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This is a working document which will be (hopefully frequently) updated with materials con-
cerning the discrepancies between two distributions/parameters or the diversities of a set of distri-
butions/parameters. There are many synonyms in the literature to measure the difference between
two objects: Metrics, Distances, Discrepancies, deviations, deviances, dissimilarities, divergences,
contrast functions or yokes (on product manifolds), etc. Diversities generalize 2-point distances by
measuring the dispersion of a set of n objects, usually using a centrality notion.

In mathematics, a distance is often considered to be a metric distance in a metric space which
satisfies the following properties:

There is confusion in the literature where distance is also used as a synonym of a dissimilarity
measure.

In information theory and statistics, we measure deviations between a probability measure and
another probability measure using a statistical divergence.

In information geometry, a divergence is a smooth dissimilarity measure which shall satisfy the
following conditions:

Divergences were formerly called contrast functions, a dualistic structure of information geom-
etry can be built from a divergence.
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Figure 1: Skewed Jensen divergences visualized as vertical convexity gaps.

5 Statistical distances between empirical distributions and densities with compu-
tationally intractable normalizers 7

6 The Jensen-Shannon divergence and some generalizations 7
6.1 Origins of the Jensen-Shannon divergence . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Some extensions of the Jensen-Shannon divergence . . . . . . . . . . . . . . . . . . . 9

7 Statistical distances between mixtures 11
7.1 Approximating and/or fast statistical distances between mixtures . . . . . . . . . . . 12
7.2 Bounding statistical distances between mixtures . . . . . . . . . . . . . . . . . . . . . 12
7.3 Newly designed statistical distances yielding closed-form formula for mixtures . . . . 13

1 Jensen divergences and Bregman divergences

1.1 Skewed Jensen and Bregman divergences

lim
α→0

sJF,α(θ1 : θ2) = BF (θ1 : θ2)

lim
α→1

sJF,α(θ1 : θ2) = BF (θ2 : θ1)

If α < 0 or α > 1, we can measure the gap F ((1 − α)θ1 + αθ2) − ((1 − α)F (θ1) + αF (θ2)) =
−JF (θ1, θ2) ≥ 0. See Figure 1 Thus we can define the scaled α-skew Jensen divergence for α ∈
R\{0, 1} as:

F (θ1 : θ2) =
1

α(1− α)
JF (θ1 : θ2) ≥ 0.

1.2 Relationships with statistical distances between densities of an exponential
family

1.3 Generalizations of Bregman and Jensen divergences

2 Invariant f-divergences

A f -divergence [26, 7, 1, 8] If [p : q] is a dissimilarity measure between probability distributions
defined for a convex generator f(u):

If [p : q] =

∫
p(x)f

(
q(x)

p(x)

)
dµ(x).

Using Jensen’s inequality, we have If [p : q] ≥ f(1). Thus we ask for generators satisfying f(1) = 0.
Moreover, in order to have If [p : q] = 0 iff. p = q (µ-almost everywhere), we require f(u) to be
strictly convex at 1. The f -divergences include many well-known statistical distances listed with
their generators:
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f -divergence Formula If [p : q] generator f(u)

Total variation (metric) 1
2

∫
|p(x)− q(x)|dµ(x) 1

2 |u− 1|
Squared Hellinger

∫
(
√
p(x)−

√
q(x))2dµ(x) (

√
u− 1)2

Pearson χ2
P

∫ (q(x)−p(x))2

p(x) dµ(x) (u− 1)2

Neyman χ2
N

∫ (p(x)−q(x))2

q(x) dµ(x) (1−u)2

u

Kullback-Leibler
∫
p(x) log p(x)

q(x)dµ(x) − log u

reverse Kullback-Leibler
∫
q(x) log q(x)

p(x)dµ(x) u log u

Jeffreys divergence
∫

(p(x)− q(x)) log p(x)
q(x)dµ(x) (u− 1) log u

α-divergence 4
1−α2 (1−

∫
p

1−α
2 (x)q1+α(x)dµ(x)) 4

1−α2 (1− u
1+α

2 )

