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Given a real-valued function Lθ(θ) (parameterized by a a D-dimensional vector θ) to minimize
on parameter space θ ∈ Θ ⊂ RD, the gradient descent (GD) method (also called the steepest descent
method) is a first-order local optimization procedure which starts by initializing the parameter to
an arbitrary value θ0 ∈ Θ, and then iteratively updates at stage t the current position θt to θt+1 as
follows:

GD : θt+1 = θt − αt∇θLθ(θt). (1)

The scalar αt > 0 is called the step size or learning rate in machine learning. The ordinary gradient
(OG) ∇θFθ(θ) (vector of partial derivatives) represents the steepest vector at θ of the function
graph Lθ = {(θ, Lθ(θ)) : θ ∈ Θ}. The GD method was pioneered by Cauchy [7] (1847) and its
convergence proof to a stationary point was first reported in Curry [9] (1944).

If we reparameterize the function Lθ using a one-to-one and onto differentiable mapping η = η(θ)
(with reciprocal inverse mapping θ = θ(η)), the GD update rule transforms as:

ηt+1 = ηt − αt∇ηLη(ηt), (2)

where
Lη(η) := Lθ(θ(η)). (3)

Thus in general, the two gradient descent position sequences {θt}t and {ηt}t (initialized at
θ0 = θ(η0) and η0 = η(θ0)) are different (because η(θ) 6= θ) and the two GDs may potentially reach
different stationary points! In other words, the GD local optimization depends on the choice of the
parameterization of the function L (i.e., Lθ or Lη). For example, minimizing with the GD a temper-
ature function Lθ(θ) with respect to Celsius degrees θ may yield a different result than minimizing
the same temperature function Lη(η) = Lθ(θ(η)) expressed with respect to Farenheit degrees η.
That is, the GD optimization is extrinsic since it depends on the choice of the parameterization of
the function, and does not take into account the nature of the parameter space Θ.

The natural gradient precisely addresses this problem and solves it by choosing intrinsically the
steepest direction with respect to a Riemannian metric tensor field on the parameter manifold.

1 Natural gradient: Connection with the Riemannian gradient

Let (M, g) be a D-dimensional Riemannian space [10] equipped with a metric tensor g, and L ∈
C∞(M) a smooth function to minimize on the manifold M . The Riemannian gradient [4] uses the
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Riemannian exponential map expp : Tp →M to update the sequence of points pt’s on the manifold
as follows:

RG : pt+1 = exppt(−αt∇ML(pt)), (4)

where the Riemannian gradient ∇M is defined according to a directional derivative ∇v by:

∇ML(p) := ∇v
(
L
(
expp(v)

))∣∣
v=0

, (5)

with

∇vL(p) := lim
h→0

L(p+ hv)− L(p)

h
. (6)

However, the Riemannian exponential mapping expp(·) is often computationally intractable
since it requires to solve a system of second-order differential equations [10, 1]. Thus instead of
using expp, we shall rather use a computable Euclidean retraction R : Tp → RD of the exponential
map expressed in a local θ-coordinate system:

RetG : θt+1 = Rθt (−αt∇θLθ(θt)) . (7)

Using the retraction [1] Rp(v) = p+ v which corresponds to a first-order Taylor approximation
of the exponential map, we recover the natural gradient descent [2]:

NG : θt+1 = θt − αtg−1
θ (θt)∇θLθ(θt). (8)

The natural gradient [2] (NG)

NG∇Lθ(θ) := g−1
θ (θ)∇θLθ(θ) (9)

is the Riemannian steepest descent, and the natural gradient descent yields the following update
rule

NG : θt+1 = θt − αt NG∇Lθ(θt). (10)

Notice that the natural gradient is a contravariant vector1 while the ordinary gradient is a
covariant vector. A covariant vector [vi] is transformed into a contravariant vector [vi] by vi =∑

j g
ijvi, that is by using the dual Riemannian metric g∗η(η) = gθ(θ)

−1, see [13]. The natural
gradient is invariant under an invertible smooth change of parameterization. However, the natural
gradient descent does not guarantee that the positions θt’s always stay on the manifold: Indeed, it
may happen that for some t, θt 6∈ Θ when Θ 6= RD.

Property 1 ([4]) The natural gradient descent approximates the intrinsic Riemannian gradient
descent.

Let us emphasize that the natural gradient descent is not intrinsic because of the step sizes αt.
Next, we shall explain how the natural gradient descent is related to the mirror descent and

the ordinary gradient when the Riemannian space Θ is dually flat.

