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Abstract

The geometric Jensen–Shannon divergence (G-JSD) has gained popularity in machine
learning and information sciences thanks to its closed-form expression between Gaussian
distributions. In this work, we introduce an alternative definition of the geometric Jensen–
Shannon divergence tailored to positive densities which does not normalize geometric
mixtures. This novel divergence is termed the extended G-JSD, as it applies to the more
general case of positive measures. We explicitly report the gap between the extended
G-JSD and the G-JSD when considering probability densities, and show how to express the
G-JSD and extended G-JSD using the Jeffreys divergence and the Bhattacharyya distance or
Bhattacharyya coefficient. The extended G-JSD is proven to be an f-divergence, which is a
separable divergence satisfying information monotonicity and invariance in information
geometry. We derive a corresponding closed-form formula for the two types of G-JSDs
when considering the case of multivariate Gaussian distributions that is often met in
applications. We consider Monte Carlo stochastic estimations and approximations of the
two types of G-JSD using the projective γ-divergences. Although the square root of the
JSD yields a metric distance, we show that this is no longer the case for the two types of
G-JSD. Finally, we explain how these two types of geometric JSDs can be interpreted as
regularizations of the ordinary JSD.

Keywords: Jensen–Shannon divergence; quasi-arithmetic means; total variation distance;
Bhattacharyya distance; Chernoff information; Jeffreys divergence; Taneja divergence;
geometric mixtures; exponential families; projective γ-divergences; f-divergence; separable
divergence; information monotonicity

1. Introduction
1.1. Kullback–Leibler and Jensen–Shannon Divergences

Let (X , E , µ) be a measure space on the sample space X , σ-algebra of events E ,
with µ a prescribed positive measure on the measurable space (X , E ) (e.g., counting
measure or Lebesgue measure). Let M+(X ) = {Q} be the set of positive distribu-
tions Q and M1

+(X ) = {P} be the subset of probability measures P. We denote by
Mµ = { dQ

dµ : Q ∈ M+(X )} and M1
µ = { dP

dµ : P ∈ M1
+(X )} the corresponding sets of

Radon–Nikodym positive and probability densities, respectively.
Consider two probability measures P1 and P2 of M1

+(X ) with Radon–Nikodym densi-
ties with respect to µ p1:=dP1

dµ ∈ M1
µ and p2:=dP2

dµ ∈ M1
µ, respectively. The deviation of P1 to

P2 (also called distortion, dissimilarity, or deviance) is commonly measured in information
theory [1] by the Kullback–Leibler divergence (KLD):

KL(p1, p2):=
∫

p1 log
p1

p2
dµ = Ep1

[
log

p1

p2

]
. (1)
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Informally, the KLD quantifies the information lost when p2 is used to approximate
p1 by measuring, on average, the surprise when outcomes sampled from p1 are assumed
to emanate from p2: Shannon entropy H(p) =

∫
p log 1

p dµ is the expected surprise
H(p) = Ep[− log p], where − log p(x) measures the surprise of the outcome x. Logarithms
are taken to base 2 when information is measured in bits, and to base e when it is measured
in nats. Gibbs’ inequality asserts that KL(P1, P2) ≥ 0 with equality if and only if P1 = P2

µ-almost everywhere. Since KL(p1, p2) ̸= KL(p2, p1), various symmetrization schemes of
the KLD have been proposed in the literature [1] (e.g., Jeffreys divergence [1,2], resistor
average divergence [3] (harmonic KLD symmetrization), Chernoff information [1], etc.)

An important symmetrization technique of the KLD is the Jensen–Shannon diver-
gence [4,5] (JSD):

JS(p1, p2):=
1
2
(KL(p1, a) + KL(p2, a)), (2)

where a = 1
2 p1 +

1
2 p2 denotes the statistical mixture of p1 and p2. The JSD is guaranteed to

be upper-bounded by log 2 even when the support of p1 and p2 differ, making it attractive
in applications. Furthermore, its square root

√
JS yields a metric distance [6,7].

The JSD can be extended to a set of densities to measure the diversity of the set as
an information radius [8]. In information theory, the JSD can also be interpreted as an
information gain [6] since it can be equivalently written as

JS(p1, p2) = H
(

1
2

p1 +
1
2

p2

)
− H(p1) + H(p2)

2
,

where H(p) = −
∫

p log p dµ is Shannon entropy (Shannon entropy for discrete measures
and differential entropy for continuous measures). The JSD has also been defined in the
setting of quantum information [9], where it has also been proven that its square root yields
a metric distance [10].

Remark 1. Both the KLD and the JSD belong to the family of f-divergences [11,12] defined for a
convex generator f (u) (strictly convex at 1) by

I f (p1, p2):=
∫

p1 f
(

p2

p1

)
dµ.

Indeed, we have KL(p1, p2) = I fKL(p1, p2) and JS(p1, p2) = I fJS(p1, p2) for the following generators:

fKL(u) := − log u,

fJS(u) := −(1 + u) log
1 + u

2
+ u log u.

The family of f-divergences is the invariant divergences in information geometry [13]. The f-
divergences guarantee information monotonicity by coarse graining [13] (also called lumping in
information theory [14]). Using Jensen inequality, we get I f (p1, p2) ≥ f (1).

Remark 2. The metrization of f-divergences was studied in [15]. Once a metric distance D(p1, p2)

is given, we may use the following metric transform [16] to obtain another metric which is guaranteed
to be bounded by 1:

0 ≤ d(p1, p2) =
D(p1, p2)

1 + D(p1, p2)
≤ 1.

1.2. Jensen–Shannon Symmetrization of Dissimilarities with Generalized Mixtures

In [17], a generalization of the KLD Jensen–Shannon symmetrization scheme was
studied for arbitrary statistical dissimilarity D(·, ·) using an arbitrary weighted mean [18]
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Mα. A generic weighted mean Mα(a, b) = M1−α(b, a) for a, b ∈ R>0 is a continuous
symmetric monotonic map α ∈ [0, 1] 7→ Mα(a, b) such that M0(a, b) = b and M1(a, b) = 1.
For example, the quasi-arithmetic means [18] are defined according to a monotonous
continuous function ϕ as follows:

Mϕ
α (a, b):=ϕ−1(αϕ(a) + (1 − α)ϕ(b)).

When ϕp(u) = up, we get the p-power mean M
ϕp
α (a, b) = (αap +(1− α)bp)

1
p for p ∈ R\{0}.

We extend ϕp for p = 0 by defining ϕ0(u) = log u, and get Mϕ0
α (a, b) = aαb1−α, the weighted

geometric mean Gα.
Let us recall the generalization of the Jensen–Shannon symmetrization scheme of a

dissimilarity measure presented in [17]:

Definition 1 ((α, β) M-JS dissimilarity [17]). The Jensen–Shannon skew symmetrization of a
statistical dissimilarity D(·, ·) with respect to an arbitrary weighted bivariate mean Mα(·, ·) is
given by

DJS
Mα ,β(p1, p2):=β D

(
p1, (p1 p2)Mα

)
+ (1 − β) D

(
p2, (p1 p2)Mα

)
, (α, β) ∈ (0, 1)2, (3)

where (p1 p2)Mα
is the statistical normalized weighted M-mixture of p1 and p2:

(p1 p2)Mα
(x):=

Mα(p1(x), p2(x))∫
Mα(p1(x), p2(x))dµ(x)

. (4)

Remark 3. A more general definition is given in [17] by using another arbitrary weighted mean
Nβ to average the two dissimilarities in Equation (3):

DJS
Mα ,Nβ

(p1, p2):=Nβ

(
D
(

p1, (p1 p2)Mα

)
, D
(

p2, (p1 p2)Mα

))
, (α, β) ∈ (0, 1)2. (5)

When Nβ = Aα, the weighted arithmetic mean Aα(a, b) = αa + (1 − α)b, Equation (5) amounts
to Equation (3).

When α = 1
2 , we write, for short, (p1 p2)M instead of (p1 p2)M 1

2

in the reminder.

When D = KL, M = N = A 1
2
, Equation (5) yields the Jensen–Shannon divergence of

Equation (2): JS(p1, p2) = KLJS
A 1

2
,A 1

2

(p1, p2) = KLJS
A,A(p1, p2).

