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Abstract: Exponential families are statistical models which are the workhorses in statistics, informa-
tion theory, and machine learning, among others. An exponential family can either be normalized
subtractively by its cumulant or free energy function, or equivalently normalized divisively by its
partition function. Both the cumulant and partition functions are strictly convex and smooth functions
inducing corresponding pairs of Bregman and Jensen divergences. It is well known that skewed
Bhattacharyya distances between the probability densities of an exponential family amount to skewed
Jensen divergences induced by the cumulant function between their corresponding natural parame-
ters, and that in limit cases the sided Kullback–Leibler divergences amount to reverse-sided Bregman
divergences. In this work, we first show that the α-divergences between non-normalized densities
of an exponential family amount to scaled α-skewed Jensen divergences induced by the partition
function. We then show how comparative convexity with respect to a pair of quasi-arithmetical
means allows both convex functions and their arguments to be deformed, thereby defining dually
flat spaces with corresponding divergences when ordinary convexity is preserved.

Keywords: convex duality; exponential family; Bregman divergence; Jensen divergence;
Bhattacharyya distance; Rényi divergence; α-divergences; comparative convexity; log convexity;
exponential convexity; quasi-arithmetic means; information geometry

1. Introduction

In information geometry [1], any strictly convex and smooth function induces a dually
flat space (DFS) with a canonical divergence which can be expressed in charts either as
dual Bregman divergences [2] or equivalently as dual Fenchel–Young divergences [3]. For
example, the cumulant function of an exponential family [4] (also called the free energy)
generates a DFS, that is, an exponential family manifold [5] with the canonical divergence
yielding the reverse Kullback–Leibler divergence. Another typical example of a strictly
convex and smooth function generating a DFS is the negative entropy of a mixture family,
that is, a mixture family manifold with the canonical divergence yielding the (forward)
Kullback–Leibler divergence [3]. In addition, any strictly convex and smooth function
induces a family of scaled skewed Jensen divergences [6,7], which in limit cases includes
the sided forward and reverse Bregman divergences.

In Section 2, we present two equivalent approaches to normalizing an exponential
family: first by its cumulant function, and second by its partition function. Because
both the cumulant and partition functions are strictly convex and smooth, they induce
corresponding families of scaled skewed Jensen divergences and Bregman divergences,
with corresponding dually flat spaces and related statistical divergences.

In Section 3, we recall the well-known result that the statistical α-skewed Bhattacharyya
distances between the probability densities of an exponential family amount to a scaled α-
skewed Jensen divergence between their natural parameters. In Section 4, we prove that
the α-divergences [8] between the unnormalized densities of a exponential family amount to
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scaled α-skewed Jensen divergence between their natural parameters (Proposition 5). More
generally, we explain in Section 5 how to deform a convex function using comparative
convexity [9]: When the ordinary convexity of the deformed convex function is preserved,
we obtain new skewed Jensen divergences and Bregman divergences with corresponding
dually flat spaces. Finally, Section 6 concludes this work with a discussion.

2. Dual Subtractive and Divisive Normalizations of Exponential Families
2.1. Natural Exponential Families

Let (X ,A, µ) be a measure space [10], where X denotes the sample set (e.g., finite
alphabet, N, Rd, space of positive-definite matrices Sym++(d), etc.), A a σ-algebra on X
(e.g., power set 2X , Borel σ-algebra B(X ), etc.), and µ a positive measure (e.g., counting
measure or Lebesgue measure) on the measurable space (X ,A).

A natural exponential family [4,11] (commonly abbreviated as NEF [12]) is a set of
probability distributions P = {Pθ : θ ∈ Θ} all dominated by µ such that their Radon–
Nikodym densities pθ(x) = dPθ

dµ (x) can be expressed canonically as

pθ(x) ∝ p̃θ(x) = exp

(
m

∑
i=1

θixi

)
, (1)

where θ is called the natural parameter and x = (x1, . . . , xm) denotes the linear sufficient
statistic vector [11]. The order of the NEF [13] is m. When the parameter θ ranges in the full
natural parameter space

Θ =

{
θ :

∫
X

p̃θ(x)dµ(x) < ∞
}

⊂ Rm,

the family is called full. The NEF is said to be regular when Θ is topologically open.
The unnormalized positive density p̃θ(x) is indicated with a tilde notation and the

corresponding normalized probability density is obtained as pθ(x) = 1
Z(θ) p̃θ(x), where

Z(θ) =
∫

p̃θ(x)dµ(x) is the Laplace transform of µ (the density normalizer). For example,
the family of exponential distributions E = {λe−λx : λ > 0} is an NEF with densities
defined on the support X = R≥0 = {x ∈ R : x ≥ 0}, natural parameter θ = −λ
in Θ = R<0 = {θ ∈ R : θ < 0}, sufficient linear statistic x, and normalizer Z(θ) = − 1

θ .

2.2. Exponential Families

More generally, exponential families include many well known distributions after
reparameterization [4] of their ordinary parameter λ by θ(λ). The general canonical form
of the densities of an exponential family is

pλ(x) ∝ p̃λ(x) = exp(⟨θ(λ), t(x)⟩) h(x), (2)

where t(x) = (t1(x), . . . , tm(x)) are the sufficient statistic vector (such that 1, t1(x), . . . , tm(x)
are linearly independent), h(x) is an auxiliary term used to define the base measure with
respect to µ, and ⟨·, ·⟩ is an inner product (e.g., scalar product of Rm, trace product of
symmetric matrices, etc.). By defining a new measure ν such that dµ

dν (x) = h(x), we may
consider without loss of generality the densities p̄λ(x) = dPλ

dν (x) with h(x) = 1.
For example, the Bernoulli distributions, Gaussian or normal distributions, Gamma

and Beta distributions, Poisson distributions, Rayleigh distributions, and Weibull distri-
butions with prescribed shape parameter are just a few examples of exponential families
with the inner product on Rm defined as the scalar product. The categorical distributions
(i.e., discrete distributions on a finite alphabet sample space) form an exponential family
as well [1]. Zero-centered Gaussian distributions and Wishart distributions are examples
of exponential families parameterized by positive-definite matrices with inner products
defined by the matrix trace product, which is ⟨A, B⟩ = tr(AB).

