The α -representations of the Fisher Information Matrix — On gauge freedom of the FIM —

Frank Nielsen Frank.Nielsen@acm.org

19 September 2017 Revised September 2020

The Fisher Information Matrix [\[1\]](#page-2-0) (FIM) for a family of parametric probability models ${p(x; \theta)}_{\theta \in \Theta}$ (densities $p(x; \theta)$ expressed with respect to a positive base measure ν) indexed by a D-dimensional parameter vector $\theta := (\theta^1, \dots, \theta^D)$ is historically defined by

$$
I(\theta) := [I_{ij}(\theta)], \quad I_{ij}(\theta) := E_{p(x;\theta)} [\partial_i l(x;\theta) \partial_j l(x;\theta)], \tag{1}
$$

where $l(x; \theta) := \log p(x; \theta)$ is the *log-likelihood function*, and $\partial_i := \frac{\partial}{\partial \theta^i}$ (by notational convention). The FIM is a $D \times D$ positive semi-definite matrix for a D-order parametric family.

The FIM is a cornerstone in statistics and occurs in many places, like for example the celebrated Cramér-Rao lower bound [\[3\]](#page-2-1) for an unbiased estimator θ :

$$
\text{Var}_{p(x;\theta)}[\hat{\theta}] \succeq I^{-1}(\theta),
$$

where \succeq denotes the Löwner @artial ordering of positive semi-definite matrices: $A \succeq B$ iff. $A-B \succ$ 0 is positive semi-definite. Another use of the FIM is in gradient descent method using the natural gradient (see [\[6\]](#page-2-2) for its use in deep learning).

Yet, it is common to encounter another equivalent expression of the FIM in the literature [\[3,](#page-2-1) [1\]](#page-2-0):

$$
I'_{ij}(\theta) := 4 \int \partial_i \sqrt{p(x;\theta)} \partial_j \sqrt{p(x;\theta)} d\nu(x)
$$
 (2)

This form of the FIM is well-suited to prove that the FIM is always positive semi-definite matrix [\[1\]](#page-2-0): $I(\theta) \succeq 0.$

It turns out that one can define a family of equivalent representations of the FIM using the α-embeddings of the parametric family. We define the α-representation of densities $l^{(\alpha)}(x;\theta) :=$ $k_{\alpha}(p(x; \theta))$ with

$$
k_{\alpha}(u) := \begin{cases} \frac{2}{1-\alpha} u^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1\\ \log u, & \text{if } \alpha = 1. \end{cases}
$$
 (3)

The function $l^{(\alpha)}(x;\theta)$ is called the α -likelihood function.

The α -representation of the FIM (or α -FIM for short) is

$$
I_{ij}^{(\alpha)}(\theta) := \int \partial_i l^{(\alpha)}(x;\theta) \partial_j l^{(-\alpha)}(x;\theta) d\nu(x) \tag{4}
$$

In compact notation, we have $I_{ij}^{(\alpha)}(\theta) = \int \partial_i l^{(\alpha)} \partial_j l^{(-\alpha)} d\nu(x)$ (this is the α -FIM). We can expand the $\alpha\text{-}\mathrm{FIM}$ expressions as follows

$$
I_{ij}^{(\alpha)}(\theta) = \begin{cases} \frac{1}{1-\alpha^2} \int \partial_i p(x;\theta)^{\frac{1-\alpha}{2}} \partial_j p(x;\theta)^{\frac{1+\alpha}{2}} d\nu(x) & \text{for } \alpha \neq \pm 1\\ \int \partial_i \log p(x;\theta) \partial_j p(x;\theta) d\nu(x) & \text{for } \alpha \in \{-1,1\} \end{cases}
$$

The proof that $I_{ij}^{(\alpha)}(\theta) = I_{ij}(\theta)$ follows from the fact that

$$
\partial_i l^{\alpha} = p^{-\frac{\alpha+1}{2}} \partial_i p = p^{\frac{1-\alpha}{2}} \partial_i l,
$$

since $\partial_i l = \frac{\partial_i p}{p}$.

Therefore we get

$$
\partial_i l^{(\alpha)} \partial_j l^{(-\alpha)} = p \partial_i l \partial_j l,
$$

and $I_{ij}^{(\alpha)}(\theta) = E[\partial_i l \partial_j l] = I_{ij}(\theta)$.

Thus Eq. [1](#page-0-0) and Eq. [2](#page-0-1) where two examples of the α -representation, namely the 1-representation and the 0-representation, respectively. The 1-representation of Eq. [1](#page-0-0) is called the logarithmic representation, and the 0-representation of Eq. [2](#page-0-1) is called the square root representation.