Jensen-Shannon 1
2

∫
(p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x))dµ(x) −(u+ 1) log 1+u

2 + u log u

Two f -divergences If1 and If2 are equivalent iff. f1(u) = f2(u) + λ(u − 1) for any λ ∈ R. A
symmetric f -divergence is bounded (e.g., the Jensen-Shannon divergence or the total variation)
iff. f(0) < ∞. The Jeffreys divergence is an unbounded f -divergence. The dual f -divergence
If
∗[p : q] := If [p : q] is a f -divergence for the dual generator f∗(u) = uf

(
1
u

)
(or conjugate

generator). Thus symmetric f -divergences (e.g., the Jeffreys divergence, Hellinger divergence, or
the Jensen-Shannon divergence) satisfies the functional equality f(u) = uf(1/u). The f -divergences
are joint convex and satisfies the information monotonicity property: If [p|Y : q|Y ] ≤ If [p : q] for any
partition Y of X (see lumping [9]). A statistical divergence is said separable iff. it can be rewritten
as D[p : q] =

∫
D1(p(x) : q(x))dµ(x), where D1 is a scalar divergence. The f -divergences are the

only divergences which are separable and satisfies the information information monotonicity [3]
(except the “curious case” [17] of binary alphabets X ). A f -divergence is said standard [3] when
f ′′(1) = 1. The local Taylor expansion [6] of If [pθ1 : pθ2 ]-divergences between two parametric
divergences is related to the Fisher information matrix I(θ) = Epθ

[
∇ log pθ(x)(∇ log pθ(x))>

]
as

follows:

If [pθ1 : pθ2 ] =
1

2
(θ2 − θ1)>Iθ(θ1)(θ2 − θ1) + o(‖(θ2 − θ1‖2).

Thus we have If [pθ : pθ+dθ] = 1
2dθ>I(θ)dθ for a standard f -divergence (with f ′′(1) = 1). The

following metric distance DQ is called the Mahalanobis distance [24]1:

DQ(θ1,θ2)=
√

(θ2−θ1)>Q(θ2−θ1).

The Mahalanobis distance generalizes the Euclidean distance (expressed in the Cartesian coordinate
system) using Q = I, the identity matrix. When Σ = (σ2

11, . . . , σ
2
DD) with σii = σ2

i , we have

D
Σ−1 (θ1,θ2)=

∑D
i=1

(θi2−θ
i
1)2

σ2
i

.

Thus we have If [pθ1 : pθ2 ] = 1
2D

Iθ(θ1)(θ1,θ2)2+o(‖(θ2−θ1‖2). For θ1 = θ and θ2 = θ + dθ, the half
squared Mahalanobis distance can be interpreted as the squared Riemannian infinitesimal length
element: If [pθ : pθ+dθ] = 1

2dθ>Iθ(θ)dθ =2
θ.

1Mahalanobis defined that distance for Q = Σ−1 � 0, the inverse of a covariance matrix.
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A f -divergence between any two densities pθ1 and pθ2 can be expressed as a Taylor series [40]

when
pθ2 (x)

pθ1 (x) < 1 + rf where rf is the convergence radius of the analytic generator f ∈ Cω and
pθ1
pθ2
≤ C:

If [pθ1 : pθ2 ] =

∞∑
n=2

an

∫
X

(
pθ2(x)

pθ1(x)
− 1

)n
pθ1(x)dµ(x).

Otherwise, the Taylor series diverge.
By introducing the higher-order chi divergences [37]

Dχ,n[p : q] =

∫
(p(x)− q(x))n

(q(x))n−1(x)
dµ(x)

which are proper divergences for even integers and only pseudo-distances for odd orders, we rewrite
the Taylor series of f -divergences as:

If [pθ1 : pθ2 ] =
∞∑
n=2

anDχ,n[pθ1 : pθ2 ].

The higher-order chi divergences [37] between densities of an exponential family are available
in closed-form provided that the natural parameter space is affine (e.g., isotropic Gaussian family
or Poisson family).

