
Approximating Smallest Enclosing Balls

Frank Nielsen1 and Richard Nock2

1 Sony CS Laboratories Inc., Tokyo, Japan
Frank.Nielsen@acm.org

2 UAG-DSI-GRIMAAG, Martinique, France
Richard.Nock@martinique.univ-ag.fr

Abstract. We present two novel tailored algorithms for computing ar-
bitrary fine approximations of the smallest enclosing ball of balls. The
deterministic heuristics are based on solving relaxed decision problems
using a primal-dual method.

1 Introduction

The smallest enclosing disk problem dates back to 1857 when J. J. Sylvester [20]
first asked for the smallest radius disk enclosing n points on the plane. More for-
mally, let Ball(P, r) denote the ball of center P and radius r: Ball(P, r) = {X ∈
E

d | ||PX|| ≤ r}, where || · || denotes the L2-norm of Euclidean space E
d. Let

B = {B1, ..., Bn} be a set of n d-dimensional balls, such that Bi = Ball(Pi, ri)
for i ∈ {1, ..., n}. Denote by P the ball centers P = {P1, ..., Pn}. The smallest
enclosing ball of B is the unique ball [22], B∗ = SEB(B) = Ball(C∗, r∗), fully
enclosing B (B ⊆ Ball(C∗, r∗)) of minimum radius r∗. Given a ball B, denote
by r(B) its radius and C(B) its center. Let xi(P) denote the i-th coordinate
of point P (1 ≤ i ≤ d). The smallest enclosing ball problem is also refered in
the literature as the minimum enclosing ball, minimum spanning ball, minimum
covering sphere, Euclidean 1-center, d-outer radius, minimum bounding sphere,
or minimax problem in facility locations, etc. The smallest enclosing ball, as a
fundamental primitive, finds many applications in computer graphics (collision
detection, visibility culling, ...), machine learning (support vector clustering,
similarity search, ...), metrology (roundness measurements, ...), facility locations
(base station locations, ...), and so on. Notice that in the aforementioned appli-
cations, approximate solutions is often enough.

We survey below the main algorithms for computing the exact or approximate
smallest enclosing balls. We classify previous work in Section 2 according to three
algorithmic paradigms: (1) combinatorial algorithms, (2) numerical algorithms
and (3) hybrid algorithms. Section 3 describes a general filtering mechanism for
computing the maximum distance set-element that is then used in Section 4
to improve an implementation of a recent core-set approximation algorithm [3].
Section 5 presents a novel core-set primal-dual tailored method based on solving
relaxed decision problems. Section 6 gives an alternative approach better suited
for small dimensions and discusses on the algebraic degree of predicates.

A. Laganà et al. (Eds.): ICCSA 2004, LNCS 3045, pp. 147–157, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

148 F. Nielsen and R. Nock

2 Previous Work

Combinatorial. The smallest enclosing ball complexity was only settled in
1984 by N. Megiddo’s first linear-time prune-and-search algorithm [16] for solv-
ing linear programs in fixed dimension. Later, the method was extended to the
case of balls [17]. Since the smallest enclosing ball is unique and defined by
at most d + 1 support points (or balls) in strictly convex position (implying
being affinely independent as well), a brute-force combinatorial algorithm re-
quires Od(nd+2) time (linear memory). A major breakthrough was obtained
by E. Welzl [22] who describes an elegant randomized almost tight expected
�(e − 1)(d + 1)!�n time1 algorithm. The number of basis computations is shown
to be Õ(logj n) (2 ≤ j ≤ d + 1), so that most of the time of the algorithm is
spent by checking that points/balls are inside some candidate ball.2 For point
sets being vertices of a regular simplex, the algorithm exhibits the curse of di-
mensionality as it requires Ω(2d) recursive calls, thus limiting its tractibility up
to a few dozen dimensions in practice. Recently, Chernoff-type tail bound has
been given for nondegenerate input by B. Gärtner and E. Welzl [10]. Although
it gives a better understanding of the power of randomization, tight worst-case
bound is unknown3 as is also the tail estimate in case of cospherical point sets.
Subexponential running time was obtained by B. Gärtner [7] who described a
general randomized algorithm for the class of so-called abstract optimization
problems (AOP). Focusing on small instances (i.e., n = O(d)), B. Gärtner and
E. Welzl [11] presents a practical randomized approach for affinely independent
points using Õ(1.5n) basis computations. T. Szabo and E. Welzl [21] further im-
prove the bound to Õ(1.47n) using the framework of unique sink orientations of
hypercubes. So far, B. Chazelle and J. Matous̆ek gave the current best O(dO(d)n)
deterministic time algorithm [4]. From the pratical viewpoint, B. Gärtner [8] up-
dated the move-to-front heuristic of E. Welzl [22] by introducing a pivot mech-
anism and improving the robustness of basis computations. Furthermore, K.
Fischer et al. [6] describe a simplex-like pivoting combinatorial algorithm with
a Bland-type rule that guarantees termination based on the seminal idea of
T. Hopp et C. Reeve [14] of deflating an enclosing sphere: They devise a dy-
namic data-structure for maintaining intermediate candidate balls and a robust
floating-point implementation is tested with point sets up to dimension4 10000.
Overall complexity is O(d3+d2l), where l ≤ (