Lower and upper bounds for the skewed α-Jensen–Shannon divergence were reported
in [19].

The abstract mixture normalizer of (p1 p2)Mα
shall be denoted by

ZMα(p1, p2):=
∫

Mα(p1(x), p2(x))dµ(x),

so that the normalized M-mixture is written as (p1p2)Mα
(x) = Mα(p1(x),p2(x))

ZMα (p1,p2)
. The normalizer

ZMα(p1, p2) is always finite, and thus the weighted M-mixtures (p1p2)Mα
are well-defined:

Proposition 1. For any generic weighted mean Mα, we have the normalizer of the weighted
M-mixture bounded by 2:

0 ≤ ZMα(p1, p2) ≤ 2.
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Proof. Since Mα is a scalar weighted mean, it satisfies the following in-betweenness property:

min{p1(x), p2(x)} ≤ Mα(p1(x), p2(x)) ≤ max{p1(x), p2(x)}. (6)

Hence, by using the following two identities for a ≥ 0 and b ≥ 0,

min{a, b} =
a + b

2
− 1

2
|a − b|,

max{a, b} =
a + b

2
+

1
2
|a − b|,

we get∫
min{p1(x), p2(x)}dµ(x) ≤

∫
Mα(p1(x), p2(x))dµ(x) ≤

∫
max{p1(x), p2(x)}dµ(x),

0 ≤ 1 − TV(p1, p2) ≤ ZMα(p1, p2) ≤ 1 + TV(p1, p2) ≤ 2, (7)

where
TV(p1, p2):=

1
2

∫
|p1 − p2|dµ,

is the total variation distance, upper-bounded by 1. When the support of the densi-
ties p1 and p2 intersect (i.e., non-singular probability measures P1 and P2), we have
ZMα(p1, p2) > 0, and therefore the weighted M-mixtures (p1 p2)Mα are well-defined.

The generic Jensen–Shannon symmetrization of dissimilarities given in Definition 1
allows us to re-interpret some well-known statistical dissimilarities:

For example, the Chernoff information [1,20] is defined by

C(p1, p2):= max
α∈(0,1)

Bα(p1, p2), (8)

where Bα(p1, p2) denotes the α-skewed Bhattacharrya distance:

Bα(p1, p2):=− log
∫

pα
1 p1−α

2 dµ (9)

When α = 1
2 , we note B(p1, p2) = B 1

2
(p1, p2), the Bhattacharrya distance. Notice that

the Bhattacharrya distance is not a metric distance as it violates the triangle inequality
of metrics.

Using the framework of JS-symmetrization of dissimilarities, we can reinterpret the
Chernoff information as

C(p1, p2) = (KL∗)JS
Gα∗ ,A 1

2

(p1, p2),

where α∗ is provably the unique optimal skewing factor in Equation (8), such that we
have [20]:

C(p1, p2) = KL∗(p1, (p1 p2)Gα∗ ) = KL∗(p2, (p1 p2)Gα∗ ),

=
1
2
(
KL∗(p1, (p1 p2)Gα∗ ) + KL∗(p2, (p1 p2)Gα∗ )

)
,

where KL∗ denotes the reverse KLD:

KL∗(p1, p2):=KL(p2, p1).

Note that the KLD is sometimes called the forward KLD (e.g., [21]), and we have
KL∗∗(p1, p2) = KL(p1, p2).
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Although arithmetic mixtures are most often used in statistics, geometric mixtures are
also encountered, for example in Bayesian statistics [22] or in Markov chain Monte Carlo
annealing [23], just to give two examples. In information geometry, statistical power mix-
tures based on the homogeneous power means are used to perform stochastic integration
of statistical models [24].

Proposition 2 (Bhattacharyya distance as G-JSD). The Bhattacharyya distance [25] and the
α-skewed Bhattacharyya distances can be interpreted as JS-symmetrizations of the reverse KLD with
respect to the geometric mean G:

B(p1, p2) := − log
∫ √

p1 p2 dµ = (KL∗)JS
G (p1, p2),

Bα(p1, p2) := − log
∫

pα
1 p1−α

2 dµ = (KL∗)JS
Gα
(p1, p2).

Proof. Let m = (p1 p2)G =
√

p1 p2
Z(p1,p2)

denote the weighted geometric mixture with the normal-

izer ZG(p1, p2) =
∫ √

p1 p2 dµ. By definition of the JS-symmetrization of the reverse KLD,
we have

(KL∗)JS
G (p1, p2) :=

1
2
(KL∗(p1, (p1 p2)G) + KL∗(p2, (p1 p2)G)),

=
1
2
(KL((p1 p2)G, p1) + KL((p1 p2)G, p2)),

=
1
2

(∫ (
m log

√
p1 p2

p1 ZG(p1, p2)
+ m log

√
p1 p2

p2 ZG(p1, p2)

)
dµ

)
,

=
1
2

(∫ 1
2

m log
p2

p1

p1

p2
dµ − 2 log ZG(p1, p2)

∫
m dµ

)
,

= − log ZG(p1, p2) =: B(p1, p2).

The proof carries on similarly for the α-skewed JS-symmetrization of the reverse KLD:

we now let mα = (p1 p2)Gα
=

pα
1 p1−α

2
ZGα (p1,p2)

be the α-weighted geometric mixture with the

normalizer ZGα
(p1, p2) =

∫
pα

1 p1−α
2 dµ, written as ZGα

for short below:

KL∗JS
Gα,α(p1, p2) := α KL∗(p1, (p1p2)Gα

) + (1− α)KL∗(p2, (p1p2)Gα
),

= α KL(mα, p1) + (1− α)KL(mα, p2),

=
∫ (

αmα log
pα

1 p1−α
2

ZGα
p1

+ (1− α)mα log
pα

1 p1−α
2

ZGα
p2

)
dµ,

= −(α + 1− α) log ZGα

∫
mα dµ +

∫
mα log

(
p2

p1

)α(1−α)( p1

p2

)α(1−α)

dµ,

= − log ZGα
(p1, p2) =: Bα(p1, p2).

Besides information theory [1], the JSD also plays an important role in machine
learning [26–28]. However, one drawback that refrains its use in practice is that the
JSD between two Gaussian distributions (normal distributions) is not known in closed
form, since no analytic formula is known for the differential entropy of a two-component
Gaussian mixture [29], and thus the JSD needs to be numerically approximated in practice
by various methods.

To circumvent this problem, the geometric G-JSD was defined in [17] as follows:
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Definition 2 (G-JSD [17]). The geometric Jensen–Shannon divergence (G-JSD) between two
probability densities, p1 and p2, is defined by

JSG(p1, p2):=
1
2
(KL(p1, (p1 p2)G) + KL(p2, (p1 p2)G)),

where (p1 p2)G(x) =
√

p1(x) p2(x)∫ √
p1(x) p2(x)dµ

is the (normalized) geometric mixture of p1 and p2.

We have JSG(p1, p2) = KLJS
G (p1, p2). Since, by default, the M- mixture JS-symmetrization

of dissimilarities D is performed on the right argument (i.e., DJS
M), we may also consider a

dual JS-symmetrization by setting the M-mixtures on the left argument. We denote this
left mixture JS-symmetrization with DJS∗

M . We have DJS∗
M (p1, p2) = (D∗)JS

M(p1, p2), i.e., the
left-sided JS-symmetrization of D amounts to a right-sided JS-symmetrization of the dual
dissimilarity D∗(p1, p2):=D(p2, p1).

Thus, a left-sided G-JSD divergence JS∗G was also defined in [17]:

Definition 3. The left-sided geometric Jensen–Shannon divergence (G-JSD) between two probabil-
ity densities p1 and p2 is defined by

JS∗G(p1, p2) :=
1
2
(KL((p1 p2)G, p1) + KL((p1 p2)G, p2)),

=
1
2
(KL∗(p1, (p1 p2)G) + KL∗(p2, (p1 p2)G)),

where (p1 p2)G(x) =
√

p1(x) p2(x)∫ √
p1(x) p2(x)dµ

is the (normalized) geometric mixture of p1 and p2.

