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Information geometry [2] defines, studies, and applies core dualistic structures on smooth man-
ifolds: Namely, pairs of dual affine connections (V,V*) coupled with Riemannian metrics g. In
particular, those (g, V, V*) structures can be built from statistical models [2] or induced by diver-
gences [3] (contrast functions on product manifolds) or convex functions [19] F'(¢) on open convex
domains O (e.g., logarithmic characteristic functions of symmetric cones |21, [I§]). In the latter case,
manifolds are said dually flat [2] or Hessian [19] since the Riemannian metrics can be expressed lo-
cally either as g(#) = V2F(6) in the V-affine coordinate system 6 or equivalently as g(n) = VZF*(n)
in the V*-affine coordinate system 7. The Legendre-Fenchel duality F*(n) = supycg(f,n) — F(6)
allows to convert between primal to dual coordinates: n(f) = VF(6) and 6(n) = VE*(n). Dually
flat spaces have been further generalized to handle singularities in [10].

To get a taste of computational information geometry (CIG), let us mention the following two
problems when implementing information-geometric structures and algorithms:

e In practice, we can fully implement geometric algorithms on dually flat spaces when both the
primal potential function F'(6) and the dual potential function F*(n) are known in closed-form
and computationally tractable [14]. See also the Python library pyBregMan [16]. To overcome
computationally intractable potential functions, we may either consider Monte Carlo informa-
tion geometry [14] or discretizing continuous distributions into a finite number of bins [0, [13]
(amounts to consider standard simplex models).

e The Chernoff information [5] between two absolutely continuous distributions P and @ with
densities p(x) and ¢(z) with respect to some dominating measure p is defined by

C(P,Q) = m(%ﬁ)log/p"‘ql‘adu = 10g/p"‘*q1““*du,
ac(0,

where o* is called the optimal exponent. Chernoff information is used in statistics and for
information fusion tasks [7] among others. In general, the Chernoff information between two
continuous distributions is not available in closed form (e.g., not known in closed-form between
multivariate Gaussian distributions [12]). However, for densities p and ¢ of an exponential
family, the optimal exponent o* can be characterized exactly geometrically as the unique
intersection of the e-geodesic 7, with a dual m-bisector [I1]. This geometric characterization
yields an efficient approximation algorithm.



Thus computational information geometry aims at implementing robustly the information-

geometric structures and the geometric algorithms on those structures for various applications.
To give two examples of CIG, consider

e computing the minimum enclosing ball (MEB) of a finite set of m-dimensional points on a
dually flat space: The MEB is always unique and can be calculated (in theory) using a LP-type
randomized linear-time solver [15] (linear programming-type) relying on oracles which exactly
compute the enclosing balls passing through exactly & points for k € {2,...,m}. However,
these oracles are in general computationally intractable so that guaranteed approximation
algorithms have been considered [17].

e Learning a deep neural networks using natural gradient [I, 4]: In practice, the number of
parameters of a DNN is very large so that it is impractical to learn the weights of a DNN
with natural gradient descent which require to handle large (potentially inverse) Fisher in-
formation matrices. Many practical approaches closely related to natural gradient have been
thus considered in machine learning [9] 20, [§].
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