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The Fisher Information Matrix [1] (FIM) for a family of parametric probability models
{p(x; θ)}θ∈Θ (densities p(x; θ) expressed with respect to a positive base measure ν) indexed by
a D-dimensional parameter vector θ := (θ1, . . . , θD) is historically defined by

I(θ) := [Iij(θ)], Iij(θ) := Ep(x;θ) [∂il(x; θ)∂jl(x; θ)] , (1)

where l(x; θ) := log p(x; θ) is the log-likelihood function, and ∂i :=: ∂
∂θi

(by notational convention).
The FIM is a D ×D positive semi-definite matrix for a D-order parametric family.

The FIM is a cornerstone in statistics and occurs in many places, like for example the celebrated
Cramér-Rao lower bound [3] for an unbiased estimator θ̂:

Varp(x;θ)[θ̂] � I−1(θ),

where � denotes the Löwner @artial ordering of positive semi-definite matrices: A � B iff. A−B �
0 is positive semi-definite. Another use of the FIM is in gradient descent method using the natural
gradient (see [6] for its use in deep learning).

Yet, it is common to encounter another equivalent expression of the FIM in the literature [3, 1]:

I ′ij(θ) := 4

∫
∂i
√
p(x; θ)∂j

√
p(x; θ)dν(x) (2)

This form of the FIM is well-suited to prove that the FIM is always positive semi-definite matrix [1]:
I(θ) � 0.

It turns out that one can define a family of equivalent representations of the FIM using the
α-embeddings of the parametric family. We define the α-representation of densities l(α)(x; θ) :=
kα(p(x; θ)) with

kα(u) :=

{
2

1−αu
1−α
2 , if α 6= 1

log u, if α = 1.
(3)

The function l(α)(x; θ) is called the α-likelihood function.
The α-representation of the FIM (or α-FIM for short) is

I
(α)
ij (θ) :=

∫
∂il

(α)(x; θ)∂jl
(−α)(x; θ)dν(x) (4)
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In compact notation, we have I
(α)
ij (θ) =

∫
∂il

(α)∂jl
(−α)dν(x) (this is the α-FIM). We can expand

the α-FIM expressions as follows

I
(α)
ij (θ) =

{
1

1−α2

∫
∂ip(x; θ)

1−α
2 ∂jp(x; θ)

1+α
2 dν(x) for α 6= ±1∫

∂i log p(x; θ)∂jp(x; θ)dν(x) for α ∈ {−1, 1}

The proof that I
(α)
ij (θ) = Iij(θ) follows from the fact that

∂il
α = p−

α+1
2 ∂ip = p

1−α
2 ∂il,

since ∂il = ∂ip
p .

Therefore we get
∂il

(α)∂jl
(−α) = p∂il∂jl,

and I
(α)
ij (θ) = E[∂il∂jl] = Iij(θ).

Thus Eq. 1 and Eq. 2 where two examples of the α-representation, namely the 1-representation
and the 0-representation, respectively. The 1-representation of Eq. 1 is called the logarithmic
representation, and the 0-representation of Eq. 2 is called the square root representation.

Note that Iij(θ) = E[∂il∂jl] =
∫
p∂il∂jldν(x) =

∫
∂ip∂jldν(x) = I

(1)
ij (θ) since ∂il = ∂ip

p

In information geometry [1], {∂il(α)}i plays the role of tangent vectors, the α-scores. Geo-
metrically speaking, the tangent plane Tp(x;θ) can be described using any α-base. The statistical

manifold M = {p(x; θ)}θ is imbedded into the function space RX , where X denotes the support of
the densities.

Under regular conditions [3, 1], the α-representation of the FIM for α 6= −1 can further be
rewritten as

I
(α)
ij (θ) = − 2

1 + α

∫
p(x; θ)

1+α
2 ∂i∂jl

(α)(x; θ)dν(x). (5)

Since we have

∂i∂jl
(α)(x; θ) = p

1−α
2

(
∂i∂jl +

1− α
2

∂il∂jl

)
,

it follows that

I
(α)
ij (θ) = − 2

1 + α

(
−Iij(θ) +

1− α
2

Iij

)
= Iij(θ).

Notice that when α = 1, we recover the equivalent expression of the FIM (under mild conditions)

I
(1)
ij (θ) = −E[∇2 log p(x; θ)].

In particular, when the family is an exponential family [5] with cumulant function F (θ), we
have

I(θ) = ∇2F (θ) � 0.

Similarly, the coefficients of the α-connection can be expressed using the α-representation as

Γ
(α)
ij,k =

∫
∂i∂jl

(α)∂
(−α)
k dν(x).

The Riemannian metric tensor gij (a geometric object) can be expressed in matrix form I
(α)
ij (θ)

using the α-base, and this tensor is called the Fisher metric tensor.
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Gauge freedom of the Riemannian metric tensor has been investigated under the framework of
(ρ, τ)-monotone embeddings [2] in information geometry: Let ρ and τ be two strictly increasing
functions, and f a strictly convex function such that f ′(ρ(u)) = τ(u) (with f∗ denoting its convex
conjugate). Let us write pθ(x) = p(x; θ).

The (ρ, τ)-metric tensor ρ,τg(θ) = [ρ,τgij(θ)]ij can be derived [4] from the (ρ, τ)-divergence:

Dρ,τ (p : q) =

∫
(f(ρ(p(x))) + f∗(τ(q(x)))− ρ(p(x))τ(q(x))) dν(x) (6)

We have:

ρ,τgij(θ) =

∫
(∂iρ(pθ(x))) (∂jτ(pθ(x))) dν(x), (7)

=

∫
ρ′(pθ(x))τ ′(pθ(x)) (∂ipθ(x)) (∂jpθ(x)) dν(x), (8)

=

∫
f ′′(ρ(pθ(x))) (∂iρ(pθ(x))) (∂jρ(pθ(x))) dν(x), (9)

=

∫
(f∗)′′(τ(pθ(x))) (∂iτ(pθ(x))) (∂jτ(pθ(x))) dν(x). (10)

The second equation shows that there is a gauge function freedom ρ′(u)τ ′(u) when calculating
the (ρ, τ)-Riemannian metric.
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