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Information geometry [2] defines, studies, and applies core dualistic structures on smooth man-
ifolds: Namely, pairs of dual affine connections (∇,∇∗) coupled with Riemannian metrics g. In
particular, those (g,∇,∇∗) structures can be built from statistical models [2] or induced by diver-
gences [3] (contrast functions on product manifolds) or convex functions [19] F (θ) on open convex
domains Θ (e.g., logarithmic characteristic functions of symmetric cones [21, 18]). In the latter case,
manifolds are said dually flat [2] or Hessian [19] since the Riemannian metrics can be expressed lo-
cally either as g(θ) = ∇2F (θ) in the ∇-affine coordinate system θ or equivalently as g(η) = ∇2F ∗(η)
in the ∇∗-affine coordinate system η. The Legendre-Fenchel duality F ∗(η) = supθ∈Θ⟨θ, η⟩ − F (θ)
allows to convert between primal to dual coordinates: η(θ) = ∇F (θ) and θ(η) = ∇F ∗(η). Dually
flat spaces have been further generalized to handle singularities in [10].

To get a taste of computational information geometry (CIG), let us mention the following two
problems when implementing information-geometric structures and algorithms:

• In practice, we can fully implement geometric algorithms on dually flat spaces when both the
primal potential function F (θ) and the dual potential function F ∗(η) are known in closed-form
and computationally tractable [14]. See also the Python library pyBregMan [16]. To overcome
computationally intractable potential functions, we may either consider Monte Carlo informa-
tion geometry [14] or discretizing continuous distributions into a finite number of bins [6, 13]
(amounts to consider standard simplex models).

• The Chernoff information [5] between two absolutely continuous distributions P and Q with
densities p(x) and q(x) with respect to some dominating measure µ is defined by

C(P,Q) = max
α∈(0,1)

− log

∫
pαq1−αdµ = − log

∫
pα

∗
q1−α∗

dµ,

where α∗ is called the optimal exponent. Chernoff information is used in statistics and for
information fusion tasks [7] among others. In general, the Chernoff information between two
continuous distributions is not available in closed form (e.g., not known in closed-form between
multivariate Gaussian distributions [12]). However, for densities p and q of an exponential
family, the optimal exponent α∗ can be characterized exactly geometrically as the unique
intersection of the e-geodesic γpq with a dual m-bisector [11]. This geometric characterization
yields an efficient approximation algorithm.
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Thus computational information geometry aims at implementing robustly the information-
geometric structures and the geometric algorithms on those structures for various applications.
To give two examples of CIG, consider

• computing the minimum enclosing ball (MEB) of a finite set of m-dimensional points on a
dually flat space: The MEB is always unique and can be calculated (in theory) using a LP-type
randomized linear-time solver [15] (linear programming-type) relying on oracles which exactly
compute the enclosing balls passing through exactly k points for k ∈ {2, . . . ,m}. However,
these oracles are in general computationally intractable so that guaranteed approximation
algorithms have been considered [17].

• Learning a deep neural networks using natural gradient [1, 4]: In practice, the number of
parameters of a DNN is very large so that it is impractical to learn the weights of a DNN
with natural gradient descent which require to handle large (potentially inverse) Fisher in-
formation matrices. Many practical approaches closely related to natural gradient have been
thus considered in machine learning [9, 20, 8].
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