To contrast with the numerical approximation limitation of the JSD between Gaussians,
one advantage of the geometric Jensen–Shannon divergence (G-JSD) is that it admits a
closed-form expression between Gaussian distributions [17]. However, the G-JSD is no
longer bounded. The G-JSD formula between Gaussian distributions has been used in
several scenarios. See [30–38] for a few use cases.

Let us express the G-JSD divergence using other familiar divergences.

Proposition 3. We have the following expression of the geometric Jensen–Shannon divergence:

JSG(p1, p2) =
1
4

J(p1, p2)− B(p1, p2),

where J(p1, p2):=
∫
(p1 − p2) log p1

p2
dµ is Jeffreys’ divergence [2], and

B(p1, p2) = − log
∫ √

p1 p2 dµ = − log ZG(p1, p2),

is the Bhattacharrya distance.

Proof. We have the following:

JSG(p1, p2) :=
1
2
(KL(p1, (p1p2)G) +KL(p2, (p1p2)G)),

=
1
2

(∫ (
p1(x) log

p1(x)ZG(p1, p2)√
p1(x) p2(x)

+ p2(x) log
p2(x)ZG(p1, p2)√

p1(x) p2(x)

)
dµ(x)

)
,

=
1
2

(∫
(p1(x) + p2(x)) log ZG(p1, p2)dµ(x) +

1
2

KL(p1, p2) +
1
2

KL(p2, p1)

)
,

= log ZG(p1, p2) +
1
4

J(p1, p2),

=
1
4

J(p1, p2)− B(p1, p2).
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Corollary 1 (G-JSD upper bound). We have the upper bound JSG(p, q) ≤ 1
4 J(p, q).

Proof. Since B(p1, p2) ≥ 0 and JSG(p1, p2) = 1
4 J(p1, p2) − B(p1, p2), we have

JSG(p, q) ≤ 1
4 J(p, q).

Remark 4. Although the KLD and JSD are separable divergences (i.e., f-divergences expressed
as integrals of scalar divergences), the M-JSD divergence is, in general, not separable, because
it requires mixtures to be normalized inside the log terms. Notice that the Bhattacharyya
distance is, similarly, not a separable divergence, but the Bhattacharyya similarity coefficient
BC(p1, p2) = exp(−B(p1, p2)) =

∫ √
p1 p2 dµ is a separable “f-divergence”/f-coefficient for

fBC(u) =
√

u (here, a concave generator): BC(p1, p2) = I fBC
(p1, p2). Notice that fBC(1) = 1,

and because of the concavity of fBC, we have I fBC
(p1, p2) ≤ fBC(1) = 1 (hence, the term

f-coefficient to reflect the notion of a similarity measure).

1.3. Paper Outline

The paper is organized as follows: We first give an alternative definition of the M-JSD
in Section 2 (Definition 4) which extends to positive measures and does not require nor-
malization of geometric mixtures. We call this new divergence the extended M-JSD, and
we compare the two types of geometric JSDs when dealing with probability measures. In
Section 4, we show that these normalized/extended M-JSD divergences can be interpreted
as regularizations of the Jensen–Shannon divergence, and exhibit several bounds. We dis-
cuss Monte Carlo stochastic approximations and approximations using γ-divergences [39]
in Section 5. For the case of geometric mixtures, although the G-JSD is not an f-divergence,
we show that the extended G-JSD is an f-divergence (Proposition 5), and we express both
the G-JSD and the extended G-JSD using both the Jeffreys divergence and the Bhattacharyya
divergence or coefficient. We report a related closed-form formula for the G-JSD and ex-
tended G-JSD between two Gaussian distributions in Section 3. Finally, we summarize the
main results in the concluding section, Section 6.

A list of notations is provided in Nomenclature.

2. A Novel Definition: The G-JSD, Extended to Positive Measures
2.1. Definition and Properties

We may consider the following two modifications of the G-JSD:

• First, we replace the KLD with the extended KLD between positive densities q1 ∈ M+
µ

and q2 ∈ M+
µ instead of normalized densities:

KL+(q1, q2):=
∫ (

q1 log
q1

q2
+ q2 − q1

)
dµ, (10)

(with KL+(p1, p2) = KL(p1, p2));
• Second, we consider unnormalized M-mixture densities:

(q1q2)M̃α
(x):=Mα(q1(x), q2(x)),

where we use the M̃ tilde notation to indicate that the M-mixture is not normalized,
instead of normalized densities (q1q2)Mα

(x).

The extended KLD can be interpreted as a pointwise integral of a scalar Bregman
divergence obtained for the negative Shannon entropy generator [40]. This proves that
KL+(q1, q2) ≥ 0 with equality if and only if q1 = q2 µ-almost everywhere. Notice that
KL(q1, q2) may be negative when q1 and/or q2 are not normalized to probability densities,
but we always have KL+(q1, q2) ≥ 0.
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The extended KLD is an extended f-divergence [41]: KL+(q1, q2) = I+fKL+
(q1, q2) for

fKL+(u) = − log(u) + u− 1, where I+f (q1, q2) denotes the f-divergence extended to positive
densities q1 and q2:

I+f (q1, q2) =
∫

q1 f
(

q2

q1

)
dµ.

Remark 5. As a side remark, it is preferable in practice to estimate the KLD between p1 and
p2 by Monte Carlo methods using Equation (10) instead of Equation (1) in order to guar-
antee the non-negativeness of the KLD (Gibbs’ inequality). Indeed, the sampling of s sam-
ples x1, . . . , xs, defining two unnormalized distributions q1(x) = 1

s ∑s
i=1 p1(x)δxi (x) and

q2(x) = 1
s ∑s

i=1 p2(x)δxi (x), where

δxi (x) =

{
1, if x = xi

0, otherwise
.

Remark 6. For an arbitrary distortion measure D+(q1, q2) between positive measures q1 and q2,
we can build a corresponding projective divergence D̃(q1, q2) as follows:

D̃(q1, q2):=D+

(
q1

Z(q1)
,

q1

Z(q2)

)
,

where Z(q):=
∫

q dµ is the normalization factor of the positive density q. The divergence
D̃ is said to be projective because we have, for all λ1 > 0, λ2 > 0, the property that
D̃(λ1q1, λ2q2) = D̃(q1, q2) = D+(p1, p2), where pi = qi

Z(qi)
are the normalized densities.

The projective Kullback–Leibler divergence K̃L is thus another projective extension of the KLD to
non-normalized densities which coincide with the KLD for probability densities. But the projective
KLD is different from the extended KLD of Equation (10), and furthermore, we have K̃L(q1, q2) = 0
if and only if q1 = λ q2 µ-almost everywhere for some λ > 0.

Let us now define the Jensen–Shannon symmetrization of an extended statistical
divergence D+ with respect to an arbitrary weighted mean Mα as follows:

Definition 4 (Extended M-JSD). A Jensen–Shannon skew symmetrization of a statistical diver-
gence D+(·, ·) between two positive measures q1 and q2 with respect to a weighted mean Mα is
defined by

DJS+

M̃α ,β
(q1, q2):=β D+

(
q1, (q1q2)M̃α

)
+ (1 − β) D+

(
q1, (q1q2)M̃α

)
, (11)

When β = 1
2 , we write, for short, DJS+

M̃α
(q1, q2), and furthermore, when α = 1

2 , we

simplify the notation to DJS+

M̃ (q1, q2).
When D+ = KL+, we obtain the extended geometric Jensen–Shannon divergence,

JS+
G̃
(q1, q2) = KLJS+

G̃
(q1, q2):

Definition 5 (Extended G-JSD). The extended geometric Jensen–Shannon divergence between
two positive densities q1 and q2 is

JS+
G̃
(q1, q2) =

1
2
(
KL+(q1, (q1q2)G̃) + KL+(q2, (q1q2)G̃))

)
, (12)

The extended G-JSD between two normalized densities p1 and p2 is thus
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JS+
G̃
(p1, p2) =

1
2

(∫ (
p1 log

p1√
p1 p2

+ p2 log
p2√
p1 p2

)
dµ +

∫ √
p1 p2 dµ)

)
− 1, (13)

=
1
2

(∫ (
p1 log

√
p1

p2
+ p2 log

√
p2

p1

)
dµ + ZG(p1, p2)

)
− 1, (14)

with ZG(p1, p2) = exp(−B(p1, p2)).
Thus, we get the following propositions:

Proposition 4. The extended geometric Jensen–Shannon divergence (G-JSD) can be expressed
as follows:

JS+
G̃
(p1, p2) =

1
4

J(p1, p2) + exp(−B(p1, p2))− 1.

