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Chapter 7.

Randomization

In this chapter, we cover the different aspects of randomization: randomized analysis
of randomized algorithms, randomization for sampling sequences, randomized data
structures, and randomized optimization algorithms. The leitmotif is that random-
ization helps us design elegant and simple computational techniques for various tasks.
In a sense, randomization simplifies sometimes drastically complex deterministic
procedures.

7.1 Randomized Analysis of QuickSort

To get a quick overview of the randomization paradigm, we’ll present the well-
known QuickSort algorithm. The QuickSort algorithm is a comparison-based sorting
algorithm, invented in 1961 by Hoare. QuickSort has worst-case running time
quadratic, but performs in practice in optimal ©(nlogn) time (to be defined later
on in the chapter), for sorting a sequence of n elements. Even today, QuickSort is one
of the fastest known sorting algorithms. A standard implementation can be invoked
in C using the procedure gsort (described in the <stdlib.h> header file). The basic
strategy of Quicksort is to partition an n-element array S into three subarrays, S.,
S_, and S+, according to a pivot key S[k], as follows:

S_ ={eeS|e=S[kl},
Sc.={eeS|e<S[k]}
S. ={eeS|e>S[k|}.

)

That is S— is the subset of elements of S equal to S[k], Sc the subset of S of
elements strictly inferior to S[k], and S~ the subset of elements of S strictly superior
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FIGURE 7.1  [llustration of the recursive inplace
partitioning principle of QuickSort.

to S[k]. Note that because all elements of S_ are identical to S[k], they do not need to
be sorted. QuickSort sorts by calling recursively itself on strictly smaller size arrays.
Namely, the recursion is called on the not yet sorted subarrays S. and S, that both
satisfy |S<| < n and |Ss| < n. The recursion ends whenever array arguments are of
unit size. In those cases, we do not need either to sort single-element arrays. That
is, QuickSort sorts by recursively partitioning arrays. Figure 7.1 illustrates the tree
structure obtained by the recursive calls of QuickSort on an 8-element integer array.
We chose the pivot to be the first element of the array.

We’'ll analyze the time complexity of QuickSort. In a best scenario, each pivot
S[k] € S (k € {1,...,n}) chosen by QuickSort splits the array in half, so that the time
complexity ¢(n) is given by the following recurrence equation:

tn) = 2t (g) + on) . (7.1)

Recursion Cost for partitioning

In the former equation, recall that O(n) means that the running time for
partitioning an array of n elements can be upper bounded by an, for some constant
a € R, for all n > ng, where ng is another constant. Solving this recurrence equation



yields t(n) = O(nlogn). We sketch the proof.

Proof. Let an denote the cost of partitioning an n-element array (using a pivot element
S[k]), and assume t(k) < bklog k for some constant b, and any k < n. The proof uses
induction on n. Using the recurrence of Eq. 7.1, we have t(n) = 2b% log § +an. That
is, t(n) = bnlogn + n(a — b). Thus, provided that b > a, we get t(n) < bnlogn.
QED. 0l

However, in a worst-case scenario, each pivot of QuickSort is an extremal element
(that is either S or S~ is empty). In such a case, the recurrence equation becomes:

t(n) =t(n — 1)+ O(n), (7.2)

which solves as t(n) = O(n?), quadratic time.

Proof. Again, the proof proceeds by induction. Assume we have shown t(k) < bk? for
k < n and for some constant b (though different value from the previous proof). Using
the recurrence formula Eq. 7.2, we get t(n) = b(n — 1)?> + an = bn? 4+ b + n(a — 2b).
That is, t(n) = bn® + n(a —2b+ 2) < bn® +n(a — 2b+b) < bn?, provided that b > a.
QED. O

The interesting analysis is when we ensure that at each step of the array partition,
we end up with an a-partition. By definition, an a-partition is an array partition such
that min{[S</|, |S>|} < @S| and max{|S<|,[S>[} < (1 — @)[S| (with 0 < < 3).