n
d+1

)
is a finite number of iterations;

In practice, although the algorithm requires algebraic degree 2 on the rationals,
they observe good experimental floating-point errors of at most 104 times the
machine precision. For ball sets, K. Fischer and B. Gärtner show [5] that for
affinely independent ball centers that E. Welzl’s algorithm [22] extends to balls
1 e � 2.71828182846... is the irrational number such that log e = 1.
2 This may explain why descriptions of computing the primitives were omitted in [22]

since
∑d+1

i=2 (2 + ln n)i = od(n).
3 That is to know the worst-case geometric configuration that implies a worst number

of recursive calls (geometric realization of permutations).
4 In fact, T. Hopp and C. Reeve [14] reported experimentally a time complexity of

Ō(d2.3n) for uniform spherical data sets.

Approximating Smallest Enclosing Balls 149

and provide a linear programming type (LP-type) algorithm which runs in ex-
pected Õ(2O(d)n)-time. The combinatorial algorithms described so far compute
the exact smallest enclosing ball (i.e., ε = 0), report a support point/ball set
and look similar to those handling linear programming. Notice that the smallest
enclosing ball problem, as LP, is not known to be strongly polynomial (see P.
Gritzmann and V. Klee [12] for a weakly polynomial algorithm).

Numerical. Let d2(A, B) denote the maximum distance between all pairs
(A, B) (A ∈ A and B ∈ B). Observe that picking any point P ∈ B gives a
2-approximate ball Ball(P, d2(P, B)) (i.e., ε = 1). This allows to easily con-
vert from relative to absolute approximation values. Motivated by computer
graphics applications, J. Ritter [19] proposes a simple and fast constant ap-
proximation of the smallest enclosing ball that can be extended straightfor-
ward for points/balls in arbitrary dimension. Tight worst-case approximation
ratio is unknown but can be as bad as 18.3 percents.5 It is quite natural to
state the smallest enclosing ball problem as a mathematical program. In fa-
cility locations, the smallest enclosing ball is often written as minC∈Ed FB(C)
where FB(X) = maxi∈{1,...,n} d2(X, B). Since the minimum is unique, we obtain
the circumcenter as C∗ = argminC∈EdFB(C). Using the ellipsoid method for
solving approximately convex programs (CP), we get a (1 + ε)-approximation
in O(d3n log 1

ε) time [13]. B. Gärtner and S. Schönherr [9] describes a generic
quadratic programming (QP) solver tuned up for dense problems with few vari-
ables, as it is the case for solving basic instances. The solver behaves polynomially
but requires arbitrary-precision linear algebra that limits its use to a few hun-
dred dimensions. Recently, another method which turns out to perform so far
best in practice, is the second-order cone programming [24] (SOCP) and re-
quires O(

√
n log 1

ε) iterations [18] using interior-point methods. Each iteration
can be performed in O(d2(n+d)) time for the smallest enclosing ball. G. Zhou et
al. [24] present another algorithm, based on providing a smooth approximation
of the nondifferentiable minimax function FB(·) using so-called log-exponential
aggregation functions, that scale well with dn and 1

ε . For coarse ε values, say
ε ∈ [0.001, 0.01], subgradient steepest-descent methods can be used as it first
converges fast before slowly zigzagging towards the optimum. These numerical
techniques rely on off-the-shelves optimization procedures that have benefited
from extensive code optimization along the years but seem not particularly tuned
up for the specific smallest enclosing ball problem.