Proof. We have

JS+
G̃
(p1, p2) =

1
2
(
KL+(p1, (p1 p2)G̃) + KL+(p2, (p1 p2)G̃)

)
,

=
1
2

(∫ (
p1 log

√
p1

p2
+ p2 log

√
p2

p1
+ 2

√
p1 p2 − (p1 + p2)

)
dµ

)
,

=
∫ 1

4
(p1 − p2) log

p1

p2
dµ +

∫ √
p1 p2 dµ − 1,

=
1
4

J(p1, p2) + exp(−B(p1, p2))− 1.

Thus, we can express the gap between JS+
G̃
(p1, p2) and JSG(p1, p2):

∆G(p1, p2) = JS+
G̃
(p1, p2)− JSG(p1, p2) = exp(−B(p1, p2)) + B(p1, p2)− 1.

Since ZG(p1, p2) = exp(−B(p1, p2)), we have:

∆G(p1, p2) = ZG(p1, p2)− log ZG(p1, p2)− 1.

Proposition 5. The extended G-JSD is an f-divergence for the generator

fG̃(u) =
1
4
(u − 1) log u +

√
u − 1.

That is, we have JS+
G̃
(p1, p2) = I fG̃

(p1, p2).

Proof. We proved that JS+
G̃
(p1, p2) =

1
4 J(p1, p2) + BC(p1, p2)− 1. The Jeffreys divergence

is an f-divergence for the generator f J(u) = (u − 1) log u, and the Bhattacharyya coefficient
is an f-coefficient for fBC(u) =

√
u (a “f-divergence” for a concave generator). Thus, we have

fG̃(u) =
1
4
(u − 1) log u +

√
u − 1,

such that JS+
G̃
(p1, p2) = I fG̃

(p1, p2). We check that fG̃(u) is convex, since f ′′G̃(u) =
√

u(u+1)−u

4u
5
2

(and by a change of variable t =
√

u, the numerator t(t2 − t + 1) is shown

to be positive, since the discriminant of t2 − t + 1 is negative), and we have fG̃(1) = 0.
Thus, the extended G-JSD is a proper f-divergence.

It follows that the extended G-JSD satisfies the information monotonicity of invariant
divergences in information geometry [13].
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By abuse of notations, we have

KL+(q1, q2):=KL(q1, q2) +
∫
(q2 − q1)dµ,

although q1 and q2 may not need to be normalized in the KL term (which can then yield a
potentially negative value). Letting Z(qi):=

∫
qi dµ be the total mass of positive density qi,

we have
KL+(q1, q2) = KL(q1, q2) + Z(q2)− Z(q1). (15)

Let m̃α = Mα(q1, q2) be the unnormalized M-mixture of positive densities q1 and
q2, and set ZMα =

∫
m̃α dµ be the normalization term so that we have mα = m̃α

ZMα
and

m̃α = ZMα mα. When clear from context, we write Zα instead of ZMα .
We get, after elementary calculus, the following identity:

JS+M̃α ,β(q1, q2) = JSMα ,β(q1, q2)− (βZ(q1) + (1 − β)Z(q2)) log Zα + Zα − (βZ(q1) + (1 − β)Z(q2)). (16)

Therefore, the difference gap ∆Mα ,β(p1, p2) (written for short as ∆(p1, p2)) between the
normalized JSD and the unnormalized M-JSD between two normalized densities p1 and p2

(i.e., with Z1 = Z(p1) = 1 and Z2 = Z(p2) = 1) is

∆(p1, p2):=JS+M̃α ,β(p1, p2)− JSMα ,β(p1, p2) = Zα − log(Zα)− 1. (17)

Proposition 6 (Extended/normalized M-JSD Gap). The following identity holds:

JS+M̃α ,β(p1, p2) = JSMα ,β(p1, p2) + Zα − log(Zα)− 1.

Thus, JS+M̃α ,β(p1, p2) ≥ JSMα ,β(p1, p2) when ∆(p1, p2) ≥ 0, and
JS+M̃α ,β(p1, p2) ≤ JSMα ,β(p1, p2) when ∆(p1, p2) ≤ 0.

When we consider the weighted arithmetic mean Aα, we always have Zα = 1 for
α ∈ (0, 1), and thus the two definitions (Definition 1 and Definition 4) of the A-JSD coincide
(i.e., ZA

α − log(ZA
α )− 1 = 0):

JSA(p1, p2) = JSÃ(p1, p2).

However, when the weighted mean Mα differs from the weighted arithmetic mean (i.e.,
Mα ̸= Aα), the two definitions of the M-JSD JSM and extended M-JSD JSM̃ differ by the gap
expressed in Equation (17).

Remark 7. When information is measured in bits, logarithms are taken to base 2, and when
information is measured in nats, base e is considered. Thus, we shall generally consider the gap
∆b = Zα − logb(Zα)− 1, where b denotes the base of the logarithm. When b = e, we have ∆e ≥ 0
for all Zα > 0. When b = 2, we have ∆2 = Zα − log2(Zα)− 1 ≥ 0 when 0 < Zα ≤ 1 or Zα ≥ 2.
But since Zα ≤ 2 (see Equation (7)), the condition simplifies to ∆2 ≥ 0 if and only if Zα ≤ 1.

Remark 8. Although
√

JS is a metric distance [5],
√

JSG is not a metric distance, as the triangle
inequality is not satisfied. It suffices to report a counterexample of the triangle inequality for a triple
of points p1, p2, and p3: Consider p1 = (0.55, 0.45), p2 = (0.002, 0.998), and p3 = (0.045, 0.955).
Then we have

√
JSG(p1, p2) ≈ 1.0263227 . . .,

√
JSG(p1, p3) ≈ 0.63852342 . . ., and√

JSG(p3, p2) ≈ 0.19794622 . . .. The triangle inequality fails with an error of√
JSG(p1, p2)− (

√
JSG(p1, p3) +

√
JSG(p3, p2)) ≈ 0.1898531 . . . .
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Similarly, the triangle inequality also fails for the extended G-JSD: we have√
JS+G (p1, p2) ≈ 1.0788275 . . . ,

√
JS+G (p1, p3) ≈ 0.6691922 . . ., and

√
JS+G (p3, p2) ≈

0.1984633 . . . with a triangle inequality defect value of√
JS+G (p1, p2)− (

√
JS+G (p1, p3) +

√
JS+G (p3, p2)) ≈ 0.2111719 . . . .

2.2. Power JSDs and (Extended) Min-JSD and Max-JSD

Let Pγ,α(a, b):=(αaγ + (1 − α)bγ)
1
γ be the γ-power mean for γ ̸= 0 (with Aα = P1,α).

Further define P0,α(a, b) = Gα(a, b) so that Pγ,α defines the weighted power means for
γ ∈ R and α ∈ (0, 1) in the reminder. Since Pγ,α(a, b) ≤ Pγ′ ,α(a, b) when γ′ ≥ γ for any
a, b > 0, we have

ZPγ
α (p1, p2) =

∫
Pγ,α(p1(x), p2(x))dµ ≤ Z

Pγ′
α (p1, p2) =

∫
Pγ′ ,α(p1(x), p2(x))dµ. (18)

Let Pγ(a, b) = Pγ, 1
2
(a, b). We have limγ→−∞ Pγ(a, b) = min(a, b) and

limγ→+∞ Pγ(a, b) = max(a, b). Thus, we can define both (extended) min-JSD and (ex-
tended) max-JSD. Using the fact that min(a, b) = a+b

2 − 1
2 |a − b| and max(a, b) =

a+b
2 + 1

2 |a − b|, we obtain the extremal mixture normalization terms as follows:

Zmin(p1, p2) =
∫

min(p1, p2)dµ = 1 − TV(p1, p2), (19)

Zmax(p1, p2) =
∫

max(p1, p2)dµ = 1 + TV(p1, p2), (20)

where TV(p1, p2) =
1
2

∫
|p1 − p2|dµ is the total variation distance.