To illustrate the Taylor series, consider the Poisson family, and let us express the Taylor series for
the Jensen-Shannon divergence (generator fJS(u) = −(u+1) log 1+u

2 +u log u) between two Poisson
distributions with parameters λ1 = 0.6 and λ2 = 0.3. We have the higher-order chi divergences
between Poisson distributions expressed in closed-form as follows [37]:

Dχ,k[pλ1 : pλ2 ] =
k∑
j=0

(−1)k−j
(
k

j

)
eλ

1−j
1 λj2−((1−j)λ1+jλ2)

Furthermore,
pλ1

(x)

pλ2
(x) =

λk1e
−λ1

λk2e
−λ2

< C

We have

If [p : q] ∼ f ′′(1)

2
Dχ2

N
[p : q],

where Dχ2 [p : q] =
∫ (p(x)−q(x))2

q(x) dµ(x) is the chi-squared divergence. Therefore, we have

DKL[p : q] ∼ 1

2
Dχ2 [p : q]. (1)

On the finite-dimensional probability simplex, the Kullback-Leibler divergence is the only sta-
tistical divergence which belongs to both the f -divergences and the Bregman divergences [2]. When
considering the f -divergences to positive measures, the intersection of the f -divergences and the
Bregman divergences are the α-divergences [2].

For the parametric family of Cauchy distributions, the f -divergences are always symmetric and
can be expressed as a function of the chi-squared divergence [40]:

If [pCauchy
l1,s1

: pCauchy
l2,s2

] = If [pCauchy
l2,s2

: pCauchy
l1,s1

] = hf (Dχ2 [pCauchy
l1,s1

: pCauchy
l2,s2

]),
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where

Dχ2 [pCauchy
l1,s1

: pCauchy
l2,s2

] =
(l2 − l1)2 + (s2 − s1)2

2s1s2

and

pCauchy
l,s (x) :=

1

πs
(

1 +
(
x−l
s

)2) =
s

π(s2 + (x− l)2)
.

3 Distances and means

4 Statistical distances between densities with computationally in-
tractable normalizers

Consider a density p(x) = p̃(x)
Zp

where p̃(x) is an unnormalized computable density and Zp =∫
p(x)dµ(x) the computationally intractable normalizer (also called in statistical physics the parti-

tion function or free energy). A statistical distance D[p1 : p2] between two densities p1(x) = p̃1(x)
Zp1

and p2(x) = p̃2(x)
Zp2

with computationally intractable normalizers Zp1 and Zp2 is said projective (or

two-sided homogeneous) if and only if

∀λ1 > 0, λ2 > 0, D[p1 : p2] = D[λ1p1 : λ2p2].

In particular, letting λ1 = Zp1 and λ2 = Zp2 , we have

D[p1 : p2] = D[p̃1 : p̃2].

Notice that the rhs. does not rely on the computationally intractable normalizers. These projective
distances are useful in statistical inference based on minimum distance estimators [5] (see next
Section).

Here are a few statistical projective distances:

� γ-divergences (γ > 0) [18, 13]:

Dγ [p : q] := log

(∫
R
qα+1

)
−
(

1 +
1

α

)
log

(∫
R
qαp

)
+

1

α
log

(∫
R
pα+1

)
, γ ≥ 0

When γ → 0, we have [13] Dγ [p : q] = DKL[p : q], the Kullback-Leibler divergence (KLD).
For example, we can estimate the KLD between two densities of an exponential-polynomial
family by Monte Carlo stochastic integration of the γ-divergence for a small value of γ [38].

