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Abstract

Lin coined the skewed Jensen-Shannon divergence between two distributions in 1991, and
further extended it to the Jensen-Shannon diversity of a set of distributions. Sibson proposed
the information radius based on Rényi α-entropies in 1969, and recovered for the special case of
α = 1 the Jensen-Shannon diversity index. In this note, we summarize how the Jensen-Shannon
divergence and diversity index were extended by either considering skewing vectors or using
mixtures induced by generic means.

1 Origins

Let (X ,F , µ) be a measure space, and (w1, P1), . . . , (wn, Pn) be n weighted probability measures
dominated by a measure µ (with wi > 0 and

∑
wi = 1). Denote by P := {(w1, p1), . . . , (wn, pn)}

the set of their weighted Radon-Nikodym densities pi = dPi
dµ with respect to µ.

A statistical divergence D[p : q] is a measure of dissimilarity between two densities p and q
(i.e., a 2-point distance) such that D[p : q] ≥ 0 with equality if and only if p(x) = q(x) µ-almost
everywhere. A statistical diversity index D(P) is a measure of variation of the weighted densities in
P related to a measure of centrality, i.e., a n-point distance which generalizes the notion of 2-point
distance when P2(p, q) := {(1

2 , p1), (1
2 , p2)}:

D[p : q] := D(P2(p, q)).

The fundamental measure of dissimilarity in information theory is the I-divergence (also called
the Kullback-Leibler divergence, KLD, see Equation (2.5) page 5 of [5]):

DKL[p : q] :=

∫
X
p(x) log

(
p(x)

q(x)

)
dµ(x).

The KLD is asymmetric (hence the delimiter notation “:” instead of ‘,’) but can be symmetrized
by defining the Jeffreys J-divergence (Jeffreys divergence, denoted by I2 in Equation (1) in 1946’s
paper [4]):

DJ [p, q] := DKL[p : q] +DKL[q : p] =

∫
X

(p(x)− q(x)) log

(
p(x)

q(x)

)
dµ(x).
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Although symmetric, any positive power of Jeffreys divergence fails to satisfy the triangle inequality:
That is, Dα

J is never a metric distance for any α > 0, and furthermore Dα
J cannot be upper bounded.

In 1991, Lin proposed the asymmetric K-divergence (Equation (3.2) in [7]):

DK [p : q] := DKL

[
p :

p+ q

2

]
,

and defined the L-divergence by analogy to Jeffreys’s symmetrization of the KLD (Equation (3.4)
in [7]):

DL[p, q] = DK [p : q] +DK [q : p].

By noticing that

DL[p, q] = 2h

[
p+ q

2

]
− (h[p] + h[q]),

where h denotes Shannon entropy (Equation (3.14) in [7]), Lin coined the (skewed) Jensen-Shannon
divergence between two weighted densities (1− α, p) and (α, q) for α ∈ (0, 1) as follows (Equation
(4.1) in [7]):

DJS,α[p, q] = h[(1− α)p+ αq]− (1− α)h[p]− αh[q]. (1)

Finally, Lin defined the generalized Jensen-Shannon divergence (Equation (5.1) in [7]) for a
finite weighted set of densities:

DJS[P] = h

[∑
i

wipi

]
−
∑
i

wih[pi].

This generalized Jensen-Shannon divergence is nowadays called the Jensen-Shannon diversity index.
To contrast with the Jeffreys’ divergence, the Jensen-Shannon divergence (JSD) DJS := DJS, 1

2

is upper bounded by log 2 (does not require the densities to have the same support), and
√
DJS is

a metric distance [2, 3]. Lin cited precursor work [17, 8] yielding definition of the Jensen-Shannon
divergence: The Jensen-Shannon divergence of Eq. 1 is the so-called “increments of entropy” defined
in (19) and (20) of [17].

The Jensen-Shannon diversity index was also obtained very differently by Sibson in 1969 when
he defined the information radius [16] of order α using Rényi α-means and Rényi α-entropies [15].
In particular, the information radius IR1 of order 1 of a weighted set P of densities is a diversity
index obtained by solving the following variational optimization problem:

IR1[P] := min
c

n∑
i=1

wiDKL[pi : c]. (2)

Sibson solved a more general optimization problem, and obtained the following expression (term
K1 in Corollary 2.3 [16]):

IR1[P] = h

[∑
i

wipi

]
−
∑
i

wih[pi] := DJS[P].

Thus Eq. 2 is a variational definition of the Jensen-Shannon divergence.
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2 Some extensions

� Skewing the JSD.

The K-divergence of Lin can be skewed with a scalar parameter α ∈ (0, 1) to give

DK,α[p : q] := DKL [p : (1− α)p+ αq] . (3)

Skewing parameter α was first studied in [6] (2001, see Table 2 of [6]). We proposed to unify
the Jeffreys divergence with the Jensen-Shannon divergence as follows (Equation 19 in [9]):

DJ
K,α[p : q] :=

DK,α[p : q] +DK,α[q : p]

2
. (4)

When α = 1
2 , we have DJ

K, 1
2

= DJS, and when α = 1, we get DJ
K,1 = 1

2DJ .