Hybrid. An ε-core set of P is a subset C ⊆ P such that the smallest enclosing
ball of C expanded by a factor of 1+ε fully covers set P. Surprisingly, it was shown
by M. Bădoiu et al. [2] that for any ε > 0 there is a core set of size independent
of dimension d. The bound was later improved to the tight 1

ε value [3]. Note

5 E.g., considering a regular simplex in dimension 2. In [19], J. Ritter evaluates it
to ”around” 10 percents. X. Wu. [23] suggests a variant based on finding principal
axis as a preprocessing stage of J. Ritter’s greedy algorithm. It requires roughly
twice more time and do not guarantee to perform better. (Actually, we found it
experimentally worse sometimes.)

150 F. Nielsen and R. Nock

that since the smallest enclosing ball is defined by at most d + 1 points/balls,
the result is combinatorically meaningful for 1

ε ≤ d+1. Besides, they also give a
simple iterative O(dn

ε2)-time algorithm (see procedure SimpleIterativeBall below)
to compute a (1+ ε)-approximation of the smallest enclosing ball, for any ε > 0.
Combining the ellipsoid numerical approximation method with the combinatorial
core-set approach yields a O(dn

ε + d
ε4)-time hybrid algorithm. P. Kumar et al. [15]

relies on the work of [24] to obtain a better O(dn
ε + 1

ε
9
2

log 1
ε)-time bound.6 S.

Har-Peled mentioned an unpublished O(dn
ε + 1

ε2 log2 1
ε)-time algorithm, so that

the hybrid algorithm runs in O(dn
ε + 1

ε4 log2 n)-time. Although not explicitly
stated in the pioneer work of [2], the algorithms/bounds are still valid for ball
sets (also noticed by [15]).

Our contributions. Although combinatorial algorithms exist for the smallest
enclosing ball of points in very large dimensions (d � 10000) that prove effi-
cient in practice but lacks deterministic bound (i.e, tight worst-case analysis),
we would like to emphasize on the merits of computing approximate solutions:
(i) guaranteed worst-case time dependent on 1

ε (the less demanding, the faster),
(ii) very short code: no basis computations of at most d + 1 points/balls are
required, (iii) no special care are required for handling degeneracies (i.e., co-
spherical points), (iv) stable: use predicates of lower degrees (see Section 6).
Our contributions are summarized as follows: (i) We show an effective imple-
mentation of approximate enclosing balls of core-sets (d � 15000 and ε � 1%)
based on distance filtering, (ii) We describe a new tailored core-set algorithm for
dual decision problems, (iii) We propose an alternative effective algorithm for
small dimensions, (iv) we review algorithm performances according to experi-
ments obtained on a common platform.

3 Distance Point-Set Queries

Often, we need to compute the distance, d2(P, B), from a query point P to a
point/ball set B. A naive algorithm, computing distance pairs iteratively, requires
O(dn) time per query so that q farthest queries d2(·, B) cost overall O(qdn) time.
When dimension d is large, say d ≥ 100, computing distances of query point/set
become in itself an expensive operation. Observe that d2(X, Y) = ||X − Y || =√∑d

i=1(Xi − Yi)2 can be written as ||X − Y ||2 = ||X||2 + ||Y ||2 − 2 < X, Y >,

where <, > denotes the vector dot product: < X, Y >=
∑d

i=1 XiYi = XT Y .
Using Cauchy-Schwarz inequality, we have | < X, Y > | ≤ ||X|| ||Y ||. Therefore,

the distance is upper bounded by
√

||X||2 + ||Y ||2 + 2
√||X||2||Y ||2 ≥ ||X − Y ||.

Thus when answering q farthest queries, we can first build lookup tables of ||Pi||2
(Pi ∈ B) in a preprocessing stage in O(dn) time and then use a simple distance
filtering mechanism. That is, when iteratively seeking for the maximum distance
given a query point X and set B, we skip in O(1) time evaluating distance
6 More precisely, O(dn

ε
+ d2

ε
3
2

(1
ε

+ d) log 1
ε
)-time.