Exponential families abound in statistics and machine learning. Any two proba-
bility measures Q and R with densities q and r with respect to a dominating measure,
say, µ = Q+R

2 , define an exponential family
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PQ,R =
{

pλ(x) ∝ qλ(x)r1−λ(x) : λ ∈ (0, 1)
}

,

which is called the likelihood ratio exponential family [14], as the sufficient statistic is t(x) = log q(x)
r(x)

(with auxiliary carrier term h(x) = r(x)), or the Bhattacharyya arc, as the cumulant function of
PQ,R is expressed as the negative of the skewed Bhattacharyya distances [7,15].

In machine learning, undirected graphical models [16] and energy-based models [17],
including Markov random fields [18] and conditional random fields, are exponential
families [19]. Exponential families are universal approximators of smooth densities [20].

From a theoretical standpoint, it is often enough to consider (without loss of generality)
natural exponential families with densities expressed as in Equation (1). However, here we
consider generic exponential families with the densities expressed in Equation (2) in order
to report common examples encountered in practice, such as the multivariate Gaussian
family [21].

When the natural parameter space Θ is not full but rather parameterized by λ = c(λ′)
for λ′ ∈ Λ′ with dim(Λ′) < m and a smooth function c(u), the exponential family is called
a curved exponential family [1]. For example, the special family of normal distributions
{pµ,σ2=µ2 : µ ∈ R} is a curved exponential family with u = µ and c(u) = (u, u2) [1].

2.3. Normalizations of Exponential Families

Recall that p̃θ(x) = exp(⟨θ, t(x)⟩) h(x) denotes the unnormalized density expressed
using the natural parameter θ = θ(λ). We can normalize p̃θ(x) using either the partition
function Z(θ) or equivalently using the cumulant function F(θ), as follows:

pθ(x) =
exp(⟨θ, t(x)⟩)

Z(θ)
h(x), (3)

= exp(⟨θ, t(x)⟩ − F(θ) + k(x)), (4)

where h(x) = exp(k(x)), Z(θ) =
∫

p̃θ(x)dµ(x), and F(θ) = log Z(θ) = log
∫

p̃θ(x)dµ(x).
Thus, the logarithm and exponential functions allow conversion to and from the dual
normalizers Z and F:

Z(θ) = exp(F(θ)) ⇔ F(θ) = log Z(θ).

We may view Equation (3) as an exponential tilting [13] of density h(x)dµ(x).
In the context of λ-deformed exponential families [22] which generalize exponential

families, the function Z(θ) is called the divisive normalization factor (Equation (3)) and the
function F(θ) is called the subtractive normalization factor (Equation (4)). Notice that F(θ)
is called the cumulant function because when X ∼ pθ(x) is a random variable following a
probability distribution of an exponential family, the function F(θ) appears in the cumulant
generating function of X: KX(t) = log EX [e⟨t,X⟩] = F(θ + t)− F(θ). In statistical physics,
the cumulant function is called the log-normalizer or log-partition function. Because Z > 0
and F = log Z, we can deduce that F ≥ Z, as log x ≤ x for x > 0.

It is well known that the cumulant function F(θ) is a strictly convex function and that
the partition function Z(θ) is strictly log-convex [11].

Proposition 1 ([11]). The natural parameter space Θ of an exponential family is convex.

Proposition 2 ([11]). The cumulant function F(θ) is strictly convex and the partition function
Z(θ) is positive and strictly log-convex.

It can be shown that the cumulant and partition functions are smooth C∞ analytic func-
tions [4]. A remarkable property is that strictly log-convex functions are also strictly convex.

Proposition 3 ([23], Section 3.5). A strictly log-convex function Z : Θ ⊂ Rm → R is strictly
convex.
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The converse of Proposition 3 is not necessarily true, however; certain convex functions
are not log-convex, and as such the class of strictly log-convex functions is a proper subclass
of strictly convex functions. For example, θ2 is convex but log-concave, as (log θ2)′′ =
− 2

θ2 < 0 (Figure 1).

Strictly convex C1 function

strictly
log-convex function

Z = eF

F = logZ
F (θ) = θ2

logF (θ)

log-concave

Figure 1. Strictly log-convex functions form a proper subset of strictly convex functions.

Remark 1. Because Z = exp(F) is strictly convex (Proposition 3), F is exponentially convex.

Definition 1. The cumulant function F and partition function Z of a regular exponential family are
both strictly convex and smooth functions inducing a pair of dually flat spaces with corresponding
Bregman divergences [2] BF (i.e., Blog Z) and BZ (i.e., Bexp F):

BZ(θ1 : θ2) = Z(θ1)− Z(θ2)− ⟨θ1 − θ2,∇Z(θ2)⟩ ≥ 0, (5)

Blog Z(θ1 : θ2) = log
(

Z(θ1)

Z(θ2)

)
−
〈

θ1 − θ2,
∇Z(θ2)

Z(θ2)

〉
≥ 0, (6)

along with a pair of families of skewed Jensen divergences JF,α and JZ,α:

JZ,α(θ1 : θ2) = αZ(θ1) + (1 − α)Z(θ2)− Z(αθ1 + (1 − α)θ2) ≥ 0, (7)

Jlog Z,α(θ1 : θ2) = log
Z(θ1)

αZ(θ2)
1−α

Z(αθ1 + (1 − α)θ2)
≥ 0. (8)

For a strictly convex function F(θ), we define the symmetric Jensen divergence
as follows:

JF(θ1, θ2) = JF, 1
2
(θ1 : θ2) =

F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

)
.

Let BΘ denote the set of real-valued strictly convex and differentiable functions de-
fined on an open set Θ, called Bregman generators. We may equivalently consider the
set of strictly concave and differentiable functions G(θ) and let F(θ) = −G(θ); see [24]
(Equation (1)).

Remark 2. The non-negativeness of the Bregman divergences for the cumulant and partition
functions define the criteria for checking the strict convexity or log-convexity of a C1 function:

F(θ) is strictly convex ⇔ ∀θ1 ̸= θ2, BF(θ1 : θ2) > 0,

⇔ ∀θ1 ̸= θ2, F(θ1) > F(θ2) + ⟨θ1 − θ2,∇F(θ)⟩,

and

Z(θ) is strictly log-convex ⇔ ∀θ1 ̸= θ2, Blog Z(θ1 : θ2) > 0,
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⇔ ∀θ1 ̸= θ2, log Z(θ1) > log Z(θ2) +

〈
θ1 − θ2,

∇Z(θ2)

Z(θ2)

〉
.