Then the recurrence equation of QuickSort is written as:

t(n) < t(an) + t((1 — a)n) + O(n). (7.3)

This recurrence solves as t(n) = O(nlogn) time, for any fixed 3 > a > 0.
For a = %, the balanced partitioning case, we obtain an O(nlogn) time (using
obviously linear memory). Moreover, if there are only p distinct elements among
the n elements, the running time of QuickSort improves to O(nlogp). This bound
matches another comparison-based sorting algorithm called BucketSort. BucketSort
sorts n numbers represented using b bits in O(bn) time. Since there are at most p = 2°
distinct elements in S, for very large n > 2P, we get the performance of QuickSort
as O(nlog2®) = O(bn). That is, QuickSort runs in linear time when the universe size
is bounded. There are many other variations and tedious analyses (without the big
Oh-notation) of QuickSort that depend on the splitting pivot rule. We do not include
them here, but we refer the reader to the Bibliographical Notes provided at the end
of the chapter.



So far, we have analyzed the worst-case, best, and balanced running times of
QuickSort. A first usage strategy consists in directly applying QuickSort on the
array, and hoping that we are in a best or balanced time scenario. However, for
any deterministic pivot rule there exists bad input arrays that require quadratic time
to sort. We can define the average running time t(n) of QuickSort by averaging the
running times on all permutations o of the input:

f(n) = % 3 Ho(S)). (7.4)
" all permutations o

It can be shown that the average running time of QuickSort on an n-array element
is O(nlogn), where O(-) denotes the average time.! That is, the amortized analysis
of QuickSort over all possible permutations yields the O(nlogn) time bound.

However, we cannot guarantee the average time since it depends on the input
configuration. A much better strategy for sorting consists in first preprocessing
the array, by applying a random permutation, and then applying QuickSort on that
shuffled array. The difference is that, at a linear time expense for randomly permuting
elements, we protect ourselves with some probability against almost already sorted
sequences. Let’s now look at this randomization aspect of QuickSort, the expected
running time of its run. The expected time #(n) is defined as the expectation of a
function t(-) of a discrete random variable S:

i(n) = E((8S)) = > t(0i(S)) x Pr[S=0;].  (7.5)

o;e{All possible permutations}

In the randomized QuickSort, all of the n! permutations occur with the same
probability:

~ 1Traditi0n%lly, the O(-) notation hides constant terms. In this randomization chapter, both the
O(f(n)) and O(f(n)) notations indicate the complexity analysis method that has been used to obtain

the order f(n) complexity: either average analysis (O(f(n))) or randomized analysis (O(f(n))).



Computing a uniformly random permutation in linear time and in-place is easily
done, as described by the following pseudocode:

RANDOMPERMUTATION(S)

1. forielton

2 do

3 S[i] = i

4. <4 Draw a random number in [1,4] >
5 j = RandomNumber(1, )

6 swaP(S[j], S[¢])

The other common strategy for generating a uniformly random permutation is
permuting by sorting: First, we draw n real numbers in an auxiliary array R. Then we
sort S according to the keys stored in R, in O(nlogn) time. This second permutation
generation method is more costly in time and requires extra memory. Moreover, it
requires sorting! We prefer to use permuting by swapping in-place.

For QuickSort, instead of randomly permuting the input set, we choose the pivot
at each procedure call randomly. We summarize for completeness the QuickSort
randomized algorithm, in pseudocode:

QUICKSORT(S)

1. < We only need to sort arrays of size strictly greater than one >
2. if |S|>1

3 then < Partition in place the array into S, Ss and S— >

4. Choose a random pivot index k

5. S.,S—,Ss < PARTITIONARRAYINPLACE(S, k)

6 < Recursive calls >

7 QUICKSORT(S.)

8 QUICKSORT(S>)

In the above algorithm, partitioning in-place means that we rearrange all the
elements of S without requiring extra memory. Therefore, at then end of QuickSort
the input array is sorted in place.

Additional source code or supplemental material is provided on the
book’s Web site:

www. charlesriver.com/ Books/ BookDetail.aspz? productID=117120
File: quicksort.cpp
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template <class item>
int PartitionInPlace(item array[], int left, int key, int right)
{

item pivot;
int i,j;

Swap(array [right],array[key]);
pivot = array[right|;
i = left —1;
j = right;
for (;;)
{

0 O O W N

— =
W= O 0

while (array[++i] < pivot);
while (array[——j] > pivot);
if(i >= j) break;

Swap (array [i], array[j]);

— e
N O Ot

}

Swap (array [i],array [right]);

— =
© 0o

20 return i;