The γ-divergences (projective, Bregman-type=Cross-entropy-entropy) and the density power
divergence [4] (non-projective, Bregman-type divergence):

Ddpd
α [p : q] :=

∫
R
qα+1 −

(
1 +

1

α

)∫
R
qαp+

1

α

∫
R
pα+1, α ≥ 0,

can be encapsulated into the family of Φ-power divergences [49] (functional density power
divergence class):

Dφ,α[p : q] := φ

(∫
R
qα+1

)
−
(

1 +
1

α

)
φ

(∫
R
qαp

)
+

1

α
φ

(∫
R
pα+1

)
, α ≥ 0,
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where φ(ex) convex and strictly increasing, φ continuous and twice continously differentiable

with finite second order derivatives. We have Dφ,0[p : q] = φ′(1)
∫
R p(x) log p(x)

q(x)dµ(x) =

φ′(1)DKL[p : q].

� Cauchy-Schwarz divergence [16] (CSD, projective)

DCS[p : q] = − log

 ∫
p(x)q(x)dµ(x)√∫

p(x)2dµ(x)
∫
q(x)2dµ(x)

 = DCS[λ1p : λ2q], ∀λ1 > 0, λ2 > 0,

and Hölder divergences [46] (HD, projective, which generalizes the CSD):

DHölder
α,γ [p : q] = − log

( ∫
X p(x)γ/αq(x)γ/βdx(∫

X p(x)γdx
)1/α (∫

X q(x)γdx
)1/β

)
,

1

α
+

1

β
= 1.

We have
∀λ1 > 0, λ2 > 0, DHölder

α,γ [λ1p : λ2q] = DHölder
α,γ [p : q],

and
DHölder

2,2 [p : q] = DCS[p : q].

Hölder divergences between two densities pθp and pθq of an exponential family with cumulant
function F (θ) is available in closed-form [46]:

DHölder
α,γ [p : q] =

1

α
F (γθp) +

1

β
F (γθq)− F

(
γ

α
θp +

γ

β
θq

)
The CSD is available in closed-form between mixtures of an exponential family with a conic
natural parameter [28]: This includes the case of Gaussian mixture models [19].

� Hilbert distance [45] (projective): Consider two probability mass functions p = (p1, . . . , pd)
and q = (q1, . . . , qd) of the d-dimensional probability simplex. Then the Hilbert distance is

DHilbert[p : q] = log

(
maxi∈{1,...,d}

pi
qi

minj∈{1,...,d}
pj
qj

)
.

We have
∀λ1 > 0, λ2 > 0, DHilbert[λ1p : λ2q] = DHilbert[p : q].

The Hilbert projective simplex distance can be extended to the cone of positive-definite
matrices [45] (and its subspace of correlation matrices called the elliptope) as follows:

DHilbert[P : Q] = log

(
λmax(PQ−1)

λmin(PQ−1)

)
,

where λmax(X) and λmin(X) denote the largest and smallest eigenvalue of matrix X, respec-
tively.
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5 Statistical distances between empirical distributions and densi-
ties with computationally intractable normalizers

When estimating the parameter θ̂ for a parametric family of distributions {pθ} from i.i.d. observa-
tions S = {x1, . . . , xn}, we can define a minimum distance estimator (MDE):

θ̂ = arg min
θ
D[pS : pθ],

where pS = 1
n

∑n
i=1 δxi is the empirical distribution (normalized). Thus we need only a right-

sided projective divergence to estimate models with computationally intractable normalizers. For
example, the Maximum Likelihood Estimator (MLE) is a MDE wrt. the KLD:

θ̂MLE = arg min
θ
DKL[pS : pθ].

It is thus interesting to study the impact of the choice of the distance D to the properties of the
corresponding estimator (e.g., γ-divergences yields provably robust estimators [13]).

� Hyvärinen divergence [14] (also called Fisher divergence or Fisher relative informa-
tion [47]):

DHyvärinen [p : pθ] :=
1

2

∫
‖∇x log p(x)−∇x log pθ(x)‖2 p(x)dx.

The Hyvarinen divergence has been extended for order-α Hyvarinen divergences [32] (for
α > 0):

D
Hyvärinen
α [p : q] :=

1

2

∫
p(x)α (∇x log p(x)−∇x log q(x))2 dx, α > 0.