The forward Bregman divergence BF(θ1 : θ2) and reverse Bregman divergence BF(θ2 : θ1)
can be unified with the α-skewed Jensen divergences by rescaling JF,α and allowing α to range
in R [6,7]:

Js
F,α(θ1 : θ2) =


1

α(1−α)
JF,α(θ1 : θ2), α ∈ R\{0, 1},

BF(θ1 : θ2), α = 0,
4 JF(θ1, θ2), α = 1

2 ,
B∗

F(θ1 : θ2) = BF(θ2 : θ1), α = 1.

, (9)

where BF
∗ denotes the reverse Bregman divergence obtained by swapping the parameter

order (reference duality [6]): BF
∗(θ1 : θ2) = BF(θ2 : θ1).

Remark 3. Alternatively, we may rescale JF by a factor κ(α) = 1
α(1−α)44α(1−α) , i.e., J s̄

F,α(θ1 : θ2) =

κ(α) JF,α(θ1 : θ2) such that κ( 1
2 ) = 1 and J s̄

F, 1
2
(θ1 : θ2) = JF(θ1, θ2).

Next, in Section 3 we first recall the connections between these Jensen and Bregman
divergences, which are divergences between parameters, and the statistical divergence
counterparts between probability densities. Then, in Section 4 we introduce the novel con-
nections between these parameter divergences and α-divergences between unnormalized
densities.

3. Divergences Related to the Cumulant Function

Consider the scaled α-skewed Bhattacharyya distances [7,15] between two probability
densities p(x) and q(x):

Ds
B,α(p : q) = − 1

α(1 − α)
log

∫
pαq1−αdµ, α ∈ R\{0, 1}.

The scaled α-skewed Bhattacharyya distances can additionally be interpreted as Rényi
divergences [25] scaled by 1

α : Ds
B,α(p : q) = 1

α DR,α(p : q), where the Rényi α-divergences
are defined by

DR,α(p : q) =
1

α − 1
log

∫
pαq1−α dµ.

The Bhattacharyya distance DB(p, q) = − log
∫ √

pqdµ corresponds to one-fourth
of Ds

B, 1
2
(p : q): DB(p, q) = 1

4 Ds
B, 1

2
(p : q). Because Ds

B,α tends to the Kullback–Leibler

divergence DKL when α → 1 and to the reverse Kullback–Leibler divergence DKL
∗ when

α → 0, we have

Ds
B,α(p : q) =


− 1

α(1−α)
log
∫

pαq1−αdµ, α ∈ R\{0, 1},
DKL(p : q), α = 1,
4 DB(p, q) α = 1

2 ,
DKL

∗(p : q) = DKL(q : p) α = 0.

When both probability densities belong to the same exponential familyE = {pθ(x) : θ ∈ Θ}
with cumulant F(θ), we have the following proposition.

Proposition 4 ([7]). The scaled α-skewed Bhattacharyya distances between two probability densities
pθ1 and pθ2 of an exponential family amount to the scaled α-skewed Jensen divergence between their
natural parameters:

Ds
B,α(pθ1 : pθ2) = Js

F,α(θ1, θ2). (10)
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Proof. The proof follows by first considering the α-skewed Bhattacharyya similarity coeffi-
cient ρα(p, q) =

∫
pαq1−αdµ.

ρα(pθ1 : pθ2) =
∫

exp(⟨θ1, x⟩ − F(θ1))
α exp(⟨θ2, x⟩ − F(θ2))

1−αdµ,

=
∫

exp(⟨αθ1 + (1 − α)θ2), x⟩) exp(−(αF(θ1) + (1 − α)F(θ2)))dµ.

Multiplying the last equation by exp(F(αθ1 + (1 − α)θ2)) exp(−F(αθ1 + (1 − α)θ2)) =
exp(0) = 1 with θ̄ = αθ1 + (1 − α)θ2, we obtain

ρα(pθ1 : pθ2) = exp(−(αF(θ1) + (1 − α)F(θ2)) exp(F(θ̄))
∫

exp(
〈
θ̄, x
〉
− F(θ̄))dµ.

Because θ̄ ∈ Θ, we have
∫

exp(
〈
θ̄, x
〉
− F(θ̄))dµ = 1; therefore, we obtain

ρα(pθ1 : pθ2) = exp(−JF,α(θ1 : θ2)).

For practitioners in machine learning, it is well known that the Kullback–Leibler divergence
between two probability densities pθ1 and pθ2 of an exponential family amounts to a Bregman
divergence for the cumulant generator on a swapped parameter order (e.g., [26,27]):

DKL(pθ1 : pθ2) = BF(θ2 : θ1).

This is a particular instance of Equation (10) obtained for α = 1:

Ds
B,1(pθ1 : pθ2) = Js

F,1(θ1, θ2).

This formula has been further generalized in [28] by considering truncations of expo-
nential family densities. Let X1 ⊆ X2 ⊆ X and E1 = {1X1(x) pθ(x)}, E2 = {1X2(x) qθ′(x)}
be two truncated families of X with corresponding cumulant functions

F1(θ) = log
∫
X1

exp(⟨t(x), θ⟩)dµ

and
F2(θ

′) = log
∫
X2

exp(⟨t(x), θ⟩)dµ ≥ F1(θ
′).

Then, we have

DKL(pθ1 : qθ′2
) = BF2,F1(θ

′
2 : θ1),

= F2(θ
′
2)− F1(θ1)−

〈
θ′2 − θ1,∇F1(θ1)

〉
.

Truncated exponential families are normalized exponential families which may not be
regular [29], i.e., the parameter space Θ may not be open.

4. Divergences Related to the Partition Function

Certain exponential families have intractable cumulant/partition functions (e.g., ex-
ponential families with sufficient statistics t(x) = (x, x2, . . . , xm) for high degrees m [20])
or cumulant/partition functions which require exponential time to compute [30] (e.g.,
graphical models [16], high-dimensional grid sample spaces, energy-based models [17] in
deep learning, etc.). In such cases, the maximum likelihood estimator (MLE) cannot be used
to infer the natural parameter of exponential densities. Many alternative methods have
been proposed to handle such exponential families with untractable partition functions,
e.g., score matching [31] or divergence-based inference [32,33]). Thus, it is important to
consider dissimilarities between non-normalized statistical models.