Approximating Smallest Enclosing Balls 151

d2(X, Pi) if the so far maximum distance is above the upper bound given by
the Cauchy-Schwarz inequality. For sets drawn from statistical distribution, let
ᾱ be the expected number of skipped distances, we answer q queries in O(d(n +
q) + q(1 − ᾱ)dn) time. For uniform d-cube distributions or normal distributions
we observe experimentally ᾱ

n→ 1 (thus for n ≥ 1
ε2 , the algorithm converges

towards optimal linear O(dn) time), for uniform distributions on the d-sphere,
we conversely observe ᾱ

n→ 0. This approach extends to ball sets as well but
requires extra square-root operations in order to handle ball radii.

4 Approximating Smallest Enclosing Balls of Core-Sets

Although M. Bădoiu and K. Clarkson’s algorithm [3] (procedure SimpleItera-
tiveBall below) extends to ball sets as well, for ease of description, we consider
here point sets. The algorithm looks like gradient-type7, but it is not as we no-
ticed experimentally that the radii sequence of enclosing balls is not necessary
decreasing. Given a current circumcenter, the procedure finds a farthest point
of B to walk towards in O(dn) time bypassing the costly O(d2n) time Jacobian
computation required in a steepest-descent optimization. Overall cost is O(dn

ε2)
time as we need to perform � 1

ε2 � iterations. Using this elegant algorithm and
coupling it with approximations of smallest enclosing balls of core-sets (see [2]),
we obtain a O(dn

ε + d
ε4)-time algorithm (procedure ApproximateCoreSet). For

1
ε = O(3

√
n), the bottleneck of the algorithm is finding the core-set rather than

the overall cost of simple loops.

1 SimpleIterativeBall(B, ε);
2 Pick arbitrary C1 ∈ S; i← 1;
3 a = � 1

ε2
�;

4 while i ≤ a do

5 m = argmaxj ||CiSj || /* Distance filtering */;
6 Ci+1 = Ci + 1

i+1 (Sm − Ci);
7 i← i + 1;
8 ra = d2(Ca,S);
9 return Ball(Ca, ra);

10 ApproximateCoreSet(B, ε);
11 γ = ε

3 ; δ = ε
3 /* Guarantee (1 + δ)(1 + γ) ≤ 1 + ε for any ε ≤ 1 */;

12 C1 ← {B1}; r1 = 0; i← 1;
13 while d2(Ci,B) ≥ (1 + δ)ri do

14 k = argmaxi d2(Ci,B) /* Distance filtering */;
15 Ci+1 ← Ci ∪ {Bk};
16 Ki+1 ← SimpleIterativeBall(Ci+1, γ);
17 Ci+1 ← C(Ki+1); ri+1 ← r(Ki+1);
18 i← i + 1;
19 return Ball(Ci, ri);

7 M. Bădoiu and K. Clarkson used the term gradient-like [3].

152 F. Nielsen and R. Nock

Plugging the distance filtering mechanism of Section 3, for uniform distribu-
tion of ball sets with d � 10000, n = d + 1, ε � 0.01, the algorithm requires a
few seconds on current commodity PCs for a mere 30-line C code. It performs
better in practice than the steepest-descent method. The algorithm is adaptive
according to the core-set size, bounded by 6

ε , but not in the iteration process
of [3] as we need to loop exactly � 9

ε2 � time.8 Theoretically, this algorithm is only
slightly outperformed by a SOCP solver, but its extreme simplicity coupled with
the distance filtering trick make it attractive for machine learning applications.

5 Core-Sets for Decision Problems

Our novel approximation algorithms proceed by solving dual piercing decision
problems (see Figure 1): given a set of balls P = {Bi = Ball(Pi, ri), i ∈ {1, ..., n}}
and some r ≥ 0, determine whether ∩B(r) = ∩i∈{1,...,n}Bi(r) = ∅ or not, where
Bi(r) = Ball(Pi, r − ri). We relax the 1-piercing point problem to that of a
common piercing εr∗-ball (i.e., a ball of radius εr∗): Namely, report whether
there exists a ball B = Ball(C, εr∗) such that B ⊆ ∩B(r) or not (see Figure 1).