Proposition 7 (max-JSD). The following upper bound holds for max-JSD:

0 ≤ JS+m̃ax(p1, p2) ≤ TV(p1, p2). (21)

Furthermore, the following identity relates the two types of max-JSDs:

JS+m̃ax(p1, p2) = JSm̃ax(p1, p2) + TV(p1, p2)− log(1 + TV(p1, p2)). (22)

Proof. We have

JS+m̃ax(p1, p2):=
1
2

∫ (
p1 log

p1

max(p1, p2)
+ p2 log

p2

max(p1, p2)
+ 2 max(p1, p2)− (p1 + p2)

)
dµ.

Since both log p1
max(p1,p2)

≤ 0 and log p2
max(p1,p2)

≤ 0, and max(a, b) = a+b
2 + 1

2 |b − a|,
we have

JS+m̃ax(p1, p2) ≤
∫ ( p1 + p2

2
+

1
2
|p2 − p1| −

p1 + p2

2

)
dµ.

That is, JS+m̃ax(p1, p2) ≤ TV(p1, p2).
We characterize the gap as follows:

∆max(p1, p2) = Zmax(p1, p2)− log Zmax(p1, p2)− 1,

= TV(p1, p2)− log(1 + TV(p1, p2)) ≥ 0,

since 0 ≤ TV ≤ 1. Thus JS+m̃ax(p1, p2) ≥ JSmax(p1, p2).

Proposition 8 (min-JSD). We have the following lower bound on the extended min-JSD:
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JS+m̃in(p1, p2) ≥
1
4

J(p1, p2)− TV(p1, p2),

where J(p1, p2):=KL(p1, p2) + KL(p2, p1) =
∫
(p1 − p2) log p1

p2
dµ is the Jeffreys’ diver-

gence [2] and

JS+m̃in(p1, p2) = JSmin(p1, p2)− TV(p1, p2) + log(1 − TV(p1, p2)).

Proof. We have Zmin(p1, p2) =
∫

min{p1, p2}dµ = 1 − TV(p1, p2) ≤ 1 and

∆min(p1, p2) = Zmin(p1, p2)− log Zmin(p1, p2)− 1,

= −TV(p1, p2)− log(1 − TV(p1, p2)) ≥ 0,

since −x − log(1 − x) ≥ 0 for x ≤ 1. Note that the gap can be arbitrarily large when
TV(p1, p2) → 1−.

Thus, we have JS+m̃in(p1, p2) ≥ JSmin(p1, p2).
To get the lower bound, we use the fact that min(p1, p2) ≤

√
p1 p2. Indeed, we have

JS+m̃in(p1, p2) =
1
2

(∫
(p1 log

p1

min(p1, p2)
+ p2 log

p2

min(p1, p2)
+ 2 min(p1, p2)− (p1 + p2)

)
dµ,

≥ 1
2

∫ (1
2

p1 log
p1

p2
+

1
2

p2 log
p2

p1
+ 2 min(p1, p2)− (p1 + p2)

)
dµ,

=
1
4

J(p1, p2)− TV(p1, p2).

Remark 9. Let us report the total variation distance between two univariate Gaussian distributions
pµ1,σ1 and pµ2,σ2 in closed form using the error function [42] erf(x) = 1√

π

∫ x
−x e−t2

dt.

• When σ1 = σ2 = σ, we have

TV(p1, p2) =
1
2
|Φ(x∗; µ2, σ)− Φ(x∗; µ1, σ)|, (23)

where Φ(x; µ, σ) = 1
2 (1 + erf( x−µ

σ
√

2
)) is the cumulative distribution, and

x∗ =
µ2

1 − µ2
2

2(µ1 − µ2)
. (24)

• When σ1 ̸= σ2, we let x1 = −b−
√

∆
2a and x2 = −b+

√
∆

2a , where ∆ = b2 − 4ac ≥ 0 and

a =
1
σ2

1
− 1

σ2
2

, (25)

b = 2
(

µ2

σ2
− µ1

σ1

)
, (26)

c =

(
µ1

σ1

)2
−
(

µ2

σ2

)2
− 2 log

σ2

σ1
. (27)

The total variation is given by

TV(p1, p2) =

1
2

(∣∣∣∣erf
(

x1 − µ1

σ1
√

2

)
− erf

(
x1 − µ2

σ2
√

2

)∣∣∣∣+ ∣∣∣∣erf
(

x2 − µ1

σ1
√

2

)
− erf

(
x2 − µ2

σ2
√

2

)∣∣∣∣) (28)
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Next, we shall consider the important case of p1 and p2 belonging to the family of
multivariate normal distributions, commonly called Gaussian distributions.

3. Geometric JSDs Between Gaussian Distributions
3.1. Exponential Families

The formula for the G-JSD between two Gaussian distributions was reported in [17]
using the more general framework of exponential families. An exponential family [43] is a
family of probability measures {Pλ} with Radon–Nikodym densities pλ with respect to µ

expressed canonically as

pλ(x) := exp(⟨θ(λ), t(x)⟩ − F(θ) + k(x)),

=
1

Z(θ)
exp(⟨θ(λ), t(x)⟩+ k(x)),

where θ(λ) is the natural parameter, t(x) the sufficient statistic, k(x) an auxiliary carrier
term with respect to µ, and F(θ) the cumulant function. The partition function Z(θ) is the
normalizer denominator: Z(θ) = exp(F(θ)). The cumulant function F(θ) = log Z(θ) is
strictly convex and analytic [43], and the partition function Z(θ) = exp(F(θ)) is strictly
log-convex (and hence also strictly convex).

We consider the exponential family of multivariate Gaussian distributions

N = {N(µ, Σ) : µ ∈ Rd, Σ ∈ PD(d)},

where PD(d) denotes the set of symmetric positive–definite matrices of size d × d. Let
λ:=(λv, λM) = (µ, Σ) denote the compound (vector, matrix) parameter of a Gaussian. The
d-variate Gaussian density is given by

pλ(x; λ) :=
1

(2π)
d
2
√
|λM|

exp
(
−1

2
(x − λv)

⊤λ−1
M (x − λv)

)
, (29)

where | · | denotes the matrix determinant. The natural parameters θ are expressed us-
ing both a vector parameter θv and a matrix parameter θM in a compound parameter
θ = (θv, θM). By defining the following compound inner product on a compound (vector,
matrix) parameter 〈

θ, θ′
〉
:=θ⊤v θ′v + tr

(
θ′M

⊤
θM

)
, (30)

where tr(·) denotes the matrix trace, we rewrite the Gaussian density of Equation (29) in
the canonical form of an exponential family:

pθ(x; θ) := exp(⟨t(x), θ⟩ − Fθ(θ)) = pλ(x), (31)

where θ = θ(λ) with

θ = (θv, θM) =

(
Σ−1µ,−1

2
Σ−1

)
= θ(λ) =

(
λ−1

M λv,−1
2

λ−1
M

)
, (32)

is the compound vector-matrix natural parameter and

t(x) = (x,−xx⊤), (33)

is the compound vector-matrix sufficient statistic. There is no auxiliary carrier term (i.e.,
k(x) = 0). The function Fθ is given by

Fθ(θ):=
1
2

(
d log π − log |θM|+ 1

2
θ⊤v θ−1

M θv

)
, (34)
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Remark 10. Beware that when the cumulant function is expressed using the ordinary parameter
λ = (µ, Σ), the cumulant function Fθ(θ(λ)) is no longer convex:

Fλ(λ) =
1
2

(
λ⊤

v λ−1
M λv + log |λM|+ d log 2π

)
, (35)

=
1
2

(
µ⊤Σ−1µ + log |Σ|+ d log 2π

)
. (36)

We convert between the ordinary parameterization λ = (µ, Σ) and the natural param-
eterization θ using these formulas:

θ = (θv, θM) =

{
θv(λ) = λ−1

M λv = Σ−1µ

θM(λ) = 1
2 λ−1

M = 1
2 Σ−1 ⇔ λ = (λv, λM) =

{
λv(θ) =

1
2 θ−1

M θv = µ

λM(θ) = 1
2 θ−1

M = Σ

The geometric mixture pα
θ1

p1−α
θ2

of two densities of an exponential family is a density
pαθ1+(1−α)θ2

of the exponential family with the partition function Zα(θ1, θ2) = exp(−JF,α(θ1, θ2)),
where JF,α(θ1, θ2) denotes the skew Jensen divergence [44,45]:

JF,α(θ1, θ2):=αF(θ1) + (1 − α)F(θ2)− F(αθ1 + (1 − α)θ2).