Note that $I_{ij}(\theta) = E[\partial_i \partial_j l] = \int p \partial_i l \partial_j l d\nu(x) = \int \partial_i p \partial_j l d\nu(x) = I_{ij}^{(1)}(\theta)$ since $\partial_i l = \frac{\partial_i p}{p}$

In information geometry [\[1\]](#page-2-0), $\{\partial_i l^{(\alpha)}\}_i$ plays the role of tangent vectors, the α -scores. Geometrically speaking, the tangent plane $T_{p(x;\theta)}$ can be described using any α -base. The statistical manifold $M = \{p(x; \theta)\}\$ e is imbedded into the function space $\mathbb{R}^{\mathcal{X}}$, where X denotes the support of the densities.

Under regular conditions [\[3,](#page-2-1) [1\]](#page-2-0), the α -representation of the FIM for $\alpha \neq -1$ can further be rewritten as

$$
I_{ij}^{(\alpha)}(\theta) = -\frac{2}{1+\alpha} \int p(x;\theta)^{\frac{1+\alpha}{2}} \partial_i \partial_j l^{(\alpha)}(x;\theta) d\nu(x).
$$
 (5)

Since we have

$$
\partial_i \partial_j l^{(\alpha)}(x;\theta) = p^{\frac{1-\alpha}{2}} \left(\partial_i \partial_j l + \frac{1-\alpha}{2} \partial_i l \partial_j l \right),
$$

it follows that

$$
I_{ij}^{(\alpha)}(\theta) = -\frac{2}{1+\alpha} \left(-I_{ij}(\theta) + \frac{1-\alpha}{2} I_{ij} \right) = I_{ij}(\theta).
$$

Notice that when $\alpha = 1$, we recover the equivalent expression of the FIM (under mild conditions)

$$
I_{ij}^{(1)}(\theta) = -E[\nabla^2 \log p(x;\theta)].
$$

In particular, when the family is an exponential family [\[5\]](#page-2-3) with cumulant function $F(\theta)$, we have

$$
I(\theta) = \nabla^2 F(\theta) \succ 0.
$$

Similarly, the coefficients of the α -connection can be expressed using the α -representation as

$$
\Gamma_{ij,k}^{(\alpha)} = \int \partial_i \partial_j l^{(\alpha)} \partial_k^{(-\alpha)} d\nu(x).
$$

The Riemannian metric tensor g_{ij} (a geometric object) can be expressed in matrix form $I_{ij}^{(\alpha)}(\theta)$ using the α -base, and this tensor is called the Fisher metric tensor.

Gauge freedom of the Riemannian metric tensor has been investigated under the framework of (ρ, τ) -monotone embeddings [\[2\]](#page-2-4) in information geometry: Let ρ and τ be two strictly increasing functions, and f a strictly convex function such that $f'(\rho(u)) = \tau(u)$ (with f^* denoting its convex conjugate). Let us write $p_{\theta}(x) = p(x; \theta)$.

The (ρ, τ) -metric tensor $\rho, \tau g(\theta) = [\rho, \tau g_{ij}(\theta)]_{ij}$ can be derived [\[4\]](#page-2-5) from the (ρ, τ) -divergence:

$$
D_{\rho,\tau}(p:q) = \int (f(\rho(p(x))) + f^*(\tau(q(x))) - \rho(p(x))\tau(q(x))) d\nu(x)
$$
 (6)

We have:

$$
P^{\tau} g_{ij}(\theta) = \int (\partial_i \rho(p_{\theta}(x))) (\partial_j \tau(p_{\theta}(x))) d\nu(x), \qquad (7)
$$

$$
= \int \rho'(p_{\theta}(x))\tau'(p_{\theta}(x))(\partial_i p_{\theta}(x))(\partial_j p_{\theta}(x)) d\nu(x), \qquad (8)
$$

$$
= \int f''(\rho(p_{\theta}(x))) (\partial_i \rho(p_{\theta}(x))) (\partial_j \rho(p_{\theta}(x))) d\nu(x), \qquad (9)
$$

$$
= \int (f^*)''(\tau(p_\theta(x))) (\partial_i \tau(p_\theta(x))) (\partial_j \tau(p_\theta(x))) d\nu(x). \tag{10}
$$

The second equation shows that there is a gauge function freedom $\rho'(u)\tau'(u)$ when calculating the (ρ, τ) -Riemannian metric.

Initially created 19th September 2017 (last updated September 2, 2020).

References

- [1] O. Calin and C. Udriste. *Geometric Modeling in Probability and Statistics*. Mathematics and Statistics. Springer International Publishing, 2014.
- [2] Jan Naudts and Jun Zhang. Rho–tau embedding and gauge freedom in information geometry. Information geometry, 1(1):79–115, 2018.
- [3] Frank Nielsen. Cramér-Rao lower bound and information geometry. *arXiv preprint* arXiv:1301.3578, 2013.
- [4] Frank Nielsen. An elementary introduction to information geometry. arXiv preprint arXiv:1808.08271, 2018.
- [5] Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest with flash cards. arXiv preprint arXiv:0911.4863, 2009.
- [6] Ke Sun and Frank Nielsen. Relative Fisher information and natural gradient for learning large modular models. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th* International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3289–3298, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.