20], [21] Dκ(p : q) of a divergence D(p : q) is
defined by a positive conformal factor function κ as follows:
Dκ(p : q) = κ(q)D(p : q). An example of Bregman
conformal divergence is the total Bregman divergence [22]
with κ(q) = 1√

1+‖∇F (q)‖2
.

Property 1 (QABDs as conformal BDs): The quasi-
arithmetic Bregman divergence Bρ,τF (p : q) amounts to com-
pute an ordinary Bregman conformal divergence in the ρ-
embedded space:

Bρ,τF (p : q) = κ(ρ(q))BG(ρ(p) : ρ(q)), (26)

with conformal factor κ(x) = 1
τ ′(F (ρ−1(x))) > 0.

D. (ρ, τ)-Jensen-Bregman divergences

In [7], the Jensen divergence JF was interpreted as a Jensen-
Bregman divergence defined by:

JBF (p, q) =
BF

(
p : p+q2

)
+BF

(
q : p+q2

)
2

= JBF (q, p).

(27)
The Jensen-Shannon divergence [23] is a Jensen-Bregman
divergence for the Shannon information function F (x) =∑d
i=1 xi log xi, the negative Shannon entropy: F (x) =

−H(x). It turns out that JBF (p, q) = JF (p, q). This identity
comes from the fact that the terms p − p+q

2 = p−q
2 and

q − p+q
2 = q−p

2 = −p−q2 being multiplied by F ′(p+q2 ) cancel
out. Similarly, we can define the generalized Quasi-Arithmetic
Jensen-Bregman Divergences (QAJBDs) as:

JBρ,τF (p, q) =
Bρ,τF (p :Mρ(p, q)) +Bρ,τF (q :Mρ(p, q))

2
.

(28)
Consider τ = id, the identity function. Since ρ(Mρ(p, q)) =

ρ(p)+ρ(q)
2 , and ρ(p) − ρ(Mρ(p, q)) = ρ(p)−ρ(q)

2 = −(ρ(q) −
ρ(Mρ(p, q)) we get the following identity:

JBρ,idF (p, q) =
F (p) + F (q)

2
− F (Mρ(p, q)) = Jρ,idF (p, q).

(29)

IV. CONCLUDING REMARKS

We have introduced generalized (M,N)-Bregman diver-
gences as limit of scaled skew (M,N)-Jensen divergences
for regular M and N means. Regular means include power
means, quasi-arithmetic means, Stolarsky means, etc. But
not all means are regular: For example, the Lehmer mean
L2(x, y) =

x2+y2

x+y is not increasing and therefore not regular
(see Appendix B). We reported closed-form expression for
quasi-arithmetic (ρ, τ)-Bregman divergences, prove that those
divergences are proper, and show that they can be interpreted
as conformal ordinary Bregman divergences on a monotone
embedding [24]. This latter observation further let us extend
usual Bregman divergence results to quasi-arithmetic Bregman
divergences (eg., conformal Bregman k-means [22], conformal
Bregman Voronoi diagrams [25]).

APPENDIX A
QUASI-ARITHMETIC TO ORDINARY CONVEXITY CRITERION

To check whether a function F is (M,N)-convex or not
when using quasi-arithmetic means Mρ and Mτ , we use an
equivalent test to ordinary convexity as follows:

Lemma 1 ((ρ, τ)-convexity ↔ ordinary convexity [26]):
Let ρ : I → R and τ : J → R be two continuous and
strictly monotone real-valued functions with τ increasing,
then function F : I → J is (ρ, τ)-convex iff function
G = Fρ,τ = τ ◦ F ◦ ρ−1 is (ordinary) convex on ρ(I).
Proof: Let us rewrite the (ρ, τ)-convexity midpoint inequality
as follows:

F (Mρ(x, y)) ≤ Mτ (F (x), F (y)),

F

(
ρ−1

(
ρ(x) + ρ(y)

2

))
≤ τ−1

(
τ(F (x)) + τ(F (y))

2

)
,

Since τ is strictly increasing, we have:

(τ ◦ F ◦ ρ−1)
(
ρ(x) + ρ(y)

2

)
≤ (τ ◦ F )(x) + (τ ◦ F )(y)

2
.

(30)
Let u = ρ(x) and v = ρ(y) so that x = ρ−1(u) and y =
ρ−1(v) (with u, v ∈ ρ(I)). Then it comes that:

(τ◦F◦ρ−1)
(
u+ v

2

)
≤ (τ ◦ F ◦ ρ−1)(u) + (τ ◦ F ◦ ρ−1)(v)

2
.

(31)
This last inequality is precisely the ordinary midpoint convex-
ity inequality for function G = Fρ,τ = τ ◦ F ◦ ρ−1. Thus a
function F is (ρ, τ)-convex iff G = τ ◦ F ◦ ρ−1 is ordinary
convex, and vice-versa. �

APPENDIX B
LEHMER, GINI, AND STOLARSKY MEANS

The weighted Lehmer mean [27] of order δ is defined
for δ ∈ R as: Lδ(x1, . . . , xn;w1, . . . , wn) =

∑n
i=1 wix

δ+1
i∑n

i=1 wix
δ
i

.
The Lehmer means intersect with the Hölder means
only for the arithmetic, geometric and harmonic
means. The family of Lehmer barycentric means can
further be encapsulated into the family of Gini means:

Gδ1,δ2(x1, . . . , xn;w1, . . . , wn) =

(∑n
i=1 wix

δ1
i∑n

i=1 wix
δ2
i

) 1
δ1−δ2

when δ1 6= δ2, and Gδ1,δ2(x1, . . . , xn;w1, . . . , wn) =(∏n
i=1 x

wix
δ
i

i

) 1∑n
i=1

wix
δ
i when δ1 = δ2 = δ.

Those families of Gini and Lehmer means are
homogeneous means: Gδ1,δ2(λx1, . . . , λxn;w1, . . . , wn) =
λGδ1,δ2(x1, . . . , xn;w1, . . . , wn) for any λ > 0. The family
of Gini means include the power means: G0,δ = Pδ for δ ≤ 0
and Gδ,0 = Pδ for δ ≥ 0. The Lehmer and Gini means are
not always regular since L2 is not regular. The Stolarsky
regular means are not quasi-arithmetic means nor mean-value
means [10], and are defined as follows:

Sp(x, y) =

(
xp − yp

p(x− y)

) 1
p−1

, p 6∈ {0, 1}. (32)

In limit cases, the Stolarsky family of means yields the
logarithmic mean (L) when p → 0: L(x, y) = y−x

log y−log x ,

and the identric mean (I) when p→ 1: I(x, y) =
(
yy

xx

) 1
y−x

.
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les valeurs moyennes,” Acta mathematica, vol. 30, no. 1, pp. 175–193,
1906.

[2] C. P. Niculescu and L.-E. Persson, Convex functions and their applica-
tions: A contemporary approach. Springer Science & Business Media,
2006.
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