21 }

22

23 template <class item>

24  void QuickSort (item array[], int left, int right)
25 {

26 int e, key;

27

28 if(right > left)

29 {

30 // Uniform random key

31  key=left+(rand () %(right—left +1));

32 e= PartitionInPlace (array ,left ,key,right);

33

34 // Recursive calls

35 QuickSort (array ,left ,e—1);
36 QuickSort (array ,e+1,right);
37

38 }

The randomized analysis of QUICKSORT is done according to the random pivot
choices, using indicator variables. For an event F, we define a corresponding indicator
random variable Xz = I(F), such that:

I(E) =

{ 1 if event E occurs, (7.7)

0 otherwise.



Indicator variables are used to convert probabilities into expectations, as follows:
Pr|E] = E(Xp). (7.8)

Let us now prove that the randomized QuickSort algorithm runs in expected
t(n) = O(nlogn) time with high probability, where O(-) denotes the time bound
expectation.?

Proof. For the purpose of the randomized analysis of QuickSort, we’ll assume that all
elements of array S are distinct, and order and denote them as:

51 < 82 < ... < Sp. (7.9)

Furthermore, let S;; = {s;, 8i41,...,5;}. The crucial observation is to notice that
any two elements s; and s; of S are compared at most once. This yields the worst-
case quadratic-time bound on the number of comparisons. Let X'ij be the indicator
random variable of event E;;, defined as Xij = I(E;;), where:

E;; : Elements s; and s; are compared during Quicksort. (7.10)

Let X denote the random variable that counts the total number of comparisons
performed by QuickSort:

n—1 n
X = > Xy (7.11)
i=1 j=i+1

The expected number of comparisons of QuickSort is #(n) = E(X). Since the
expectation of the sum of random variables is the sum of their individual expectations,
we get:

n—1 n
i(n) = E(X,), (7.12)
i=1 j=i+1
n—1 n
t(n) = Z Z Pr(s; and s; are compared]. (7.13)
i=1 j=i+1

In order to be compared, s; and s; must be the first chosen pivot of S;; (array of
j — i+ 1 elements). Otherwise, they will never be compared as they will be split into

2In some complexity analysis papers, the 0() denotes the complexity up to polylogarithmic terms.
That is, the O(-) notation hides polylogarithmic terms as opposed to constants. Here, the tilde
notation indicates an upper-bound obtained by randomized analysis.



disjoint subsets. Thus, we have:

1 N 12
j—i+1l j—i+1l j—i+l

Pr(s; and s; are compared] = (7.14)

It follows that:

n—1 n
f(n)zz Z ]—z+1 _ZOlogn O(nlogn), (7.15)

i=1 j=i+1

using the fact that H; = .7 1 < logn 4+ O(1). H, is called the nth harmonic

i=17

number. QED. ]

In fact, it can be shown that QuickSort runs in O(n logn) time with high probability.
That is,

. A 1

Pr[t(n) > cE(t(n))] < o (7.16)

where ¢ and d are appropriate constants and £(n) denote X. That is, the probability

that the running time #(n) deviates from its expectation £(n) by a factor ¢ is below
1.
m.

Prfi(n) 2 ci(n)] < —. (7.17)

A Las Vegas algorithm is a randomized algorithm that always guarantees a
correct output. Only the running time may change according to the random choices
done by the algorithm. QuickSort is a typical classroom example of Las Vegas
algorithms. Observe that we may have constant-time randomized algorithms that
are not guaranteed to deterministically end up. Indeed, consider the algorithm that
keeps tossing a two-sided coin (black color on one side, white on the other side) until
it ends up with black face:

TossINGACOIN()
1. repeat
2. Face < Toss a black/white coin

3. until Face=White

The expected running time of this algorithm is:

o0

> %z =2. (7.18)

=1



But in the worst-case, we keep drawing the white face, infinitely many times.