The Fisher divergence is related to the Kullback-Leibler divergence [53] as follows:

DKL[p : q] =

∫ ∞
0

DFisher[p ∗ (0, λI) : q ∗ (0, λI)] ,

where (f ∗ g)(x) =
∫
f(y)g(x− y) denotes the convolution of densties. Thus convergence wrt

Fisher divergence is stronger than convergence wrt KLD.

6 The Jensen-Shannon divergence and some generalizations

6.1 Origins of the Jensen-Shannon divergence

Let (X ,F , µ) be a measure space, and (w1, P1), . . . , (wn, Pn) be n weighted probability measures
dominated by a measure µ (with wi > 0 and

∑
wi = 1). Denote by P := {(w1, p1), . . . , (wn, pn)}

the set of their weighted Radon-Nikodym densities pi = dPi
dµ with respect to µ.

A statistical divergence D[p : q] is a measure of dissimilarity between two densities p and q
(i.e., a 2-point distance) such that D[p : q] ≥ 0 with equality if and only if p(x) = q(x) µ-almost
everywhere. A statistical diversity index D(P) is a measure of variation of the weighted densities in
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P related to a measure of centrality, i.e., a n-point distance which generalizes the notion of 2-point
distance when P2(p, q) := {(1

2 , p1), (1
2 , p2)}:

D[p : q] := D(P2(p, q)).

The fundamental measure of dissimilarity in information theory is the I-divergence (also called
the Kullback-Leibler divergence, KLD, see Equation (2.5) page 5 of [20]):

DKL[p : q] :=

∫
X
p(x) log

(
p(x)

q(x)

)
dµ(x).

The KLD is asymmetric (hence the delimiter notation “:” instead of ‘,’) but can be symmetrized
by defining the Jeffreys J-divergence (Jeffreys divergence, denoted by I2 in Equation (1) in 1946’s
paper [15]):

DJ [p, q] := DKL[p : q] +DKL[q : p] =

∫
X

(p(x)− q(x)) log

(
p(x)

q(x)

)
dµ(x).

Although symmetric, any positive power of Jeffreys divergence fails to satisfy the triangle inequality:
That is, Dα

J is never a metric distance for any α > 0, and furthermore Dα
J cannot be upper bounded.

In 1991, Lin proposed the asymmetric K-divergence (Equation (3.2) in [22]):

DK [p : q] := DKL

[
p :

p+ q

2

]
,

and defined the L-divergence by analogy to Jeffreys’s symmetrization of the KLD (Equation (3.4)
in [22]):

DL[p, q] = DK [p : q] +DK [q : p].

By noticing that

DL[p, q] = 2h

[
p+ q

2

]
− (h[p] + h[q]),

where h denotes Shannon entropy (Equation (3.14) in [22]), Lin coined the (skewed) Jensen-
Shannon divergence between two weighted densities (1 − α, p) and (α, q) for α ∈ (0, 1) as follows
(Equation (4.1) in [22]):

DJS,α[p, q] = h[(1− α)p+ αq]− (1− α)h[p]− αh[q]. (2)

Finally, Lin defined the generalized Jensen-Shannon divergence (Equation (5.1) in [22]) for a
finite weighted set of densities:

DJS[P] = h

[∑
i

wipi

]
−
∑
i

wih[pi].

This generalized Jensen-Shannon divergence is nowadays called the Jensen-Shannon diversity index.
To contrast with the Jeffreys’ divergence, the Jensen-Shannon divergence (JSD) DJS := DJS, 1

2

is upper bounded by log 2 (does not require the densities to have the same support), and
√
DJS is a

metric distance [11, 12]. Lin cited precursor work [56, 23] yielding definition of the Jensen-Shannon
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divergence: The Jensen-Shannon divergence of Eq. 2 is the so-called “increments of entropy” defined
in (19) and (20) of [56].