Lemma. For r ≥ r∗, there exists a ball B of radius r(B) = r − r∗ centered at
C(B) = C∗ fully contained inside ∩B(r).

Proof. In order to ensure that C∗ is in each Bi(r), a sufficient condition is to
have r ≥ maxi{ri + d2(Pi, C

∗)}. Since Bi ⊆ Ball(C∗, r∗), ∀i ∈ {1, 2, ..., n}, we
have maxi{ri+d2(Pi, C

∗)} ≤ r∗(�). Thus, provided r ≥ r∗, we have C∗ ∈ ∩B(r).
Now, notice that ∀i ∈ {1, 2, ..., n}, ∀0 ≤ r′ ≤ (r − ri) − d2(Pi, C

∗), Ball(C∗, r′) ⊆
Bi(r). Thus, if we ensure that r′ ≤ r−maxi(ri +d2(Pi, C

∗)), then Ball(C∗, r′) ⊆
∩B(r). From ineq. (�), we choose r′ = r−r∗ and obtain the lemma (see Figure 1).

�
The algorithm, detailed in procedure DecisionProblem for point sets, builds a

core-set (sets Ci’s) iteratively for the decision problem by narrowing the feasible
domain for circumcenter C∗. It is a primal-dual method since that for solving
dual ball piercing problem, it requires to solve primal smallest enclosing balls.

Let k denote the maximum number of iterations of the while loop. Observe
that balls B already chosen in some core-set Ci are necessarily pierced by points
C(Kj), j ≥ i + 1. Indeed, since C(Ki) is the center of the smallest enclosing
ball of the centerpoints of balls of radius r of Ci, and ri = r(Ki) ≤ r, we have
d2(C(Ki), C(B)) ≤ r for all B ∈ Ci. Moreover, since ∩Ci+1 ⊂ ∩Ci and because
the smallest enclosing ball is unique, we have ri+1 > ri. Clearly, we have |Ci| ≤ 2i.
We show that k is a function depending only on d and ε, independent of n. Let
vd(r) denote the volume of a d-dimensional ball of radius r. We have ∩Ci+1 ⊂ ∩Ci

for all i. Let Ki be the unique maximal ball contained in ∩Ci (obtained from the
smallest enclosing ball of the centers of balls contained in Ci). If C(Ki), the center
of ball Ki, does not fully pierce B, then there exists either one ball Mi or two balls
Mi and Ni such that their intersection Ai (either Ai = Mi or Ai = Mi ∩ Ni)
does not contain C(Ki). Since Ai is convex, this means that there exists an
8 It is of practical interest to find a better stopping criterion.

Approximating Smallest Enclosing Balls 153

B1

B2

B3

B1(r∗)

B2(r∗)

B3(r∗)B1(r)

B2(r)

B3(r)

C∗

r − r∗

P1

P2

P3

B∗

r1

r3

r2

Fig. 1. Covering/piercing duality. Balls B1, B2, B3 are associated to corresponding
dashed balls B1(r), B2(r), B3(r) such that C(Bi(r)) = Pi and r(Bi(r)) = r − ri for
i ∈ {1, 2, 3}. We have B1(r∗)∩B2(r∗)∩B3(r∗) = {C∗}. For r ≥ r∗, there exists a ball
of radius r − r∗ fully contained in B1(r) ∩B2(r) ∩B3(r).

Algorithm: DecisionProblem(B, ε)

1 Let rr be the radius obtained from a trivial 2-approximation algorithm;
2 Choose arbitrary P1 ∈ P; C1 ← {P1}; r1 ← 0; i← 1;
3 while r − ri ≥ ε rr

2 do

4 Let Li : Pi + λxd /* xd denote the unit vector of the d-th coordinate axis */;
5 BLi = {B ∩ Li | B ∈ B};
6 if ∩BLi
= ∅ then