This kind of random pivot element is useful in many other algorithms such as order
statistics. Order statistics is a general framework for combining large size data into a
small size set that reflects the overall characteristics of the data. The mean, standard
deviation and moments of a collection of elements are typical order statistics. Let’s
consider another Las Vegas randomized algorithm: finding the median element of a set,
or more generally finding the kth smallest element of an array. The median is defined
as the halfway element of an array. For odd number of elements, the median is uniquely
defined as the ”T*'lth element. But for even number of elements, there are two medians,
defined as the |2 |th element and the [21]th element. We'll look at how this
randomization paradigm can be used to design an efficient algorithm for that selection
task. We follow the same spirit of QuickSort (random pivot element) for designing
another Las Vegas procedure. Actually, historically, this SELECTELEMENT algorithm
was also reported by Hoare when he described the PARTITION and QUICKSORT
procedures (1961). SELECTELEMENT differs from QUICKSORT in the sense that the
algorithm calls recursively itself only once, as described in the following pseudocode:

SELECTELEMENT(S, k)
1. < Select the kth smallest element of an array S of n elements >

2. if|S|=1

3 then return S[1]

4 else Choose a random pivot index k € [1, S]]

9. < Partition inplace array S >

6. S.,S_,S. <« PARTITIONARRAY(S, k)

7 if £ <|S<]

8 then return SELECTELEMENT(S., k)

9. else if k> S|+ |S—|
10. then return SELECTELEMENT(Ss,k — |[S<| — [S=|)
11. else < The kth smallest element of S is inside S— >
12. <4 S_[1] is stored at S[k| (inplace partitioning) >
13. return S[k|

Additional source code or supplemental material is provided on the
book’s Web site:

www. charlesriver.com/ Books/ BookDetail.aspz? productID=117120
File: OrderStatistics.cpp
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1 template <class item>

2 item SelectElement (item =xarray, int left , int right, int k)
34

4 int e, key;

5

6 if(right > left)

7 {// Uniform random key

8 key=left+(rand () %(right—left+1));

9 e=PartitionInPlace (array ,left ,key,right);

10

11 // Recursion

12 if (k<=e) return SelectElement (array ,left ,e,k);
13 else

14 SelectElement (array ,e+1,right ,k);

15

16 else // right=1left

17 return array[left];

18 }

To perform the randomized analysis of SELECTELEMENT, we’ll consider the
following n events: E1,..., E, and corresponding indicator variables Xi, ..., X, such
that event F; is defined as:

E; : The selected pivot is the ith smallest element. (7.19)

Clearly, E(XZ) = Pr[E;] = %, by virtue of the equiprobability of the uniform
sampling.

Let #(n) denote the running time random variable of the procedure SELECTELE-
MENT. We write £(n) using the following recurrence:

t(n) < Z Xit(max{n —i,i—1}) + Q(,@ . (7.20)
i=1

In-place partition

Thus, the expected running time £(n) = E(#(n)) is bounded by:

tn) <E (i Xit(max{n —i,i—1})+ O(n)) , (7.21)

=1
i<y %E(f(max{n _ii—1}))+0n), (7.22)
=1

which solves as #(n) = O(n).



Proof. We prove the bound by induction, using E(f(k)) = #(k) < ck, for k < n.
Rewriting equation Eq. 7.22, we get:

n—1
~ 2 ~
t(n) < - t(i) + an. (7.23)
=5
That is,
2
tn) < = i+ an, (7.24)
n
i=[%]
2 n -1 —_ |
< 2e(lpltn-Vin=l5) |, (7.25)
n 2
9¢ 2nn
< f% +an (7.26)
< (%c +a)n < cn, (7.27)
provided that %c 4+ a < c¢. That is, we choose any ¢ > 4a. QED. O

This randomized analysis shows that by imposing a uniformly random distribution
of the input, we prove that the running time of SELECTELEMENT is expected linear
time, although its worst-case time is quadratic. Note that there exists a deterministic
selection algorithm that matches the optimal linear time bound. However, this
deterministic algorithm is more elaborate, as it uses the prune-and-search paradigm.

In summary, we have seen that the average-case analysis characterizes the average
running time of deterministic algorithms, by assuming a random distribution of data.
However, any deterministic algorithm has some input data (worst-case input) that
elicits its worst-case time. On the contrary, randomized algorithms make (uniform)
random choices that shuffle the data by a (uniform) random distribution. Thus,
randomized algorithms have no a priori worst-case inputs. We compare randomized
algorithms according to their expected times.

Finally, we’ll mention that sorting n numbers by comparisons requires (nlogn)
time.® Indeed, each comparison of any sorting algorithm separates the set of
permutations into two sets. Thus, to separate properly all of the n! permutations
and reach from every permutation the sorted sequence by performing comparisons,
we need at least? log(n!) = O(nlogn) comparisons® (see also the Bibliographical
Notes).