Therefore, the difference gap of Equation (17) between the G-JSD and the extended
G-JSD between exponential family densities is given by

∆(θ1, θ2) = exp(−JF,α(θ1, θ2)) + JF,α(θ1, θ2)− 1, (37)

= Zα(θ1, θ2)− log Zα(θ1, θ2)− 1, (38)

= Zα(θ1, θ2)− F(αθ1 + (1 − α)θ2)− 1. (39)

Since Zα = exp(−JF,α(θ1, θ2)) ≤ 1, the gap ∆ is negative, and we have

JS+G̃α ,β(pµ1,Σ1 , pµ2,Σ2) ≤ JSGα ,β(pµ1,Σ1 , pµ2,Σ2).

Corollary 2. When p1 = pθ1 and p2 = pθ2 belongs to a same exponential family with the cumulant
function F(θ), we have

JSG(pθ1 , pθ2) =
1
4
(θ2 − θ1)

⊤(∇F(θ2)−∇F(θ1))−
(

F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

))
, (40)

since J(pθ1 , pθ2) = ⟨θ2 − θ1,∇F(θ2)−∇F(θ1)⟩ amounts to a symmetrized Bregman divergence.

Proof. We have J(pθ1 , pθ2) = (θ2 − θ1)
⊤(∇F(θ2)−∇F(θ1)) and J(pθ1 , pθ2) = JF(θ1, θ2).

The extended geometric Jensen–Shannon divergence and geometric Jensen–Shannon
divergence between two densities of an exponential family are given by

JSG(pθ1 , pθ2) =
1
4
(θ2 − θ1)

⊤(∇F(θ2)−∇F(θ1))−
(

F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

))
,

JSG̃(pθ1 , pθ2) =
1
4
⟨θ2 − θ1,∇F(θ2)−∇F(θ1)⟩ − exp(−JF(θ1, θ2))− 1,

JS∗G(pθ1 , pθ2) = JF(θ1, θ2)

Remark 11. Given two densities p1 and p2, the family G of geometric mixtures {(p1 p2)Gα
∝

pα
1 p1−α

2 : α ∈ (0, 1)} forms a 1D exponential family that has been termed the likelihood ratio
exponential family [46] (LREF). The cumulant function of this LREF is F(α) = −Bα(p1, p2).
Hence, G has also been called a Bhattacharyya arc or Hellinger arc in the literature [47]. However,



Entropy 2025, 27, 947 15 of 23

notice that KL(pi : (p1 p2)Gα
) does not necessarily amount to a Bregman divergence, because

neither p1 nor p2 belongs to G.

3.2. Closed-Form Formula for Gaussian Distributions

Let us report the corresponding closed-form formula for d-variate Gaussian distributions.
When α = 1

2 , we proved that JSG(p1, p2) =
1
4 J(p1, p2)− B(p1, p2) and JS+

G̃
(p1, p2) =

1
4 J(p1, p2) + exp(−B(p1, p2))− 1 where BC(p1, p2) = exp(−B(p1, p2)). Thus, for the case
of balanced geometric mixtures, we need to report the closed form for the Jeffreys and
Bhattacharyya distances:

J(pµ1,Σ1 , pµ2,Σ2) =
1
2

(
tr
(

Σ1Σ−1
2 + Σ2Σ−1

1

)
+ (µ1 − µ2)

⊤(Σ−1
1 + Σ−1

2 )(µ1 − µ2)− 2d
)

,

B(pµ1,Σ1 , pµ2,Σ2) =
1
8
(µ1 − µ2)

⊤Σ̄−1(µ1 − µ2) +
1
2

log
(

det Σ̄√
det Σ1 det Σ2

)
,

where Σ̄ = 1
2 (Σ1 + Σ2).

Otherwise, for the arbitrary weighted geometric mixture Gα, define (θ1θ2)α = αθ1 + (1−
α)θ2, the weighted linear interpolation of the natural parameters θ1 and θ2.

Corollary 3. The skew G-Jensen–Shannon divergence JSG
α and the dual skew G-Jensen–Shannon

divergence JS∗G
α between two d-variate Gaussian distributions N(µ1, Σ1) and N(µ2, Σ2) is

JSGα
(p(µ1,Σ1)

, p(µ2,Σ2)
) = α KL(p(µ1,Σ1)

, p(µα ,Σα)) + (1 − α)KL(p(µ2,Σ2)
, p(µα ,Σα)),

= α BF((θ1θ2)α, θ1) + (1 − α) BF((θ1θ2)α, θ2),

=
1
2

(
tr
(

Σ−1
α (αΣ1 + (1 − α)Σ2)

)
+ log

(
|Σα|

|Σ1|α|Σ2|1−α

)
= +α(µα − µ1)

⊤Σ−1
α (µα − µ1) + (1 − α)(µα − µ2)

⊤Σ−1
α (µα − µ2)− d

)
JS∗Gα

(p(µ1,Σ1)
, p(µ2,Σ2)

) = (1 − α)KL(p(µα ,Σα), p(µ1,Σ1)
) + αKL(p(µα ,Σα), p(µ2,Σ2)

),

= α BF(θ1, (θ1θ2)α) + (1 − α) BF(θ2, (θ1θ2)α),

= JF,α(θ1, θ2) =: Bα(p(µ1,Σ1)
, p(µ2,Σ2)

),

=
1
2

(
αµ⊤

1 Σ−1
1 µ1 + (1 − α)µ⊤

2 Σ−1
2 µ2 − µ⊤

α Σ−1
α µα + log

|Σ1|α|Σ2|1−α

|Σα|

)
,

F(µ, Σ) =
1
2

(
µ⊤Σ−1µ + log |Σ|+ d log 2π

)
,

F(θv, θM) =
1
2

(
d log π − log |θM|+ 1

2
θ⊤v θ−1

M θv

)
,

∆(θ1, θ2) = exp(−JF,α(θ1, θ2)) + JF,α(θ1, θ2)− 1,

where Σα is the matrix harmonic barycenter:

Σα =
(

αΣ−1
1 + (1 − α)Σ−1

2

)−1
, (41)

and
µα = Σα

(
αΣ−1

1 µ1 + (1 − α)Σ−1
2 µ2

)
. (42)

4. The Extended and Normalized G-JSDs as Regularizations of the
Ordinary JSD

The M-Jensen–Shannon divergence JSM(p, q) can be interpreted as a regularization of
the ordinary JSD:
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Proposition 9 (JSD regularization). For any arbitrary mean M, the following identity holds:

JSM(p1, p2) = JS(p1, p2) + KL
(

p1 + p2

2
, (p1 p2)M

)
. (43)

Notice that (p1 p2)A = p1+p2
2 .

Proof. We have

JSM(p1, p2) :=
1
2
(KL(p1, (p1 p2)M) + KL(p2, (p1 p2)M)),

=
1
2

∫ (
p1 log

p1 (p1 p2)A
(p1 p2)M (p1 p2)A

+ p2 log
p2 (p1 p2)A

(p1 p2)M (p1 p2)A

)
dµ,

=
1
2

∫ (
p1 log

p1

(p1 p2)A
+ p1 log

(p1 p2)A
(p1 p2)M

+ p2 log
p2

(p1 p2)A
+ p2 log

(p1 p2)A
(p1 p2)M

)
dµ,

=
1
2

∫ (
p1 log

p1

(p1 p2)A
+ p2 log

p2

(p1 p2)A

)
dµ +

∫ 1
2
(p1 + p2) log

(p1 p2)A
(p1 p2)M

dµ,

= JS(p1, p2) +
∫
(p1 p2)A log

(p1 p2)A
(p1 p2)M

dµ,

= JS(p1, p2) + KL((p1 p2)A, (p1 p2)M).