1Recall that the inner product between two vectors u and v in a tangent plane Tp for p ∈ M is expressed
equivalently as 〈u, v〉p = gp(u, v) =

∑D
i=1 u

ivi =
∑D

i=1 uiv
i =

∑
i,j giju

ivj =
∑

i,j g
ijuivj , where [wi] and [wi] denote

the contravariant and covariant components of a vector w, respectively. The metric tensor g∗ = gij is called the dual
Riemannian metric. In a local coordinate chart θ, we have [gij ][g

ij ] = I, where g = [g(ei, ej)] with {e1, . . . , eD} the
natural basis of the vector space Tp.
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2 Natural gradient in dually flat spaces: Connections to mirror
descent and ordinary gradient

A dually flat space (M, g,∇,∇∗) is a manifold M equipped with a pair (∇,∇∗) of dual torsion-free
flat connections which are coupled to the Riemannian metric tensor g [3, 13, 14] in the sense that
∇+∇∗

2 = LC∇, where LC∇ denotes the unique metric torsion-free Levi-Civita connection (see the
fundamental theorem of Riemannian geometry [13]).

On a dually flat space, there exists a pair of dual global Hessian structures [17] with dual
canonical Bregman divergences [5, 3]. The dual Riemannian metrics can be expressed as the
Hessians of dual convex potential functions. Examples of Hessian manifolds are the manifolds of
exponential families or the manifolds of mixture families [15]. On a dually flat space induced by a
strictly convex and C3 function F (Bregman generator), we have two dual global coordinate system:
θ(η) = ∇F ∗(η) and η(θ) = ∇F (θ), where F ∗ denotes the Legendre-Fenchel convex conjugate
function [11, 12]. The Hessian metric expressed in the primal θ-coordinate system is gθ(θ) =
∇2F (θ), and the dual Hessian metric expressed in the dual coordinate system is g∗η(η) = ∇2F ∗(η).
Crouzeix’s identity [8, 13] shows that gθ(θ)gη(η) = I, where I denotes the D ×D matrix identity.

2.1 Natural gradient: Connection with Bregman mirror descent methods

The ordinary gradient descent method can be extended using a proximity function Φ(·, ·) as follows:

PGD : θt+1 = arg min
θ∈Θ

{
〈θ,∇Lθ(θt)〉+

1

αt
Φ(θ, θt)

}
. (11)

When Φ(θ, θt) = 1
2‖θ − θt‖

2, the PGD update rule becomes the GD update rule.
Consider a Bregman divergence [5] BF for the proximity function Φ: Φ(p, q) = BF (p : q). Then

the PGD yields the following mirror descent (MD):

MD : θt+1 = arg min
θ∈Θ

{
〈θ,∇L(θt)〉+

1

αt
BF (θ : θt)

}
. (12)

This mirror descent can be interpreted as a natural gradient descent as follows:

Property 2 ([16]) Mirror descent on the Hessian manifold (M, g) is equivalent to natural gradient
descent on the dual Hessian manifold (M, g∗).

Indeed, the mirror descent rule yields the following natural gradient update rule:

NG∗ : ηt+1 = ηt − αt(g∗η)−1(ηt)∇ηLθ(θ(ηt)), (13)

= ηt − αt(g∗η)−1(ηt)∇ηLη(ηt), (14)

where g∗η(η) = ∇2F ∗(η) = (∇2
θF (θ))−1 and θ(η) = ∇F ∗(θ).

The method is called mirror descent [6] because it performs that gradient step in the dual
space (mirror space) H = {η = ∇F (θ) : θ ∈ Θ}, and thus solves the inconsistency contravari-
ant/covariant type problem of subtracting a covariant vector from a contravariant vector of the GD
(see Eq. 1).
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2.2 Natural gradient: Connection with the ordinary gradient descent

Let us prove now the following property of the natural gradient in a dually flat space (or Bregman
manifold [14]):

Property 3 ([18]) In a dually flat space induced by potential convex function F , the natural gradi-
ent amounts to the ordinary gradient on the dually parameterized function: NG∇Lθ(θ) = ∇ηLη(η)
where η = ∇θF (θ) and Lη(η) = Lθ(θ(η)).

Proof: Let (M, g,∇,∇∗) be a dually flat space. We have gθ(θ) = ∇2F (θ) = ∇θ∇θF (θ) = ∇θη
since η = ∇θF (θ). The function to minimize can be written either as Lθ(θ) = Lθ(θ(η)) or as
Lη(η) = Lη(η(θ)). Recall the chain rule in the calculus of differentiation:

∇θLθ(θ) = ∇θ(Lη(η(θ))) = (∇θη)(∇ηLη(η)). (15)

We have:

NG∇Lθ(θ) := g−1
θ (θ)∇θLθ(θ), (16)

= (∇θη)−1(∇θη)∇ηLη(η), (17)

= ∇ηLη(η). (18)

�
Thus the natural gradient descent on a loss function Lθ(θ) amounts to an ordinary gradient

descent on the dually parameterized loss function Lη(η) := Lθ(θ(η)). In short, NG∇θLθ = ∇ηLη.
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