The squared Hellinger distance [1] between two positive potentially unnormalized
densities p̃ and q̃ is defined by
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D2
H( p̃, q̃) =

1
2

∫
(
√

p̃ −
√

q̃)2 dµ,

=

∫
p̃dµ +

∫
q̃dµ

2
−
∫ √

p̃q̃dµ.

Notice that the Hellinger divergence can be interpreted as the integral of the difference
between the arithmetical mean A( p̃, q̃) = p̃+q̃

2 minus the geometrical mean G( p̃, q̃) =
√

p̃q̃
of the densities: D2

H( p̃, q̃) =
∫
(A( p̃, q̃)− G( p̃, q̃))dµ. This further proves that DH( p̃, q̃) ≥ 0,

as A ≥ G. The Hellinger distance DH satisfies the metric axioms of distances.
When considering unnormalized densities p̃θ1 = exp(⟨t(x), θ1⟩) and p̃θ2 = exp(⟨t(x), θ2⟩)

of an exponential family E with a partition function Z(θ) =
∫

p̃θ dµ, we obtain

D2
H( p̃θ1 , p̃θ2) =

Z(θ1) + Z(θ2)

2
− Z

(
θ1 + θ2

2

)
= JZ(θ1, θ2), (11)

as
√

p̃θ1 p̃θ2 = p̃ θ1+θ2
2

.

The Kullback–Leibler divergence [1] as extended to two positive densities p̃ and q̃ is
defined by

DKL( p̃ : q̃) =
∫ (

p̃ log
p̃
q̃
+ q̃ − p̃

)
dµ. (12)

When considering unnormalized densities p̃θ1 and p̃θ2 of E , we obtain

DKL( p̃θ1 : p̃θ2) =
∫ (

p̃θ1(x) log
p̃θ1(x)
p̃θ2(x)

+ p̃θ2(x)− p̃θ1(x)
)

dµ(x), (13)

=
∫ (

e⟨t(x),θ1⟩⟨θ1 − θ2, t(x)⟩+ e⟨t(x),θ2⟩ − e⟨t(x),θ1⟩
)

dµ(x), (14)

=

〈∫
t(x)e⟨t(x),θ1⟩dµ(x), θ1 − θ2

〉
+ Z(θ2)− Z(θ1), (15)

= ⟨θ1 − θ2,∇Z(θ1)⟩+ Z(θ2)− Z(θ1) = BZ(θ2 : θ1), (16)

as ∇Z(θ) =
∫

t(x) p̃θ(x)dµ(x). Let D∗
KL( p̃ : q̃) = DKL(q̃ : p̃) denote the reverse KLD.

More generally, the family of α-divergences [1] between the unnormalized densities p̃
and q̃ is defined for α ∈ R by

Dα( p̃ : q̃) =


1

α(1−α)

∫ (
α p̃ + (1 − α)q̃ − p̃α q̃1−α

)
dµ, α ̸∈ {0, 1}

D∗
KL( p̃ : q̃) = DKL(q̃ : p̃) α = 0,

4 D2
H( p̃, q̃) α = 1

2 ,
DKL( p̃ : q̃) α = 1.

We now have D∗
α( p̃ : q̃) = Dα(q̃ : p̃) = D1−α( p̃ : q̃), and the α-divergences are homoge-

neous divergences of degree 1. For all λ > 0, we have Dα(λq̃ : λ p̃) = λ Dα(q̃ : p̃). Moreo-
ever, because α p̃ + (1 − α)q̃ − p̃α q̃1−α can be expressed as the difference of the weighted
arithmetic mean minus the weighted geometric mean A( p̃, q̃; α; 1 − α)− G( p̃, q̃; α; 1 − α), it
follows from the arithmetical–geometrical mean inequality that we have Dα( p̃ : q̃) ≥ 0.

When considering unnormalized densities p̃θ1 and p̃θ2 of E , we obtain

Dα( p̃θ1 : p̃θ2) =


1

α(1−α)
JZ,α(θ1 : θ2), α ̸∈ {0, 1}

BZ(θ1 : θ2) α = 0,
4 JZ(θ1, θ2) α = 1

2 ,
B∗

Z(θ1 : θ2) = BZ(θ2 : θ1) α = 1

.

Proposition 5. The α-divergences between the unnormalized densities of an exponential family
amount to scaled α-Jensen divergences between their natural parameters for the partition function

Dα( p̃θ1 : p̃θ2) = Js
Z,α(θ1 : θ2).



Entropy 2024, 26, 193 8 of 16

When α ∈ {0, 1}, the oriented Kullback–Leibler divergences between unnormalized exponential
family densities amount to reverse Bregman divergences on their corresponding natural parameters
for the partition function

DKL( p̃ : q̃) = BZ(θ2 : θ1).

Proof. For α ̸∈ {0, 1}, consider

Dα( p̃θ1 : p̃θ2) =
1

α(1 − α)

∫ (
α p̃θ1 + (1 − α) p̃θ2 − p̃α

θ1
p̃1−α

θ2

)
dµ.

Here, we have
∫

α p̃θ1 dµ = αZ(θ1),
∫
(1 − α) p̃θ2 dµ = (1 − α)Z(θ2) and∫

p̃α
θ1

p̃1−α
θ2

dµ =
∫

p̃αθ1+(1−α)θ2
dµ = Z(αθ1 + (1 − α)θ2). It follows that

Dα( p̃θ1 : p̃θ2) =
1

α(1 − α)
JZ,α(θ1 : θ2) = Js

Z,α(θ1 : θ2).

Notice that the KLD extended to unnormalized densities can be written as a general-
ized relative entropy, i.e., it can be obtained as the difference of the extended cross-entropy
minus the extended entropy (self cross-entropy):

DKL( p̃ : q̃) = H×( p̃ : q̃)− H( p̃),

=
∫ (

p̃ log
p̃
q̃
+ q̃ − p̃

)
dµ

with

H×( p̃ : q̃) =
∫ (

p̃(x) log
1

q̃(x)
+ q̃(x)

)
dµ(x)− 1

and

H( p̃) = H×( p̃ : p̃) =
∫ (

p̃(x) log
1

p̃(x)
+ p̃(x)

)
dµ(x)− 1.