3The Q(-) notation denotes the intrinsic complexity of a problem. That is, a lower bound up to
constant factors of any algorithm solving the given problem.

“Indeed, the best we can do at each comparison step is to halve the set of permutations.

®Using Stirling’s approximation formula: n! ~ n™ exp(—n)v/2mn.



7.2 Random Sample Consensus

The Random Sample Consensus (RANSAC) paradigm is an extremely powerful
selection method invented by Fischer and Bolles in 1981. RANSAC is used to improve
matching techniques that occur in many pattern matching applications of computer
vision and computational geometry. One of the key difficulties of matching two point
sets, is to detect those which match from those that do not. The matching points
are called the inliers, and the remaining points are called outliers. Such point sets
can come from image processing feature detectors, such as corner detectors. For
example, for stitching two pictures imaging a same planar surface, we may first detect
respective point features in the two input images. A common method for detecting

FIGURE 7.2 Fully automatic computation of the epipolar geom-
etry of two uncalibrated pinhole camera images. Pictures (a)
and (b) display the two source images with their respective
extracted Harris-Stephens point features.  Pictures (c) and
(d) shows the recovered epipolar geometry after a RANSAC
procedure has been applied. Observe that the epipolar lines
intersect respectively in their epipole.



FIGURE 7.3 A similitude transformation is unambiguously
defined by a pair of matching features.

feature points in images is to use the Harris-Stephens corner detector algorithm (see
also Section 4.2.1). However, the Harris-Stephens corner sets contain both inliers and
outliers.

Once a proper labeling of points into inliers and outliers is done, we perform
classical numerical optimization on pairs of matching features. This inliers/outliers
labeling problem often occurs in pattern matching and computer vision, where we
have to deal with a large proportion of outliers. Figure 7.2 illustrates such an
image matching problem, by considering the automatic computation of the epipolar
geometry (fundamental matrix F) defined by two uncalibrated source images Iy and
I, respectively. Let F = {f;}; and G = {g;}; be two 2D point sets extracted by a
feature detector algorithm from images Iy and Is.

For ease of presentation, we consider calculating from feature sets a similitude
transformation M matching the two input images. That is, to find a rotation followed
by a uniform scaling and a translation, that best matches those two point sets. The
translation vector t = [t, ty]T, rotation angle # and isotropic scaling s are called the
free parameters of the matching problem (4 degrees of freedom).

First, observe that given two pairs of matching features f; < g; and f5 < go, the
transformation matrix M is fully determined. Indeed, the translation is computed as

the difference of the midpoints of line segments [fifo] and [gigo]: t = 8382 — fth,
The isotropic scaling is the ratio of the segment lengths: s = %. The rotation 6

is then recovered using a simple arctan operation, as depicted in Figure 7.3, once
the segment midpoints have been matched. Finally, the transformation matrix
M is obtained by the following transformation pipeline (with associated matrix
concatenation):

M = M[fl, fg; g1, gg] = Tglggz RQSSTi f1+fo (728)
2
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FIGURE 7.4  Conceptual illustration of the RANSAC random sampling.

. cosf —sinf 0 s 00 [ _f+h
M[f1>f2;g1>g2]:[0T 2 ] sinf cosf 0 0 s 0 [OT L ]
0 0 1 0 01

(7.29)

Additional source code or supplemental material is provided on the
book’s Web site:

www. charlesriver.com/ Books/ BookDetail.aspz? productID=117120
File: matchsegments.cpp (similitude transformation)
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Let’s say that the point sets F and G match densely. That is, at least a x 100
percent of the points match. Since it should be clear that 0 < a < 1, we will loosely
say « percent of points match, although that in fact it is a x 100 percent! In other
words, a denotes the ratio of inliers. RANSAC provides a robust matching estimation
method that simply consists in randomly drawing two elements {f;, f2} of feature set
F: a random sample. The probability that these two elements match and give rise to
two correspondence pairs with two other elements of G is a?. Indeed, we have to be
lucky twice. Saying it a different way, the probability that we failed to pick up a good
subset is at most 1 — 2. Figure 7.4 gives a schematic illustration of the pair sampling
process.