The Jensen-Shannon diversity index was also obtained very differently by Sibson in 1969 when
he defined the information radius [52] of order α using Rényi α-means and Rényi α-entropies [50].
In particular, the information radius IR1 of order 1 of a weighted set P of densities is a diversity
index obtained by solving the following variational optimization problem:

IR1[P] := min
c

n∑
i=1

wiDKL[pi : c]. (3)

Sibson solved a more general optimization problem, and obtained the following expression (term
K1 in Corollary 2.3 [52]):

IR1[P] = h

[∑
i

wipi

]
−
∑
i

wih[pi] := DJS[P].

Thus Eq. 3 is a variational definition of the Jensen-Shannon divergence.

6.2 Some extensions of the Jensen-Shannon divergence

� Skewing the JSD.

The K-divergence of Lin can be skewed with a scalar parameter α ∈ (0, 1) to give

DK,α[p : q] := DKL [p : (1− α)p+ αq] . (4)

Skewing parameter α was first studied in [21] (2001, see Table 2 of [21]). We proposed to
unify the Jeffreys divergence with the Jensen-Shannon divergence as follows (Equation 19
in [27]):

DJ
K,α[p : q] :=

DK,α[p : q] +DK,α[q : p]

2
. (5)

When α = 1
2 , we have DJ

K, 1
2

= DJS, and when α = 1, we get DJ
K,1 = 1

2DJ .

Notice that

Dα,β
JS [p; q] := (1− β)DKL[p : (1− α)p+ αq] + βDKL[q : (1− α)p+ αq]

amounts to calculate

h×[(1− β)p+ βq : (1− α)p+ αq]− ((1− β)h[p] + βh[q])

where

h×[p, q] :=

∫
−p(x) log q(x)dµ(x)

denotes the cross-entropy. By choosing α = β, we have h×[(1− β)p + βq : (1− α)p + αq] =
h[(1− α)p+ αq], and thus recover the skewed Jensen-Shannon divergence of Eq. 2.
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In [31] (2020), we considered a positive skewing vector α ∈ [0, 1]k and a unit positive weight
w belonging to the standard simplex ∆k, and defined the following vector-skewed Jensen-
Shannon divergence:

Dα,w
JS [p : q] :=

k∑
i=1

DKL[(1− αi)p+αiq : (1− ᾱ)p+ ᾱq], (6)

= h[(1− ᾱ)p+ ᾱq]−
k∑
i=1

h[(1− αi)p+αiq], (7)

where ᾱ =
∑k

i=1wiαi. The divergence Dα,w
JS generalizes the (scalar) skew Jensen-Shannon

divergence when k = 1, and is a Ali-Silvey-Csiszár f -divergence upper bounded by
log 1

ᾱ(1−ᾱ) [31].

� A priori mid-density. The JSD can be interpreted as the total divergence of the densities
to the mid-density p̄ =

∑n
i=1wipi, a statistical mixture:

DJS[P] =
n∑
i=1

wiDKL[pi : p̄] = h[p̄]−
n∑
i=1

wih[pi].

Unfortunately, the JSD between two Gaussian densities is not known in closed form because
of the definite integral of a log-sum term (i.e., K-divergence between a density and a mixture
density p̄). For the special case of the Cauchy family, a closed-form formula [41] for the
JSD between two Cauchy densities was obtained. Thus we may choose a geometric mixture
distribution [29] instead of the ordinary arithmetic mixture p̄. More generally, we can choose
any weighted mean Mα (say, the geometric mean, or the harmonic mean, or any other power
mean) and define a generalization of the K-divergence of Equation 4:

DMα
K [p : q] := DK [p : (pq)Mα ], (8)

where

(pq)Mα(x) :=
Mα(p(x), q(x))

ZMα(p : q)

is a statistical M -mixture with ZMα(p, q) denoting the normalizing coefficient:

ZMα(p : q) =

∫
Mα(p(x), q(x))dµ(x)

so that
∫

(pq)Mα(x)dµ(x) = 1. These M -mixtures are well-defined provided the convergence
of the definite integrals.