Remark 12. One way to symmetrize the KLD is to consider two distinct symmetric means
M1(a, b) = M1(b, a) and M2(a, b) = M2(b, a) and define

KLM1,M2(p1, p2) = KL((p1 p2)M1 , (p1 p2)M2) = KLM1,M2(p2, p1).

We notice that
√

KLA,G is not a metric distance by reporting a triple of points (p1, p2, p3)

that fails the triangle inequality. Consider p1 = (0.55, 0.45), p2 = (0.002, 0.998), and

p3 = (0.045, 0.955). We have
√

KLM1,M2(p1, p2) = 0.5374165 . . .,
√

KLM1,M2(p1, p3) =

0.1759400 . . ., and
√

KLM1,M2(p3, p2) = 0.08485931 . . .. The triangle inequality defect is

√
KLM1,M2(p1, p2)− (

√
KLM1,M2(p1, p3) +

√
KLM1,M2(p3, p2)) = 0.2766171 . . . .

We can also similarly symmetrize the extended KLD as follows:

KL+
M̃1,M̃2

(q1, q2) = KL+((q1q2)M̃1
, (q1q2)M̃2

) = KLM̃1,M̃2
(q2, q1).

In particular, when M1 = A and M2 = G, we get the KLA,M divergence:

KLA,M(p1, p2) =
p1 + p2

2
log

p1 + p2

2
√

p1 p2
+ log ZG(p1, p2),

which is related to Taneja T-divergence [48]:

T(p1, p2) =
∫ p1 + p2

2
log

p1 + p2

2
√

p1 p2
. (44)

The T-divergence is an f-divergence [11,12] obtained for the generator fT(u) = 1+u
2 log 1+u

2
√

u .

Corollary 4 (JSD lower bound on M-JSD). We have JSM(p, q) ≥ JS(p, q).

Proof. Since JSM(p, q) = JS(p, q) + KL
(

p+q
2 , (pq)M

)
and KL ≥ 0 by Gibbs’ inequality, we

have JSM(p, q) ≥ JS(p, q).
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Since the extended M-JSD is JS+M̃α ,β(p1, p2) = JSMα ,β(p1, p2) + Zα − log(Zα)− 1, the

extended M-JSD JS+M̃α ,β can also be interpreted as another regularization of the Jensen–
Shannon divergence when dealing with probability densities:

JS+M̃α ,β(p1, p2) = JS(p1, p2) + KL
(

p1 + p2

2
, (p1 p2)M

)
+ ZMα(p1, p2)− log(ZMα(p1, p2))− 1. (45)

It is well known that the JSD can be rewritten as a diversity index [4] using concave entropy:

JS(p1, p2) = H
(

p1 + p2

2

)
− H(p1) + H(p2)

2
. (46)

We generalize this decomposition as the difference of a cross-entropy term minus
entropies, as follows:

Proposition 10 (M-JSD cross-entropy decomposition). We have

JSM(p1, p2) = H×((p1 p2)A, (p1 p2)M)− H(p1) + H(p2)

2
.

Proof. From Proposition 9, we have

JSM(p1, p2) = JS(p1, p2) + KL
(

p1 + p2

2
, (p1 p2)M

)
.

Since KL(p1, p2) = H×(p1, p2)− H(p1), where H×(p1, p2) = −
∫

p1 log p2 dµ is the cross-
entropy and H(p) = −

∫
p log p dµ = H×(p, p) is the entropy. Plugging Equation (46) into

Equation (43), we get

JSM(p1, p2) = H
(

p1 + p2

2

)
− H(p1) + H(p2)

2
+ H×

(
p1 + p2

2
, (p1 p2)M

)
− H

(
p1 + p2

2

)
,

= H×
(

p1 + p2

2
, (p1 p2)M

)
− H(p1) + H(p2)

2
.

Note that when M = A, the arithmetic mean, we have H×
(

p1+p2
2 , (p1 p2)M

)
=

H
(

p1+p2
2

)
and we recover the fact that JSM(p1, p2) = JS(p1, p2).

5. Estimation and Approximation of the Extended and
Normalized M-JSDs

Let us recall the two definitions of the extended M-JSD and the normalized M-JSD (for
the case of α = β = 1

2 ) between two normalized densities p1 and p2:

JSM(p1, p2) =
1
2
(KL(p1, (p1 p2)M) + KL(p2, (p1 p2)M)),

JS+M(p1, p2) =
1
2
(
KL+(p1, (p1 p2)M̃) + KL+(p2, (p1 p2)M̃)

)
,

where (p1 p2)M(x) = M(p1(x),p2(x))
ZM(p1,p2)

(with ZM(p1, p2) =
∫

M(p1(x), p2(x))dµ(x)) and
(p1 p2)M̃(x) = M(p1(x), p2(x)).

In practice, one needs to estimate the extended and normalized G-JSDs when they do
not admit a closed-form formula.
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5.1. Monte Carlo Estimators

To estimate JSM(p1, p2), we can use Monte Carlo samplings to estimate both KLD inte-
grals and mixture normalizers ZM; for example, the normalizer ZM(p1, p2) is estimated by

ẐM(p1, p2) =
1
s

s

∑
i=1

1
r(xi)

M(p1(xi), p2(xi)),

where r(x) is the proposal distribution which can be chosen according to the mean M
and the types of probability distributions p1 and p2, and x1, . . . , xs are s identically and
independently sampled (iid.) from r(x). However, since (p1 p2)M(x) is now estimated as
(p1 p2)M̂(x), it is no longer a normalized M-mixture, and thus we consider estimating

JS+
M̂
(p1, p2) =

1
2
(
KL+

(
p1, (p1 p2)M̂

)
+ KL+

(
p2, (p1 p2)M̂

))
to ensure the non-negativity of the divergence JSDM̂.

Let us consider the estimation of the term

KL+(p1, (p1 p2)M̃) =
∫ (

p1 log
p1

M(p1, p2)
+ M(p1, p2)− p1

)
dµ.

By choosing the proposal distribution r(x) = p1(x), we have KL+
(

p1, (p1 p2)M̂
)
≈

K̂L+(p1, (p1 p2)M̃) (for large enough s), where

K̂L
+
(p1, (p1 p2)M̃) =

1
s

s

∑
i=1

(
log

p1(xi)

M(p1(xi), p2(xi))
+

1
p1(xi)

M(p1(xi), p2(xi))− 1
)

.

Monte Carlo (MC) stochastic integration [49] is a well-studied topic in statistics, with
many results available regarding the consistency and variance of MC estimators.

Note that even if we have a generic formula for the G-JSD between two densities of an
exponential family given by Corollary 2, the cumulant function F(θ) may not be in closed
form [50,51]. This is the case when the sufficient statistic vector of the exponential family is
t(x) = (x, x2, . . . , xm) (for m ≥ 5), yielding the polynomial exponential family (also called
exponential–polynomial family [51]).

5.2. Approximations via γ-Divergences

One way to circumvent the lack of computational tractable density normalizers is to
consider the family of γ-divergences [39] instead of the KLD:

D̃γ(q1, q2) =
1

γ(1 + γ)
log Iγ(q1, q2)−

1
γ

log Iγ(q1, q2) +
1

1 + γ
log Iγ(q1, q2), γ > 0,

where
Iγ(q1, q2) =

∫
q1(x) qγ

2 (x)dµ(x).

The γ-divergences are projective divergences, i.e., they enjoy the property that

D̃γ(λ1q1, λ2q2) = D̃γ(q1, q2), ∀λ1 > 0, λ2 > 0.

Furthermore, we have limγ→0 D̃γ(p1, p2) = KL(p1, p2). (Note that the KLD is not projective.)
Let us define the projective M-JSD:

JSM̃,γ(p1, p2) =
1
2
(

D̃γ(p1, (p1 p2)M̃) + D̃γ(p2, (p1 p2)M̃)
)
. (47)
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We have, for γ = ϵ, a small enough value (e.g., ϵ ≤ 10−3), JSM(p1, p2) ≈ JSM̃,γ(p1, p2), since

KL(p1, (p1 p2)M) ≈γ=ϵ D̃γ(p1, (p1 p2)M̃).