Remark 4. In general, we can consider two unnormalized positive densities p̃(x) and q̃(x). Let
p(x) = p̃(x)

Zp
and q(x) = q̃(x)

Zq
denote their corresponding normalized densities (with normalizing

factors Zp =
∫

p̃ dµ and Zq =
∫

q̃ dµ); then, the KLD between p̃ and q̃ can be expressed using the
KLD between their normalized densities and normalizing factors, as follows:

DKL( p̃ : q̃) = Zp

(
DKL(p : q) + log

Zp

Zq

)
+ Zq − Zp. (17)

Similarly, we have

H×( p̃ : q̃) = Zp H×(p : q)− Zp log Zq + Zq − 1, (18)

H( p̃) = Zp H(p)− Zp log Zp + Zp − 1, (19)

and DKL( p̃ : q̃) = H×( p̃ : q̃)− H( p̃).

Notice that Equation (17) allows us to derive the following identity between BZ and BF:

BZ(θ2 : θ1) = Z(θ1) BF(θ2 : θ1) + Z(θ1) log
Z(θ1)

Z(θ2)
+ Z(θ2)− Z(θ1), (20)

= exp(F(θ1)) BF(θ2 : θ1) + (exp F(θ1))(F(θ1)− F(θ2)) + exp(F(θ2))− exp(F(θ1)). (21)

Let Dskl(a : b) = a log a
b + b − a be the scalar KLD for a > 0 and b > 0. Then, we can

rewrite Equation (17) as

DKL( p̃ : q̃) = Zp DKL(p : q) + Dskl(Zp : Zq),



Entropy 2024, 26, 193 9 of 16

and we have
BZ(θ2 : θ1) = Z(θ1) BF(θ2 : θ1) + Dskl(Z(θ1) : Z(θ2)).

In addition, the KLD between the unnormalized densities p̃ and q̃ with support X can be
written as a definite integral of a scalar Bregman divergence:

DKL( p̃ : q̃) =
∫
X

Dskl( p̃(x) : q̃(x))dµ(x) =
∫
X

B fskl
( p̃(x) : q̃(x))dµ(x),

where fskl(x) = x log x − x. Because B fskl
(a : b) ≥ 0∀a > 0, b > 0, we can deduce that

DKL( p̃ : q̃) ≥ 0 with equality iff p̃(x) = q̃(x) µ almost everywhere.
Notice that BZ(θ2 : θ1) = Z(θ1)BF(θ2 : θ1) + Dskl(Z(θ1) : Z(θ2)) can be interpreted as

the sum of two divergences, that is, a conformal Bregman divergence with a scalar Bregman
divergence.

Remark 5. Consider the KLD between the normalized pθ1 and unnormalized p̃θ2 densities of the
same exponential family. In this case, we have

DKL(pθ1 : p̃θ2) = BF(θ2 : θ1)− log Z(θ2) + Z(θ2)− 1, (22)

= Z(θ2)− 1 − F(θ1)− ⟨θ2 − θ1,∇F(θ2)⟩,
= BZ−1,F(θ2 : θ1). (23)

The divergence BZ−1,F is a dual Bregman pseudo-divergence [28]:

BF1,F2(θ1 : θ2) = F1(θ1)− F2(θ2)− ⟨θ1 − θ2,∇F2(θ2)⟩,

for F1 and F2 that are two strictly convex and smooth functions such that F1 ≥ F2. Indeed, we can
check that generators F1(θ) = Z(θ)− 1 and F2(θ) = F(θ) are both Bregman generators; then, we
have F1(θ) ≥ F2(θ), as ex ≥ x + 1 for all x (with equality when x = 0), i.e., Z(θ)− 1 ≥ F(θ).

More generally, the α-divergences between pθ1 and p̃θ2 can be written as

Dα(pθ1 : p̃θ2) =
1

α(1 − α)

(
αZ(θ1) + (1 − α)− Z(αθ1 + (1 − α)θ2)

Z(θ2)

)
, (24)

with the (signed) α-skewed Bhattacharyya distances provided by

DB,α(pθ1 : p̃θ2) = log Z(θ2)− log Z(αθ1 + (1 − α)θ2).

Let us illustrate Proposition 5 with some examples.

Example 1. Consider the family of exponential distributions E = {pλ(x) = 1x≥0 λ exp(−λx)},
where E is an exponential family with a natural parameter θ = λ, parameter space Θ = R> 0,
sufficient statistic t(x) = −x. The partition function is Z(θ) = 1

θ , with Z′(θ) = − 1
θ2 and

Z′′(θ) = 2
λ3 > 0, while the cumulant function is F(θ) = log Z(θ) = − log θ with moment pa-

rameter η = Epλ
[t(x)] = F′(θ) = − 1

θ . The α-divergences between two unnormalized exponential
distributions are

Dα( p̃λ1 : p̃λ2) =



1
α(1−α)

JZ,α(θ1 : θ2) =
(λ1−λ2)

2)

αλ2
1λ2+(1−α)λ1λ2

2
α ̸∈ {0, 1}

DKL( p̃λ2 : p̃λ1) = BZ(θ1 : θ2) =
(λ1−λ2)

2

λ1λ2
2

α = 0,

4 JZ(θ1, θ2) =
(λ1−λ2)

2

2(λ1λ2
2+λ2

1λ2)
α = 1

2 ,

DKL( p̃λ1 : p̃λ2) = BZ(θ2 : θ1) =
(λ1−λ2)

2

λ2λ2
1

α = 1

. (25)

Example 2. Consider the family of univariate centered normal distributions with p̃σ2(x) ∝ exp(− x2

2σ2 )

and partition function Z(σ2) =
√

2πσ2 such that pσ2(x) = 1
Z(σ2)

p̃σ2(x) = 1√
2πσ2 exp(− x2

2σ2 ).

Here, we have a natural parameter θ = 1
σ2 ∈ Θ = R>0 and sufficient statistic t(x) = − x2

2 . The
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partition function expressed with the natural parameter is Z(θ) =
√

2π
θ , with Z′(θ) = −

√
π
2 θ−

3
2

and Z′′(θ) = 3
√

π

2
3
2

θ−
5
2 > 0 (strictly convex on Θ). The unnormalized KLD between p̃σ2

1
and p̃σ2

2
is

DKL( p̃σ2
1

: p̃σ2
2
) = BZ(θ2 : θ1) =

√
π

2

(
2σ2 − 3σ1 +

σ3
1

σ2
2

)
.