Then we define a generalization of the JSD [29] termed (Mα, Nβ)-Jensen-Shannon divergence
as follows:

D
Mα,Nβ
JS [p : q] := Nβ (DK [p : (pq)Mα ], DK [q : (pq)Mα ]) , (9)

where Nβ is yet another weighted mean to average the two Mα-K-divergences. We have

DJS = DA,A
JS where A(a, b) = a+b

2 is the arithmetic mean. The geometric JSD yields a closed-
form formula between two multivariate Gaussians, and has been used in deep learning [10].
More generally, we may consider the Jensen-Shannon symmetrization of an arbitrary distance
D as

DJS
Mα,Nβ

[p : q] := Nβ (D[p : (pq)Mα ], D[q : (pq)Mα ]) . (10)
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� A posteriori mid-density. We consider a generalization of Sibson’s information radius [52].
Let Sw(a1, . . . , an) denote a generic weighted mean of n positive scalars a1, . . . , an, with weight
vector w ∈ ∆n. Then we define the S-variational Jensen-Shannon diversity index [34] as

DSw
vJS(P) := min

c
Sw (DKL[p1 : c], DKL[pn : c]) . (11)

When Sw = Aw (with Aw(a1, . . . , an) =
∑n

i=1wiai the arithmetic weighted mean), we re-
cover the ordinary Jensen-Shannon diversity index. More generally, we define the S-Jensen-
Shannon index of an arbitrary distance D as

DvJS
Sw (P) := min

c
Sw (D[p1 : c], . . . , D[pn : c]) . (12)

When n = 2, this yields a Jensen-Shannon-symmetrization of distance D.

The variational optimization defining the JSD can also be constrained to a (parametric)
family of densities D, thus defining the (S,D)-relative Jensen-Shannon diversity index:

DSw,D
vJS (P) := min

c∈D
Sw (DKL[p1 : c], . . . , DKL[pn : c]) . (13)

The relative Jensen-Shannon divergences are useful for clustering applications: Let pθ1 and pθ2
be two densities of an exponential family E with cumulant function F (θ). Then the E-relative
Jensen-Shannon divergence is the Bregman information of P2(p, q) for the conjugate function
F ∗(η) = −h[pθ] (with η = ∇F (θ)). The E-relative JSD amounts to a Jensen divergence for
F ∗:

DvJS[pθ1 , pθ2 ] = min
θ

1

2
{DKL[pθ1 : pθ] +DKL[pθ2 : pθ]} , (14)

= min
θ

1

2
{BF [θ : θ1] +BF [θ : θ2]} , (15)

= min
η

1

2
{BF ∗ [η1 : η] +BF ∗ [η2 : η]} , (16)

=
F ∗(η1) + F ∗(η2)

2
− F ∗(η∗), (17)

=: JF ∗(η1, η2), (18)

since η∗ := η1+η2

2 (a right-sided Bregman centroid [36]).

7 Statistical distances between mixtures

Pearson [48] first considered a unimodal Gaussian mixture of two components for modeling dis-
tributions crabs in 1894. Statistical mixtures [25] like the Gaussian mixture models (GMMs) are
often met in information sciences, and therefore it is important to assess their dissimilarities. Let
m(x) =

∑k
i=1wipi(x) and m′(x) =

∑k′

i=1w
′
ip
′
i(x) be two finite statistical mixtures. The KLD

between two GMMs m and m′ is not analytic [55] because of the log-sum terms:

DKL[m : m′] =

∫
m(x) log

m(x)

m′(x)
dx.

11



However, the KLD between two GMMs with the same prescribed components pi(x) = p′i(x) =
pµi,Σi(x) (i.e., k = k′, and only the normalized positive weights may differ) is provably a Bregman
divergence [39] for the differential negentropy F (θ):

DKL[m(θ) : m(θ′)] = BF (θ, θ′),

where m(θ) =
∑k−1

i=1 wipi(x) + (1 −
∑k−1

i=1 wi)pk(x) and F (θ) =
∫
m(θ) logm(θ)dx. The family

{mθ θ ∈ ∆◦k−1} is called a mixture family in information geometry, where ∆◦k−1 denotes the
(k − 1)-dimensional open standard simplex. However, F (θ) is usually not available in closed-form
because of the log-sum integral. In some special cases like the mixture of two prescribed Cauchy
distributions, we get a closed-form formula for the KLD, JSD, etc. [41, 35]. Thus when dealing
with mixtures (like GMMs), we either need efficient approximating (§7.1), bounding (§7.2) KLD
techniques, or new distances (§7.3) that yields closed-form formula between mixture densities.