7 return Yes /* r ≥ r∗ */
else

8 if ∃B|B ∩ Li = ∅ then

9 Ci+1 = Ci ∪ {B};
else

10 Let Bk and Bl such that (Bk ∩ Li) ∩ (Bl ∩ Li) = ∅;
11 Ci+1 = Ci ∪ {Bk, Bl};
12 i← i + 1; Ki = SEB(Ci) /* Primal-Dual */ ;
13 if r(Ki) > r then

14 return No /* r∗ > r */
15 Pi = C(Ki);
16 return MayBe /* r − r∗ ≤ εr∗ */ ;

hyperplane Hi separating Ai from C(Ki). Let H ′
i be an hyperplane parallel to

Hi and passing through C(Ki), H ′+
i be the halfspace not containing Ai. Since

∩Ci+1 ⊂ ∩Ci, we have vol(Ci+1) ≤ vol(Ci) − 1
2vd(r(Ki)). Since r(Ki) ≥ εr∗ and

vol(C1) ≤ vd(2r∗), we get a sloppy upperbound k = O(1
ε)d. In a good scenario,

where we split in half the volume of ∩Ci, we get k = O(d log2
1
ε), yielding to an

154 F. Nielsen and R. Nock

overall O(d2n log2
1
ε) + Od,ε(1) time algorithm (improve by a factor O(d) over

the ellipsoid method). We observe experimentally that k tends indeed to behave
as Od(log 1

ε) and that the core-set sizes are similar to the ones obtained by M.
Bădoiu and K. Clarkson’s algorithm. By solving O(log 1

ε) decision problems, we
thus obtain a (1 + ε)-approximation of the smallest enclosing ball.

6 Small Dimensions Revisited

In this section, the key difference with the previous heuristic is that dual problem
sizes to solve does not depend on ε but are exponentially dependent on d.

Solving planar decision problems. Let [n] = {1, ..., n} and [xm, xM] be an
interval on the x-axis where an εr∗-disk center might be located if it exists. (That
is x(C) ∈ [xm, xM] if it exists.) We initialize xm, xM as the x-abscissae extrema:
xm = maxi∈[n](xi) − r, xM = mini∈[n](xi) + r. If xM < xm then clearly vertical
line L : x = xm+xM

2 separates two extremum disks (those whose corresponding
centers give rise to xm and xM) and therefore B(r) is not 1-pierceable (therefore
not εr∗-ball pierceable). Otherwise, the algorithm proceeds by dichotomy. Let
e = xm+xM

2 and let L denotes the vertical line L : x = e. Denote by BL =
{Bi ∩ L|i ∈ [n]} the set of n y-intervals obtained as the intersection of the
disks of B with line L. We check whether BL = {Bi ∩ L = [ai, bi]|i ∈ [n]} is
1-pierceable or not. Since BL is a set of n y-intervals, we just need to check
whether mini∈[n] bi ≥ maxi∈[n] ai or not. If ∩BL �= ∅, then we have found a point
(e,mini∈[n] bi) in the intersection of all balls of B and we stop recursing. (In fact
we found a (x = e, y = [ym = maxi ai, yM = mini bi]) vertical piercing segment.)
Otherwise, we have ∩BL = ∅ and need to choose on which side of L to recurse.
W.l.o.g., let B1 and B2 denote the two disks whose corresponding y-intervals
on L are disjoint. We choose to recurse on the side where B1 ∩ B2 is located
(if the intersection is empty then we stop by reporting the two non intersecting
balls B1 and B2). Otherwise, B1 ∩ B2 �= ∅ and we branch on the side where
xB1B2 = x(C(B1))+x(C(B2))

2 lies. At each stage of the dichotomic process, we halve
the x-axis range where the solution is to be located (if it exists). We stop the
recursion as soon as xM−xm < ε r

2 . Indeed, if xM−xm < ε r
2 then we know that no

center of a ball of radius εr is contained in ∩B. (Indeed if such a ball exists then
both ∩BL(xm) �= ∅ and ∩BL(xM) �= ∅.) Overall, we recurse at most 3 + �log2

1
ε �

times since the initial interval width xM − xm is less than 2r∗ and we consider
r ≥ r∗