TABLE 7.1  Number of rounds required by RANSAC to ensure a
failure probability below 1%.

Number of pairs / Application example | Outliers ratio (1 — «)
10% | 30% | 50%
2 Similitude 3 7 17
3 Affine 4 11 35
4 Homography 5 17 72
6 Trifocal tensor 7 37 1293
7 Fundamental matrix 8 54 588

Observe that we are only using the combinatorial information of set F, ignoring
G (those sets are though related by «). To check whether a set of correspondence
pairs yields an admissible transformation, we first compute MIf, f2; g1, g2], and then
we check that [M(F) NG| > an, where M(F) = {M x e | e € F}. The matching set
of inliers Z = M(F) NG defines the consensus set for the current sample. Again, for
sake of simplicity, we didn’t take into account some noise threshold € into the analysis.
RANSAC is known empirically to work well with noise; If Gaussian noise with zero
mean is assumed then we can compute an optimal statistical threshold distance to
determine whether two points match or not. If the current induced transformation
does not produce a valid match with « percent of matched features, then we simply
discard the two matching pairs and draw again another two-element sample from
F, and reiterate. After k independent sampling rounds, the probability of failure
becomes (1 —a?)¥. That is, as the number of draws k grows, the probability of failure
tends to zero. More precisely, we can calculate the number of rounds k, so that the
failure probability falls below a given threshold f: find the minimum % such that
(1 —a?)F < f. That is,

ehlog(l—a®) < ¢ (7.30)

We get from Equation 7.30: k = [%—‘ = [log;_,2 f]. In general, if we need
s point correspondences to define the free parameters of our matching transform, we

obtain the following similar bound:

log f
k=|—"——| =1l s . 7.31
e (7.31)

Table 7.1 provides some tabulated values for f = 0.01 (1% probability of failure)
and various ratio values of o and integers s. RANSAC is useful for stitching images
with homographies (require four pairs), computing the trifocal tensor (require six



pairs), recovering the epipolar geometry (require seven pairs), pose estimation (the
number of degrees of freedom depends on the template model) and tracking, etc.

We summarize in pseudocode the RANSAC procedure for automatically and
robustly computing a homography between two point sets:

HoMOGRAPHYRANSAC(Py, Pa,n, f, )
1. < n: number of points of P; and Py >

2. < f: probability of failure >

3. < «: a priori inlier ratio >

4. k= "logl(olgffa‘l)—‘

5. < ¢p: maximum consensus set found by RANSAC >

6. ¢, =0

7. fori«—1tok

8. do Draw a random sample S; of 4 elements from Py

9. Check with all other 4-elements of S,.
10. For each correspondence sets, calculate the free parameters.
11. Compute the consensus set size ¢
12. ifc>cm
13. then ¢,, = ¢
14. Save current transformation and largest consensus set
15. < Final stage: compute the homography given correspondence pairs >
16. Estimate the homography with the largest found consensus sample (inliers)

From the viewpoint of time complexity of matching algorithms, RANSAC lets us
save an O(n®) factor. Indeed, there are () = O(n®) possible s-matching sets in F,
for fixed s. Given two s-matching sets, we still need to get a unique labeling by
specifying the sets point-to-point correspondences. That is, there are s!(?) = O(n®)
possible labelings, for fixed s. Assuming that there is a nonzero o > 0 ratio of inliers,
RANSAC needs to check only O(1) random samples, while guaranteeing a probability
of failure as small as required, but fixed. A naive algorithm will check that many
(") (Z)s! = 04(n?®) combinations. Thus, RANSAC let us save roughly a square root

S
factor over the brute-force exploration algorithm.

In practice, we seldom know the a priori proportion « of inliers. We discover it a
posteriori. Moreover, the proportion of inliers is input sensitive. It depends on the
configuration of the input sets. Nevertheless, we can bootstrap RANSAC so that it
becomes adaptive to the input configurations. This is because the samples are drawn
independently from each other.