7.1 Approximating and/or fast statistical distances between mixtures

� The Jeffreys divergence (JD) DJ [m,m′] = DKL[m : m′]+DKL[m′ : m] between two (Gaussian)
MMs is not available in closed-form, and can be estimated using Monte Carlo integration as

D̂SsJ [m,m′] :=
1

s

s∑
i=1

2
(m(xi)−m′(xi))
m(xi) +m′(xi)

log

(
m(xi)

m′(xi)

)
,

where Ss = {x1, . . . , xs} are s IID samples from the mid mixture m12(x) := 1
2(m(x) +m′(x))

(with lims→∞ D̂
Ss
J [m,m′] = DJ [m,m′]). In [33], the mixtures m and m′ are converted into

densities of an exponential-polynomial family. The JD between densities pθ and pθ′ of an
exponential family with cumulant function F is available in closed-form:

DJ [pθ, pθ′ ] = (θ′ − θ) · (η′ − η),

with η = ∇F (θ) and θ = ∇F ∗(η), where F ∗ denotes the convex conjugate. Any smooth

density r (includes a mixture r = m) is converted into close densities pθMLE
r

and pη
SME
r of a

exponential-polynomial family using extensions of the Maximum Likelihood Estimator (MLE)
and Score Matching Estimator (SME). Then JD between mixtures is approximated as follows

DJ [m,m′] ' (θ′
SME − θSME) · (η′MLE − ηMLE).

� Given a finite set of mixtures {mi(x)} sharing the same components (e.g., points on a mix-
ture family manifold), we precompute the KLD between pairwise components to obtain fast
approximation of the KLD DKL[mi : mj ] between any two mixtures mi and mj , see [51].

7.2 Bounding statistical distances between mixtures

� Log-Sum-Exp bounds: In [42, 43], we lower and upper bound the cross-entropy between
mixtures using the fact that the log-sum term logm(x) and be interpreted as a LSE function.
We then compute lower envelopes and upper envelopes of density functions using technique
of computational geometry to report deterministic lower and upper bounds on the KLD and
α-divergences. These bounds are said combinatorial because we decompose the support into
elementary intervals. Bounds between the Total Variation Distance (TVD) between univariate
mixtures are reported in [44].
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7.3 Newly designed statistical distances yielding closed-form formula for mix-
tures

� Statistical Minkowski distances [30]: Consider the Lebesgue space

Lα(µ) :=

{
f ∈ F :

∫
X
|f(x)|αdµ(x) <∞

}
for α ≥ 1, where F denotes the set of all real-valued measurable functions defined on the
support X . Minkowski’s inequality writes as ‖p + q‖α ≤ ‖p‖α + ‖q‖α for α ∈ [1,∞). The
statistical Minkowski difference distance between p, q ∈ Lα(µ) is defined as

DMinkowski
α [p, q] := ‖p‖α + ‖q‖α − ‖p+ q‖α ≥ 0. (19)

The statistical Minkowski log-ratio distance is defined by:

LMinkowski
α [p, q] := − log

‖p+ q‖α
‖p‖α + ‖q‖α

≥ 0. (20)

These statistical Minkowski distances are symmetric, and Lα[p, q] is scale-invariant. For even
integers α ≥ 2, DMinkowski

α [m : m′] is available in closed-form.

� We show that the Cauchy-Schwarz divergence (CSD), the quadratic Jensen-Rényi diver-
gence [54] (JRD), and the total square Distance (TSD) between two GMMs, and more gen-
erally two mixtures of exponential families, can be obtained in closed-form in [28].
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