2 . Thus, by solving O(log2
1
ε) decision problems (dichotomy search), we

obtain a O(n log2
2

1
ε)-time deterministic (1 + ε)-approximation algorithm. We

bootstrap this algorithm in order to get a O(n log2
1
ε)-time algorithm. The key

idea is to shrink potential range [a, b] of r∗ by selecting iteratively different
approximation ratios εi until we ensure that, at kth stage, εk ≤ ε . Let Ball(C, r)
be a (1+ε)-approximation enclosing ball. Observe that |x(C)−x(C∗)| ≤ εr∗. We
update the x-range [xm, xM] according to the so far found piercing point abcissae
x(C) and current approximation factor. We start by solving the approximation
of the smallest enclosing ball for ε1 = 1

2 . It costs O(n log2
1
ε1

) = O(n). Using

Approximating Smallest Enclosing Balls 155

the final output range [a, b], we now have b − a ≤ ε1r
∗. Consider ε2 = ε1

2 and

reiterate until εl ≤ ε. The overall cost of the procedure is
∑�log2

1
ε �

i=0 O(n log2 2) =
O(n log2

1
ε). The method extends to disks as well. We report on timings obtained

from experiments done on 1000 trials for uniformly distributed 100000-point
sets in a unit ring of width 2ε (

⊙
) or unit square (�). Maximum (max.) and

average (avg.) running times are in fractions of a second obtained by a 30-line
C code on an Intel 1.6 GHz processor. (See the public code of D. E. Eberly at
http://www.magic-software.com for a randomized implementation.)

Method/Distribution � Square max
⊙

Ring max � Square avg
⊙

Ring avg

D. E. Eberly (ε = 10−5) 0.7056 0.6374 0.1955 0.2767
J. Ritter [19] (ε > 0.18) 0.0070 0.0069 0.0049 0.0049
2nd Method (ε = 10−2) 0.0343 0.0338 0.0205 0.0286
2nd Method (ε = 10−3) 0.0515 0.0444 0.0284 0.0405
2nd Method (ε = 10−5) 0.0719 0.0726 0.0473 0.0527

Predicate degree. Predicates are the basic computational atoms of algorithms
that are related to their numerical stabilities. D. E. Eberly uses the InCircle
containment predicate of algebraic degree 4 on integers (d+2 in dimension d for
integer arithmetic. The degree drops to 2 if we consider rational arithmetic [5]).
We show how to replace the predicates of algebraic degree 4 by predicates of
degree 2 for integers: “Given a disk center (xi, yi) and a radius ri, determine
whether a point (x, y) is inside, on or outside the disk”. It boils down to compute
the sign of (x−xi)2+(y−yi)2−r2

i . This can be achieved using another dichotomy
search on line L : x = l. We need to ensure that if ym > yM , then there do exist
two disjoint disks Bm and BM . We regularly sample line L such that if ym > yM ,
then there exists a sampling point in [yM , ym] that does not belong to both disks
Bm and BM . In order to guarantee that setting, we need to ensure some fatness of
the intersection of ∩B(r)∩L by recursing on the x-axis until we have xM −xm ≤

ε√
2
. In that case, we know that if there was a common εr∗-ball intersection, then

its center x-coordinate is inside [xm, xM]: this means that on L, the width of
the intersection is at least ε√

2
. Therefore, a regular sampling on vertical line

L with step width ε√
2

guarantees to find a common piercing point if it exists.
A straightforward implementation would yield a time complexity O(n

ε log2
1
ε).

However, it is sufficient for each of the n disks, to find the upper most and
bottom most lattice point in O(log2

1
ε)-time using the floor function. Using the

bootstrapping method, we obtain a O(n log2
1
ε) time using integer arithmetic

with algebraic predicates InCircle of degree 2. In dimension 3 and higher, the
dimension reduction algorithm extends with a running time Od(n log2

1
ε). As a

side-effect, we improve the result of D. Avis and M. Houle [1] for the following
problem: Given a set B of n d-dimensional balls of E

d, we can find whether
∩B = ∅ or report a common intersection point in ∩B in deterministic Od(nd log n)
time and Od(nd) space.

http://www.magic-software.com

156 F. Nielsen and R. Nock

References

1. Avis D, Houle ME (1995) Computational aspects of Helly’s theorem and its rela-
tives. Int J Comp Geom Appl 5:357–367

2. Bădoiu M, Har-Peled S, Indyk P (2002) Approximate clustering via core-
sets. Proc 34th IEEE Sympos Found Comput Sci (FOCS), pp 250–257. DOI
10.1145/509907.509947