We provide the adaptive RANSAC pseudocode, essentially for comparison with

HoMOGRAPHYRANSAC:

ADAPTIVERANSAC(n, f)

1. < n: data set size >
2. < s: number of correspondences required (free parameters) >
3. < f: probability of failure >
4. <« Initialize k to a very large number >
5. k=00
6. < d: current number of independent random draws >
7. d=0
8. < ¢y maximum consensus set found so far by RANSAC >
9. ¢, =0
10. while k£ > d
11. do Draw a random sample
12. Compute the consensus set size ¢
13. if ¢ > ¢,
14. then < Update the proportion of inliers >
15. Cm =2¢C
16. a= -
17. < Lower the number of rounds >
18. F= | oaiss
19. d=d+1
Additional source code or supplemental material is provided on the
book’s Web site:
WWW

www. charlesriver.com/ Books/ BookDetail.aspz? productID=117120
File: ransac.cpp

RANSAC was somewhat a counterintuitive technique back in 1981. Indeed, at that

time practitioners usually performed matching using as much data as possible: they
were smoothing potential errors by taking large sets. In comparison, RANSAC is the
inverse methodology that consists of finding a sparse matching random sample, and
then extending it to its dense consensus set, eventually repeating this procedure at

mo

st a fixed number of times. RANSAC is not a Las Vegas-type of algorithm. It is

classified as a one-sided error Monte Carlo algorithm. Indeed, if RANSAC finds a large
consensus set, this means that the set really exists. Otherwise, we may have missed
such a large consensus set, however this may happen with a small failure probability.
We define a two-sided error Monte Carlo algorithm as a randomized procedure that



has nonzero probability of doing an error in both ways: reporting a matching set that
is not a matching set (so-called false “true” case), or failing to report an existing
(large) matching set (so-called false “false” case). To conclude, we emphasize that
Las Vegas randomized algorithms (such as QuickSort) do not make errors but have
varying running time, while Monte Carlo algorithms (such as RANSAC) finish on
time but may be prone to one-sided or two-sided errors.

7.3 Monte Carlo Samplings

Computers crunch numbers so fast® that one area of computing has been dedicated to
simulating physical phenomena of the real world. For example, in computer graphics,
we simulate light scattering phenomena using a Monte Carlo path-tracing algorithm.
Or, in computer vision, we simulate image generation models to denoise and enhance
captured raw data. And in computational geometry, we simulate flows and deforming
geometries using the finite element method (FEM). All those simulations require to
draw samples from probability density functions to effectively discretize domains.
Those probability density functions describe the possible values for parameters and
their likelihoods.

As a case-study, consider computing an approximation of the transcendental
number 7, an infinite nonrepetitive sequence of digits. We are going to simulate
a simple physical process.

Draw uniformly random points on a square of side lengths 2r (for some given r),
using two uniform and independent 1D probability density functions, for the z- and
y-abscissae. Figure 7.5 illustrates this random sampling process. The probability of
drawing a point inside the unit disk is written as:

area(disk)  mr? (7.32)
area(square)  (2r)2 '

That is, 7 for any r > 0. Since that probability is independent of the radius r
(provided it is strictly positive), we assume in the remainder that » = 1. Detecting
whether a point p drawn by our Monte Carlo sampling process belongs to the disk
is done by checking that its distance to the origin is less than one: ||p|| < 1. As the
number n of drawn point samples increases, the empirical probability {”p”gnﬂ

tends to 7. Therefore, an approximation of 7 is given by:

4{HpH <1| pep}.
n

(7.33)

T ~n—oo

SAt the time this book is published, we expect teraflops (TFLOPS) personal multicore chip
workstations. The traditional interactive graphics rendering pipeline will further be complemented
by real-time ray tracing and Monte Carlo rendering.
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FIGURE 7.5 Discrete Monte Carlo integrations: using computer simulations to
calculate coarse approzimations of w. (a) Point samples are drawn uniformly
inside a square. T is approximated as four times the ratio of points lying inside
the unit disk. (b) The Buffon’s needle simulation (1733) consists in letting unit
length needles fall randomly on a unit-spaced ruled paper. It can be shown that
is approzimated as twice the inverse of the ratio of needles crossing any horizontal
line.