We can check that we have DKL( p̃σ2 : p̃σ2) = 0.
For the Hellinger divergence, we have

D2
H( p̃σ2

1
: p̃σ2

2
) = JZ(θ1, θ2) =

√
π

2
(σ1 + σ2)− 2

√
π

σ1σ2√
σ2

1 + σ2
2

,

and we can check that DH( p̃σ2 : p̃σ2) = 0.
Consider the family of the d-variate case of centered normal distributions with unnormal-

ized density

p̃Σ(x) ∝ exp(−1
2

x⊤Σ−1x) = exp
(
−1

2
tr(x⊤Σ−1x)

)
= exp

(
−1

2
tr(xx⊤Σ−1)

)
obtained using the matrix trace cyclic property, where Σ is the covariance matrix. Here, we have
θ = Σ−1 (precision matrix) and Θ = Sym++(d) for t(x) = − 1

2 xx⊤, with the matrix inner

product ⟨A, B⟩ = tr(A⊤B). The partition function Z(Σ) = (2π)
d
2
√

det(Σ) expressed with the
natural parameter is Z(θ) = (2π)

d
2

√
1

det(θ) . This is a convex function with

∇Z(θ) = −1
2
(2π)

d
2
∇θdet(θ)

det(θ)
3
2

= −1
2
(2π)

d
2

θ−1

det(θ)
1
2

,

as ∇θdet(θ) = det(θ)θ−⊤ using matrix calculus.
Now, consider the family of univariate normal distributions

E =

{
pµ,σ2(x) =

1√
2πσ2

exp

(
−1

2

(
x − µ

σ

)2
)}

.

Let θ =
(

θ1 = 1
σ2

, θ2 = µ

σ2

)
and

Z(θ1, θ2) =

√
2π

θ1
exp

(
1
2

θ2
2

θ1

)
.

The unnormalized densities are p̃θ(x) = exp
(
− θ1x2

2 + xθ2

)
, and we have

∇Z(θ) =


√

π
2

(θ1+θ2
2) exp

(
θ2
2

2θ1

)
θ

5
2
1

√
2π

θ2 exp
(

θ2
2

2θ1

)
θ

3
2
1

.

It follows that DKL[ p̃θ : p̃θ′ ] = BZ(θ
′ : θ).

5. Deforming Convex Functions and Their Induced Dually Flat Spaces
5.1. Comparative Convexity

The log-convexity can be interpreted as a special case of comparative convexity with
respect to a pair (M, N) of comparable weighted means [9], as follows.

A function Z is (M, N)-convex if and only if for α ∈ [0, 1] we have

Z(M(x, y; α, 1 − α)) ≤ N(Z(x), Z(y); α, 1 − α), (26)
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and is strictly (M, N)-convex iff we have strict inequality for α ∈ (0, 1) and x ̸= y. Further-
more, a function Z is (strictly) (M, N)-concave if −Z is (strictly) (M, N)-convex.

Log-convexity corresponds to (A, G)-convexity, i.e., convexity with respect to the
weighted arithmetical and geometrical means defined respectively by A(x, y; α, 1 − α) =
αx + (1 − α)y and G(x, y; α, 1 − α) = xαy1−α. Ordinary convexity is (A, A)-convexity.

A weighted quasi-arithmetical mean [34] (also called a Kolmogorov–Nagumo mean [35])
is defined for a continuous and strictly increasing function h by

Mh(x, y; α, 1 − α) = h−1(αh(x) + (1 − α)h(x)).

We let Mh(x, y) = Mh

(
x, y; 1

2 , 1
2

)
. Quasi-arithmetical means include the arithmetical mean

obtained for h(u) = id(u) = u and the geometrical mean for h(u) = log(u), and more
generally power means

Mp(x, y; α, 1 − α) = (αxp + (1 − α)yp)
1
p = Mhp(x, y; α, 1 − α), p ̸= 0,

which are quasi-arithmetical means obtained for the family of generators hp(u) = up−1
p

with inverse h−1
p (u) = (1 + up)

1
p . In the limit p → 0, we have M0(x, y) = G(x, y) for the

generator limp→0 hp(u) = h0(u) = log u.

Proposition 6 ([36,37]). A function Z(θ) is strictly (Mρ, Mτ)-convex with respect to two strictly
increasing smooth functions ρ and τ if and only if the function F = τ ◦ Z ◦ ρ−1 is strictly convex.

Notice that the set of strictly increasing smooth functions form a non-Abelian group,
with the group operation as the function composition, the neutral element as the identity
function, and the inverse element as the functional inverse function.

Because log-convexity is (A = Mid, G = Mlog)-convexity, a function Z is strictly
log-convex iff log ◦Z ◦ id−1 = log ◦Z is strictly convex. We have

Z = τ−1 ◦ F ◦ ρ ⇔ F = τ ◦ Z ◦ ρ−1.

Starting from a given convex function F(θ), we can deform the function F(θ) to obtain
a function Z(θ) using two strictly monotone functions τ and ρ: Z(θ) = τ−1(F(ρ(θ))).

For a (Mρ, Mτ)-convex function Z(θ) which is also strictly convex, we can define a
pair of Bregman divergences BZ and BF with F(θ) = τ(Z(ρ−1(θ))) and a corresponding
pair of skewed Jensen divergences.

Thus, we have the following generic deformation scheme.

F = τ ◦ Z ◦ ρ−1︸ ︷︷ ︸
(Mρ−1 , Mτ−1 )-convex when Z is convex

(ρ, τ)-deformation−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−
(ρ−1 , τ−1)-deformation

Z = τ−1 ◦ F ◦ ρ︸ ︷︷ ︸
(Mρ, Mτ)-convex when F is convex

In particular, when the function Z is deformed by strictly increasing the power func-
tions hp1 and hp2 for p1 and p2 in R as

Zp1,p2 = hp2 ◦ Z ◦ h−1
p1

,

then Zp1,p2 is strictly convex when it is strictly (Mp1 , Mp2)-convex, and as such induces
corresponding Bregman and Jensen divergences.

Example 3. Consider the partition function Z(θ) = 1
θ of the exponential distribution family (θ > 0

with Θ = R>0). Let Zp(θ) = (hp ◦ Z)(θ) = θ−p−1
p ; then, we have Z′′

p (θ) = (1 + p) 1
θ2+p > 0

when p > −1. Thus, we can deform Z smoothly by Zp while preserving the convexity by ranging p
from −1 to +∞. In this way, we obtain a corresponding family of Bregman and Jensen divergences.