3. Bădoiu M, Clarkson K (2003) Optimal core-sets for balls. Proc 14th ACM-SIAM
Sympos Discrete Algorithms (SODA), pp 801–802

4. Chazelle B, Matoušek J (1996) On linear-time deterministic algorithms for
optimization problems in fixed dimension. J Algorithms 21:579–597. DOI
10.1006/jagm.1996.0060

5. Fischer K, Gärtner B (2003) The smallest enclosing ball of balls: combinatorial
structure and algorithms. Proc 19th ACM Sympos Comput Geom (SoCG), pp
292–301. DOI 10.1145/777792.777836

6. Fischer K, Gärtner B, Kutz M (2003) Fast smallest-enclosing-ball computation
in high dimensions. Proc 11th Annu European Sympos Algorithms (ESA), LNCS
2832:630–641

7. Gärtner B (1995) A subexponential algorithm for abstract optimization problems.
SIAM J Comput 24:1018–1035. DOI 10.1137/S0097539793250287

8. Gärtner B (1999) Fast and robust smallest enclosing balls. Proc 7th Annu European
Sympos Algorithms (ESA), LNCS 1643:325–338

9. Gärtner B, Schönherr S (2000) An efficient, exact, and generic quadratic program-
ming solver for geometric optimization. Proc 16th ACM Sympos Comput Geom
(SoCG), pp 110–118. DOI 10.1145/336154.336191

10. Gärtner B, Welzl E (2000) On a simple sampling lemma. Electronic Notes Theor
Comput Sci (eTCS), vol 31

11. Gärtner B, Welzl E (2001) Explicit and implicit enforcing: randomized optimiza-
tion, Computational Discrete Mathematics (Advanced Lectures), LNCS 2122:25–
46

12. Gritzmann P, Klee V (1993) Computational complexity of inner and outer j-radii of
polytopes in finite-dimensional normed spaces. Mathemat Program. 59(2):163–213

13. Grötschel M, Lovasz L, Schrijver A (1993) Geometric algorithms and combinatorial
optimization. Springer-Verlag

14. Hopp T, Reeve C (1996) An algorithm for computing the minimum covering sphere
in any dimension. NIST 5831 Tech Rep, NIST

15. Kumar P, Mitchell JSB, Yıldırım A (2003) Computing core-sets and approximate
smallest enclosing hyperspheres in high dimensions. ACM J Exp Alg 8(1)

16. Megiddo N (1984) Linear programming in linear time when the dimension is fixed.
J ACM 31(1):114–127. DOI 10.1145/2422.322418

17. Megiddo N (1989) On the ball spanned by balls. Discrete Comput Geom 4:605–610
18. Nesterov YE, Todd JE (1998) Primal-dual interior-point methods for self-scaled

cones. SIAM J Optimization 8:324–364. DOI 10.1137/S1052623495290209
19. Ritter J (1990) An efficient bounding sphere. In: Glassner A (ed) Graphics Gems,

pp 301–303. Academic Press
20. Sylvester JJ (1857) A question in the geometry of situation. Quarterly J Mathe-

matics 1:79
21. Szabo T, Welzl E (2001) Unique sink orientations of cubes. Proc 42nd Ann Sympos

Foundat Comp Sci (FOCS), pp 547–555
22. Welzl E (1991) Smallest enclosing disks (balls and ellipsoids). In: Maurer H (ed)

New Results and New Trends in Computer Science, LNCS 555:359–370

Approximating Smallest Enclosing Balls 157

23. Wu X (1992) A linear-time simple bounding volume algorithms. In: Kirk D (ed)
Graphics Gems III, pp 301–306. Academic Press

24. Zhou G, Sun J, Toh KC (2003) Efficient algorithms for the smallest enclosing ball
problem in high dimensional space. AMS Fields Institute Communications 37

	Introduction
	Previous Work
	Distance Point-Set Queries
	Approximating Smallest Enclosing Balls of Core-Sets
	Core-Sets for Decision Problems
	Small Dimensions Revisited

