The a-representations of the Fisher Information Matrix
— On gauge freedom of the FIM —

Frank Nielsen
Frank.Nielsen@acm.org

19 September 2017
Revised September 2020

The Fisher Information Matriz [1] (FIM) for a family of parametric probability models
{p(x;0)}pco (densities p(z;0) expressed with respect to a positive base measure v) indexed by
a D-dimensional parameter vector 6 := (91, ...,0P) is historically defined by

1(0) == [Li(0)],  1ij(0) := Ep(ae) [0il (23 0)051(; 0)] (1)

where I(z;0) := log p(z; 0) is the log-likelihood function, and 8; :=: -2

: 597 (by notational convention).
The FIM is a D x D positive semi-definite matrix for a D-order parametric family.
The FIM is a cornerstone in statistics and occurs in many places, like for example the celebrated

Cramér-Rao lower bound [3] for an unbiased estimator 6:
Var,g:0)0] = 171(6),

where = denotes the Lowner @Qartial ordering of positive semi-definite matrices: A > B iff. A—B >
0 is positive semi-definite. Another use of the FIM is in gradient descent method using the natural
gradient (see [6] for its use in deep learning).

Yet, it is common to encounter another equivalent expression of the FIM in the literature [3} [1]:

1;(0) := 4/Bi\/p(x;H)aj\/p(m;H)du(x) (2)

This form of the FIM is well-suited to prove that the FIM is always positive semi-definite matrix [I]:
1(0) = 0.

It turns out that one can define a family of equivalent representations of the FIM using the
a-embeddings of the parametric family. We define the a-representation of densities (%) (x;6) =
ba(p(z;0)) with

2 1—a .
ko) = § Tat ® HO7 0
log u, if a=1.

The function (¥ (z;0) is called the a-likelihood function.
The a-representation of the FIM (or a-FIM for short) is

[9(9) = / A1 (3 0)0;1) (a; 0) v () )

)




In compact notation, we have I = [9;119;1=¥)du(z) (this is the a-FIM). We can expand
the a-FIM expressions as follows

I.(-O‘)(H) _ ﬁf&p(l’; 9)15 ip(; 6) 3 “dy(z) for a # +1
* [ 8;log p(x; 0)0;p(z; 0)dv(x) for « € {-1,1}

The proof that Ii(;))(ﬁ) = I;;(0) follows from the fact that

a+1

ol =p T Op=p 2 O,

since 9;l = %P

Therefore we get

919,12 = pd,19;1,

and I\ (9) = E[010;1] = L;;(0).

Thus Eq.[l]and Eq. [2| where two examples of the a-representation, namely the 1-representation
and the O-representation, respectively. The 1-representation of Eq. [1] is called the logarithmic
representation, and the O-representation of Eq. I 2| is called the square root representation.

Note that I;;(0) = E[0:10;1] = [ pdld;ldv(z) = [ dipd;ldv(x) = I} (0) since 9,1 = %2

In information geometry [I], {9;1(¥}; plays the role of tangent vectors, the a-scores. Geo-
metrically speaking, the tangent plane T,,.9) can be described using any a-base. The statistical
manifold M = {p(x;0)}e is imbedded into the function space RY, where X’ denotes the support of
the densities.

Under regular conditions [3, [1], the a-representation of the FIM for o # —1 can further be
rewritten as

@y _ __ 2 0V 5% 9.9.7(0) (-
I (9)_—1+7a p(a;0) 2 90,1 (; 0)dv (). (5)
Since we have
8;0;1Y (x;0) = <a ;1 41 = %510 z)
it follows that ) )
a —
10 =~ (~1y00)+ Iij) = 1(0)

Notice that when av = 1, we recover the equivalent expression of the FIM (under mild conditions)
1
1)(0) = —E[V*log p(x: 0)).

In particular, when the family is an exponential family [5] with cumulant function F(0), we
have
I(9) = V2F(9) = 0.

Similarly, the coefficients of the a-connection can be expressed using the a-representation as
) = / 0,018 du(z).

The Riemannian metric tensor g;; (a geometric object) can be expressed in matrix form Il(]a )(9)
using the a-base, and this tensor is called the Fisher metric tensor.



Gauge freedom of the Riemannian metric tensor has been investigated under the framework of

(p, T)-monotone embeddings [2] in information geometry: Let p and 7 be two strictly increasing
functions, and f a strictly convex function such that f'(p(u)) = 7(u) (with f* denoting its convex
conjugate). Let us write pp(z) = p(z;0).

The (p, 7)-metric tensor #7g(8) = [#7g;;(8)];; can be derived [] from the (p, 7)-divergence:
Dorlpsa) = [ (F(plpla))) + 1 (r(a(a) — plo@)r(g(a)) dv(z) (6)
We have:
77g50) = [ @uplpal@))) Oy7o0(2)) (o), )
= [ $ ()7 () @ipole)) @yn(a) o), ®)
= [ £ 60 @upn(a)) @spln(2) o) ©)
= [V 0al))) @i (po())) @57 (pale))) (). (10)

The second equation shows that there is a gauge function freedom p'(u)7'(u) when calculating

the (p, 7)-Riemannian metric.
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