The proposed convex deformation using quasi-arithmetical mean generators differs
from the interpolation of convex functions using the technique of proximal averaging [38].
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Note that in [37] the comparative convexity with respect to a pair of quasi-arithmetical
means (Mρ, Mτ) is used to define a (Mρ, Mτ)-Bregman divergence, which turns out to be
equivalent to a conformal Bregman divergence on the ρ-embedding of the parameters.

5.2. Dually Flat Spaces

We start with a refinement of the class of convex functions used to generate dually
flat spaces.

Definition 2 (Legendre type function [39]). (Θ, F) is of Legendre type if the function F : Θ → R
is strictly convex and differentiable with Θ ̸= ∅ and

lim
λ→0

d
dλ

F(λθ + (1 − λ)θ̄) = −∞, ∀θ ∈ Θ, ∀θ̄ ∈ ∂Θ. (27)

Legendre-type functions F(Θ) admit a convex conjugate F∗(η) via the Legendre
transform F∗(η) = supθ∈Θ ⟨θ, η⟩ − F(θ):

F∗(η) =
〈
∇F−1(η), η

〉
− F(∇F−1(η)).

A smooth and strictly convex function (Θ, F(θ)) of Legendre type induces a dually
flat space [1] M, i.e., a smooth Hessian manifold [40] with a single global chart (Θ, θ(·)) [1].
A canonical divergence D(p : q) between two points p and q of M is viewed as a single-
parameter contrast function [41] D(rpq) on the product manifold M×M. The canonical
divergence and its dual canonical divergence D∗(rqp) = D(rpq) can be expressed equiva-
lently as either dual Bregman divergences or dual Fenchel–Young divergences (Figure 2):

D(rpq) = BF(θ(p) : θ(q)) = YF,F∗(θ(p) : η(q)),

= D∗(rqp) = BF∗(η(q) : η(p)) = YF∗ ,F(η(q) : θ(p)),

where YF,F∗ is the Fenchel–Young divergence:

YF,F∗(θ(p) : η(q)) = F(θ(p)) + F∗(η(q))− ⟨θ(p), η(q)⟩.

We have the dual global coordinate system η = ∇F(θ) and the domain H = {∇F(θ) :
θ ∈ Θ} which defines the dual Legendre-type potential function (H, F∗(η)). The Legendre-
type function ensures that F∗∗ = F (a sufficient condition is to have F be convex and lower
semi-continuous [42]).

p1

p2

M

p
F(p)

q
F∗(q)

γ∇(p1, p2)

γ∇∗(p1, p2)

rp1p2

product manifold M×M

contrast function D(rp1p2
)

θ(p1)

θ(p2)
η(p1)

η(p2)

∇-affine chart θ(·) ∇∗-affine chart η(·)
Legendre-Fenchel transform

charts product charts
(θ, θ) (θ, η) (η, θ) (η, η)

D(rp1p2
) = BF (θ(p1) : θ(p2))

D(rp1p2
) = YF,F∗ (θ(p1) : η(p2))

D∗(rp1p2
) = YF∗,F (η(p1) : θ(p2))

D∗(rp1p2
) = BF∗ (η(p1) : η(p2))

dual contrast function D∗(rp1p2 ) = D(rp2p1 )

rp2p1

Figure 2. The canonical divergence D and dual canonical divergence D∗ on a dually flat space M
equipped with potential functions F and F ∗ can be viewed as single-parameter contrast functions on
the product manifold M×M: The divergence D can be expressed using either the θ × θ-coordinate
system as a Bregman divergence or the mixed θ × η-coordinate system as a Fenchel–Young divergence.
Similarly, the dual divergence D can be expressed using either the η × η-coordinate system as a dual
Bregman divergence or the mixed η × θ-coordinate system as a dual Fenchel–Young divergence.
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A manifold M is called dually flat, as the torsion-free affine connections ∇ and ∇∗

induced by the potential functions F(θ) and F∗(η) linked with the Legendre–Fenchel
transformation are flat [1], that is, their Christoffel symbols vanishes in the dual coordinate
system: Γ(θ) = 0 and Γ∗(η) = 0.

The Legendre-type function (Θ, F(θ)) is not defined uniquely; the function F̄(θ̄) =
F(Aθ + b) + Cθ + d with θ̄ = Aθ + b for A and C invertible matrices and b and d vectors
defines the same dually flat space with the same canonical divergence D(p, q):

D(p : q) = BF(θ(p) : θ(q)) = BF̄(θ̄(p) : θ̄(q)).

Thus, a log-convex Legendre-type function Z(θ) induces two dually flat spaces by
considering the DFSs induced by Z(θ) and F(θ) = log Z(θ). Let the gradient maps be
η = ∇Z(θ) and η̃ = ∇F(θ) = η

Z(θ) .
When F(θ) is chosen as the cumulant function of an exponential family, the Bregman

divergence BF(θ1 : θ2) can be interpreted as a statistical divergence between correspond-
ing probability densities, meaning that the Bregman divergence amounts to the reverse
Kullback–Leibler divergence: BF(θ1 : θ2) = D∗

KL(pθ1 : pθ2), where D∗
KL is the reverse KLD.

Notice that deforming a convex function F(θ) into F(ρ(θ)) such that F ◦ ρ remains
strictly convex has been considered by Yoshizawa and Tanabe [43] to build a two-parameter
deformation ρα,β of the dually flat space induced by the cumulant function F(θ) of the
multivariate normal family. Additionally, see the method of Hougaard [44] for obtaining
other exponential families from a given exponential family.

Thus, in general, there are many more dually flat spaces with corresponding diver-
gences and statistical divergences than the usually considered exponential family mani-
fold [5] induced by the cumulant function. It is interesting to consider their use in informa-
tion sciences.

6. Conclusions and Discussion

For machine learning practioners, it is well known that the Kullback–Leibler diver-
gence (KLD) between two probability densities pθ1 and pθ2 of an exponential family with
cumulant function F (free energy in thermodynamics) amounts to a reverse Bregman di-
vergence [26] induced by F, or equivalently to a reverse Fenchel–Young divergence [27]

DKL(pθ1 : pθ2) = BF(θ2 : θ1) = YF,F∗(θ2 : η1),
where η = ∇F(θ) is the dual moment or expectation parameter.