In particular, for exponential family densities pθ1(x) =
qθ1

(x)
Z(θ1)

and pθ2(x) =
qθ2

(x)
Z(θ2)

,
we have

Iγ(pθ1 , pθ2) = exp(F(θ1 + γθ2)− F(θ1)− γF(θ2)),

provided that θ1 + γθ2 belongs to the natural parameter space (otherwise, the integral
Iγ diverges).

Even when F(θ) is not known in closed form, we may estimate the γ-divergence by
estimating the Iγ integrals as follows:

Îγ(qθ1 , qθ2) ≈
1
s

s

∑
i=1

q2(xi),

where x1, . . . , xs are iid. sampled from p1(x). For example, we may use Monte Carlo
importance sampling methods [52] or exponential family Langevin dynamics [53] to sample
densities of exponential family densities with computationally intractable normalizers (e.g.,
polynomial exponential families).

6. Summary and Concluding Remarks
In this paper, we first recalled the Jensen–Shannon symmetrization (JS-symmetrization)

scheme of [17] for an arbitrary statistical dissimilarity D(·, ·) using an arbitrary weighted
scalar mean Mα as follows:

DJS
Mα ,β(p1, p2):=β D

(
p1, (p1 p2)Mα

)
+ (1 − β) D

(
p2, (p1 p2)Mα

)
, (α, β) ∈ (0, 1)2,

In particular, we showed that the skewed Bhattacharyya distance and the Chernoff
information can both be interpreted as JS-symmetrizations of the reverse Kullback–
Leibler divergence.

Then we defined two types of geometric Jensen–Shannon divergence between proba-
bility densities. The first type JSM requires normalization of M-mixtures and relies on the
Kullback–Leibler divergence: JSM = KLJS

M 1
2

, 1
2
. The second type JS+M̃ does not normalize

M-mixtures and uses the extended Kullback–Leibler divergence KL+ to take into account

unnormalized mixtures: JS+M̃ = KLJS+

M̃ 1
2

, 1
2
. When M is the arithmetic mean A, both M-JSD

types coincide with the ordinary Jensen–Shannon divergence of Equation (2).
We have shown that both M-JSD types can be interpreted as regularized Jensen–Shannon

divergences JS with additive terms. Namely, we have

JSM(p1, p2) = JS(p1, p2) + KL((p1 p2)A, (p1 p2)M),

JS+M̃(p1, p2) = JSM(p1, p2) + ZM(p1, p2)− log ZM(p1, p2)− 1,

= JS(p1, p2) + KL((p1 p2)A, (p1 p2)M) + ZM(p1, p2)− log ZM(p1, p2)− 1,

where ZM(p1, p2) =
∫

M(p1, p2)dµ is the M-mixture normalizer. The gap between these
two types of M-JSD is

∆M(p1, p2) = JS+M̃(p1, p2)− JSM(p1, p2),

= ZM(p1, p2)− log ZM(p1, p2)− 1.
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When taking the geometric mean M = G, we showed that both G-JSD types can
be expressed using the Jeffreys divergence and the Bhattacharyya divergence (or Bhat-
tacharyya coefficient):

JSG(p1, p2) =
1
4

J(p1, p2)− B(p1, p2),

JS+
G̃
(p1, p2) =

1
4

J(p1, p2) + exp(−B(p1, p2))− 1,

=
1
4

J(p1, p2) + BC(p1, p2)− 1.

Thus, the gap between these two types of G-JSD is

∆G(p1, p2) := JS+
G̃
(p1, p2)− JSG(p1, p2),

= BC(p1, p2) + B(p1, p2)− 1,

= ZG(p1, p2)− log ZG(p1, p2)− 1,

since ZG(p1, p2) =
∫ √

p1 p2dµ = BC(p1, p2).
Although the square root of the Jensen–Shannon divergence yields a metric distance,

this is no longer the case for the geometric-JSD and the extended geometric-JSD: we reported
counterexamples in Remark 8. Moreover, we have shown that the KL symmetrization√

KL((p1 p2)A, (p1 p2)G) is not a metric distance (Remark 12).
We discussed the merit of the extended G-JSD, which does not require normalization

of the geometric mixture, in Section 5, and we showed how to approximate the G-JSD
using the projective γ-divergences [39] for γ = ϵ, a small enough value (i.e., γ = ϵ = 10−3).
From the viewpoint of information geometry, the extended G-JSD has been shown to be
an f-divergence [13] (separable divergence), while the G-JSD is not separable in general
because of the normalization of mixtures (with the exception of the ordinary JSD, which is
an f-divergence because the arithmetic mixtures do not require normalization).

We studied power JSDs by considering the power means and studied the ±∞ limits,
the extended max-JSD, and the min-JSD: We proved that the extended max-JSD is upper-
bounded by the total variation distance TV(p1, p2) =

1
2

∫
|p1 − p2|dµ:

0 ≤ JS+m̃ax(p1, p2) ≤ TV(p1, p2),

and that the extended min-JSD is lower-bounded as follows:

JS+
m̃in

(p1, p2) ≥
1
4

J(p1, p2)− TV(p1, p2),

where J denotes the Jeffreys divergence: J(p1, p2) = KL(p1, p2) + KL(p2, p1).
The advantage of using the extended G-JSD is that we do not need to normalize

geometric mixtures, while this novel divergence is proven to be an f-divergence [13] and
retains the property that it amounts to a regularization of the ordinary Jensen–Shannon
divergence by an extra additive gap term.

Finally, we expressed JSG (Equation (41)) and JS+
G̃

(Equation (41)) for exponential
families, characterized the gap between these two types of divergences as a function of the
cumulant and partition functions, and reported a corresponding explicit formula for the
multivariate Gaussian (exponential) family. The G-JSD between Gaussian distributions has
already been used successfully in many applications [30,32–38].
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Nomenclature

Means:
Mα(a, b) weighted scalar mean
Mϕ

α (a, b) weighted quasi-arithmetic scalar mean for generator ϕ(u)
A(a, b) arithmetic mean
Aα(a, b) weighted arithmetic mean
Gα(a, b) weighted geometric mean
G(a, b) geometric mean
Pγ(a, b) power mean with P0 = G and P1 = A
Pγ,α(a, b) weighted power mean
Densities on measure space (X , E , µ):
p, p1, p2, . . . normalized density
q, q1, q2, . . . unnormalized density
Z(q) density normalizer p =

q
Z(q)

ZM(p1, p2) normalizer of M-mixture (α = 1
2 )

ẐM(p1, p2) Monte Carlo estimator of ZM(p1, p2)

ZM,α(p1, p2) normalizer of weighted M-mixture
(p1 p2)M M-mixture
(p1 p2)M,α weighted M-mixture
Dissimilarities, divergences, and distances:
KL(p1, p2) Kullback–Leibler divergence (KLD)
KL+(q1, q2) extended Kullback–Leibler divergence
KL∗(p1, p2) reverse Kullback–Leibler divergence
H×(p1, p2) cross-entropy
H(p) Shannon discrete or differential entropy
J(p1, p2) Jeffreys divergence
TV(p1, p2) total variation distance
B(p1, p2) Bhattacharyya “distance” (not metric)
Bα(p1, p2) α-skewed Bhattacharyya “distance”
C(p1, p2) Chernoff information or Chernoff distance
T(p1, p2) Taneja T-divergence
I f (p1, p2) Ali–Silvey–Csiszár f-divergence
D(p1, p2) arbitrary dissimilarity measure
D∗(p1, p2) reverse dissimilarity measure
D+(q1, q2) extended dissimilarity measure
D̃(q1, q2) projective dissimilarity measure
D̃γ(q1, q2) γ-divergence
D̂+(q1, q2) Monte Carlo estimation of dissimilarity D+

Jensen–Shannon divergences and generalizations:
JS(p1, p2) Jensen–Shannon divergence (JSD)
JSα,β(p1, p2) β-weighted α-skewed mixture JSD
JSM(p1, p2) M-JSD for M-mixtures
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JSG(p1, p2) geometric JSD
JSG̃(p1, p2) extended geometric JSD
JS∗G(p1, p2) left-sided geometric JSD (right-sided for KL∗)
JS+m̃in(p1, p2) min-JSD
JS+m̃ax(p1, p2) max-JSD
∆M(p1, p2) gap between extended and normalized M-JSDs
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