Notice that

Dα,β
JS [p; q] := (1− β)DKL[p : (1− α)p+ αq] + βDKL[q : (1− α)p+ αq]

amounts to calculate

h×[(1− β)p+ βq : (1− α)p+ αq]− ((1− β)h[p] + βh[q])

where

h×[p, q] :=

∫
−p(x) log q(x)dµ(x)

denotes the cross-entropy. By choosing α = β, we have h×[(1− β)p + βq : (1− α)p + αq] =
h[(1− α)p+ αq], and thus recover the skewed Jensen-Shannon divergence of Eq. 1.

In [11] (2020), we considered a positive skewing vector α ∈ [0, 1]k and a unit positive weight
w belonging to the standard simplex ∆k, and defined the following vector-skewed Jensen-
Shannon divergence:

Dα,w
JS [p : q] :=

k∑
i=1

DKL[(1− αi)p+αiq : (1− ᾱ)p+ ᾱq], (5)

= h[(1− ᾱ)p+ ᾱq]−
k∑
i=1

h[(1− αi)p+αiq], (6)

where ᾱ =
∑k
i=1wiαi. The divergence Dα,w

JS generalizes the (scalar) skew Jensen-Shannon di-
vergence when k = 1, and is a Ali-Silvey-Csiszár f -divergence upper bounded by log 1

ᾱ(1−ᾱ) [11].

� A priori mid-density. The JSD can be interpreted as the total divergence of the densities
to the mid-density p̄ =

∑n
i=1wipi, a statistical mixture:

DJS[P] =
n∑
i=1

wiDKL[pi : p̄] = h[p̄]−
n∑
i=1

wih[pi].

Unfortunately, the JSD between two Gaussian densities is not known in closed form because
of the definite integral of a log-sum term (i.e., K-divergence between a density and a mixture
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density p̄). For the special case of the Cauchy family, a closed-form formula [14] for the
JSD between two Cauchy densities was obtained. Thus we may choose a geometric mixture
distribution [10] instead of the ordinary arithmetic mixture p̄. More generally, we can choose
any weighted mean Mα (say, the geometric mean, or the harmonic mean, or any other power
mean) and define a generalization of the K-divergence of Equation 3:

DMα
K [p : q] := DK [p : (pq)Mα ], (7)

where

(pq)Mα(x) :=
Mα(p(x), q(x))

ZMα(p : q)

is a statistical M -mixture with ZMα(p, q) denoting the normalizing coefficient:

ZMα(p : q) =

∫
Mα(p(x), q(x))dµ(x)

so that
∫

(pq)Mα(x)dµ(x) = 1. These M -mixtures are well-defined provided the convergence
of the definite integrals.

Then we define a generalization of the JSD [10] termed (Mα, Nβ)-Jensen-Shannon divergence
as follows:

D
Mα,Nβ
JS [p : q] := Nβ (DK [p : (pq)Mα ], DK [q : (pq)Mα ]) , (8)

where Nβ is yet another weighted mean to average the two Mα-K-divergences. We have

DJS = DA,A
JS where A(a, b) = a+b

2 is the arithmetic mean. The geometric JSD yields a closed-
form formula between two multivariate Gaussians, and has been used in deep learning [1].
More generally, we may consider the Jensen-Shannon symmetrization of an arbitrary distance
D as

DJS
Mα,Nβ

[p : q] := Nβ (D[p : (pq)Mα ], D[q : (pq)Mα ]) . (9)

� A posteriori mid-density. We consider a generalization of Sibson’s information radius [16].
Let Sw(a1, . . . , an) denote a generic weighted mean of n positive scalars a1, . . . , an, with weight
vector w ∈ ∆n. Then we define the S-variational Jensen-Shannon diversity index [12] as

DSw
vJS(P) := min

c
Sw (DKL[p1 : c], DKL[pn : c]) . (10)

When Sw = Aw (with Aw(a1, . . . , an) =
∑n
i=1wiai the arithmetic weighted mean), we re-

cover the ordinary Jensen-Shannon diversity index. More generally, we define the S-Jensen-
Shannon index of an arbitrary distance D as

DvJS
Sw (P) := min

c
Sw (D[p1 : c], . . . , D[pn : c]) . (11)

When n = 2, this yields a Jensen-Shannon-symmetrization of distance D.

The variational optimization defining the JSD can also be constrained to a (parametric)
family of densities D, thus defining the (S,D)-relative Jensen-Shannon diversity index:

DSw,D
vJS (P) := min

c∈D
Sw (DKL[p1 : c], . . . , DKL[pn : c]) . (12)
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The relative Jensen-Shannon divergences are useful for clustering applications: Let pθ1 and pθ2
be two densities of an exponential family E with cumulant function F (θ). Then the E-relative
Jensen-Shannon divergence is the Bregman information of P2(p, q) for the conjugate function
F ∗(η) = −h[pθ] (with η = ∇F (θ)). The E-relative JSD amounts to a Jensen divergence for
F ∗:

DvJS[pθ1 , pθ2 ] = min
θ

1

2
{DKL[pθ1 : pθ] +DKL[pθ2 : pθ]} , (13)

= min
θ

1

2
{BF [θ : θ1] +BF [θ : θ2]} , (14)

= min
η

1

2
{BF ∗ [η1 : η] +BF ∗ [η2 : η]} , (15)

=
F ∗(η1) + F ∗(η2)

2
− F ∗(η∗), (16)

=: JF ∗(η1, η2), (17)

since η∗ := η1+η2
2 (a right-sided Bregman centroid [13]).
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