In this paper, we have shown that the KLD as extended to positive unnormalized
densities p̃θ1 and p̃θ2 of an exponential family with a convex partition function Z(θ) (Laplace
transform) amounts to a reverse Bregman divergence induced by Z, or equivalently to a
reverse Fenchel–Young divergence

DKL( p̃θ1 : p̃θ2) = BZ(θ2 : θ1) = YZ,Z∗(θ2 : η̃1),

where η̃ = ∇Z(θ).
More generally, we have shown that the scaled α-skewed Jensen divergences in-

duced by the cumulant and partition functions between natural parameters coincide with
the scaled α-skewed Bhattacharyya distances between probability densities and the α-
divergences between unnormalized densities, respectively:

Ds
B,α(pθ1 : pθ2) = Js

F,α(θ1 : θ2),

Dα( p̃θ1 : p̃θ2) = Js
Z,α(θ1 : θ2).

We have noted that the partition functions Z of exponential families are both convex
and log-convex, and that the corresponding cumulant functions are both convex and
exponentially convex.

Figure 3 summarizes the relationships between statistical divergences and between
the normalized and unnormalized densities of an exponential family, as well as the cor-
responding divergences between their natural parameters. Notice that Brekelmans and
Nielsen [45] considered deformed uni-order likelihood ratio exponential families (LREFs)
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for annealing paths and obtained an identity for the α-divergences between unnormalized
densities and Bregman divergences induced by multiplicatively scaled partition functions.

Statistical divergences between densities of an exponential family E

Normalized densities pθ = exp(x · θ − F (θ)) = exp(x·θ)
Z(θ) Unnormalized densities p̃θ = exp(x · θ)

Scaled Rényi α-divergence or α-skewed Bhattacharyya distance

Ds
B,α(pθ1 : pθ2) =

1
αDR,α(pθ1 : pθ2) = Js

Fα(θ1 : θ2)

α → 0 α = 1
2 α → 1

Reverse KLD KLD4 Bhattacharyya distance

α-divergences

Dα(p̃θ1 : p̃θ2) = Js
Z,α(θ1 : θ2)

Reverse KLD KLD4 squared Hellinger divergence

α → 0 α = 1
2 α → 1

Bregman 4 Jensen Reverse Bregman Bregman 4 Jensen Reverse Bregman

Z: partition function/Laplace transformF : cumulant function/free energy

DKL
∗(pθ1 : pθ2 ) = BF (θ1 : θ2) DKL(pθ1 : pθ2 ) = BF

∗(θ1 : θ2)

4DB(pθ1 , pθ2 ) = 4 JF (θ1, θ2)

DKL(pθ1 : pθ2 ) = BZ
∗(θ1 : θ2)DKL

∗(pθ1 : pθ2 ) = BZ(θ1 : θ2)

4D2
H(pθ1 , pθ2 ) = 4 JZ(θ1, θ2)

Figure 3. Statistical divergences between normalized pθ and unnormalized p̃θ densities of an expo-
nential family E with corresponding divergences between their natural parameters. Without loss
of generality, we consider a natural exponential family (i.e., t(x) = x and k(x) = 0) with cumulant
function F and partition function Z, with JF and BF respectively denoting the Jensen and Bregman
divergences induced by the generator F. The statistical divergences DR,α and DB,α denote the Rényi
α-divergences and skewed α-Bhattacharyya distances, respectively. The superscript “s” indicates
rescaling by the multiplicative factor 1

α(1−α)
, while the superscript “*” denotes the reverse divergence

obtained by swapping the parameter order.

Because the log-convex partition function is also convex, we have generalized the
principle of building pairs of convex generators using the comparative convexity with
respect to a pair of quasi-arithmetical means, and have further discussed the induced
dually flat spaces and divergences. In particular, by considering the convexity-preserving
deformations obtained by power mean generators, we have shown how to obtain a family of
convex generators and dually flat spaces. Notice that some parametric families of Bregman
divergences, such as the α-divergences [46], β-divergences [47], and V-geometry [48] of
symmetric positive-definite matrices, yield families of dually flat spaces.

Banerjee et al. [49] proved a duality between regular exponential families and a sub-
class of Bregman divergences, which they accordingly termed regular Bregman divergences.
In particular, this duality allows the Maximum Likelihood Estimator (MLE) of an exponen-
tial family with a cumulant function F to be viewed as a right-sided Bregman centroid with
respect to the Legendre–Fenchel dual F∗. In [50], the scope of this duality was further ex-
tended for arbitrary Bregman divergences by introducing a class of generalized exponential
families.

Concave deformations have been recently studied in [51], where the authors in-
troduced the logϕ-concavity induced by a positive continuous function ϕ generating a
deformed logarithm logϕ as the (A, logϕ)-comparative concavity (Definition 1.2 in [51]),
as well as the weaker notion of F-concavity which corresponds to the (A, F)-concavity
(Definition 2.1 in [51], requiring strictly increasing functions F). Our deformation frame-
work Z = τ−1 ◦ F ◦ ρ is more general, as it is double-sided. We jointly deform the function
F by Fτ = τ−1 ◦ F and its argument θ by θρ = ρ(θ).

Exponentially concave functions have been considered as generators of L-divergences
in [24]; α-exponentially concave functions G such that exp(αG) are concave for α > 0
generalize the L-divergences to Lα-divergences, which can be expressed equivalently us-
ing a generalization of the Fenchel–Young divergence based on the c-transforms [24].
When α < 0, exponentially convex functions are considered instead of exponentially
concave functions. The information geometry induced by Lα-divergences are dually pro-
jectively flat with constant curvature, and reciprocally possess a dually projectively flat
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structure with constant curvature, inducing (locally) a canonical L−α-divergence. Wong and
Zhang [52] investigated a one-parameter deformation of convex duality, called λ-duality,
by considering functions f such that 1

λ (e
λ f − 1) are convex for λ ̸= 0. They defined the

λ-conjugate transform as a particular case of the c-transform [24] and studie the information
geometry of the induced λ-logarithmic divergences. The λ-duality yields a generalization
of exponential and mixture families to λ-exponential and λ-mixture families related to the
Rényi divergence.

Finally, certain statistical divergences, called projective divergences, are invariant
under rescaling, and as such can define dissimilarities between non-normalized densities.
For example, the γ-divergences [32] Dγ are such that Dγ(p : q) = Dγ( p̃ : q̃) (with γ-
divergences tending to the KLD when γ → 0) or the Cauchy–Schwarz divergence [53].
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