Unfortunately, this simple simulation heuristic does not converge quickly (see the
variance discussion later on in the chapter). There is yet another Monte Carlo
method to calculate m that is called the Buffon’s needle: needles of unit length are
randomly dropped onto a sheet of paper ruled with horizontal lines spaced one unit
apart. More precisely, a new unit length needle is randomly drawn by first uniformly
randomly choosing its segment midpoint inside the sheet of paper, and then sampling
uniformly randomly an orientation 6 € [—7, 7). The ratio of the number of needles
that cross a line over the total number of needles approaches % Figure 7.5 depicts
this experimental process for approximating w. Note that there are also many more
efficient ways of computing fine approximations of .7

Consider another example: We are given a collection O = {0, ...,O,} of n 3D

"See  hitp: // numbers.computation.free.fr/ Constants/ PiProgram/ pifast.html if you want to

compute billion digit approximations! We can also look for a simple closed formula that approximates

A 3
m; for example, ™ ~ % approximates 30 digits. Machin’s formula = = 16 arctan% -
1

. . : i copia _ oo (ma)Rt
4 arctan 555 can also be used to approximate m using the arctangent serie: arctan z = Do 7T



Path Tracing

Image plane

Center of Projection
FIGURE 7.6  Illustration of the path tracing algorithm.

objects included in a 3D unit cube. We would like to calculate the volume of the union
of these objects: Volume(QO) = Volume(|J;_; O;). The Monte Carlo sampling method
provides us with an easy way to get a rough estimate of the occupancy volume: draw
k points uniformly in the unit cube and report the ratio of points falling inside any
object.

This kind of discrete integration technique is known as Monte Carlo integration.
Monte Carlo samplings are randomized algorithms that guarantee termination but
may yield incorrect results (one-sided or two-sided errors). In computer graphics
rendering, the Monte Carlo sampling is used in ray path tracing, and for computing
various integral approximations, fast. The Monte Carlo method allows us to produce
stunning visual global illumination renderings. Using Monte Carlo sampling, we get
fast estimates of pixel projected areas on surfaces or solid angles defined by complex
shapes. Those integrals have usually many dimensions (one per parameter), including
time. Moreover, the function to integrate, say, the rendering equation, has many
discontinuities (occlusions, BRDF, cautics, etc.)

Monte Carlo principles are used in many computer graphics rendering procedures.
For each pixel of the rendered image, we cast a fixed number of jittered rays. Those
rays are then traced in the 3D scene. Whenever a ray hits a surface, it is either
reflected or emits light according to the surface material.



We summarize a typical Monte Carlo path-tracing procedure in pseudocode
(Figure 7.6):

MONTECARLORENDERING(I)
1. < Render the scene using path tracing >

2. < w,h: Image width and height >
3. fory—1toh
4 do for z +— 1 to w
5. do < s: number of samples >
6. for k — 1 to s
7 do Initialize ray parameters (x,y,t)
8 weight = 1
9. Trace ray until it hits the nearest surface
10. < Russian Roulette >
11. Decide whether this ray is reflected or emits light,
12. by comparing a uniform random number against a
13. threshold reflection probability characterizing the surface.
14. d Ce, ¢p: emitted and reflected transmitted coefficients
15. if emitted
16. then < Ray is absorbed and a new ray is created >
17. weight = ¢, x weight
18. Delete old ray and create new ray
19. (with random direction)
20. else < Reflection in a random direction >
21. weight = ¢, x weight
22. Update the ray geometry
23. (random direction according to the BRDF)

Besides, Monte Carlo paradigm is also extremely useful for designing antialiasing
procedures using jittering or stratified samplings. The main disadvantage of the Monte
Carlo paradigm is that its calculated approximations converge slowly. This is because
the variance decreases inversely proportional to the number of samples. Indeed,
the basic discrete Monte Carlo integration technique approximates a continuous 1D
integral by a 2D box area of width the domain size (b — a) and height the average of
the function evaluated at uniformly distributed random samples {1, ...,z }:

b
[ t@do~ -0 Y fla). (7.34)



In the limit case, we have equality:
1o b
lim (b —a)— i) = dx. 7.35
i (0= a)2 3 £ | #wyis (7.35)

The convergence rate is indicated by the standard deviation o that measures the
statistical dispersion. The standard deviation is the square root of the variance:

var, = 02 = %Z <f($z) - %Zf(%)>
i=1

i=1

2
. (7.36)

Thus, o, is of order Ln That is, to halve the amount of “imprecision” (o), we have
to quadruple the number of random samples. Typically, for a path tracing procedure,
we cast 1,000 to 10,000 rays per pixel. That is, to render an image, it is customary
to use billions to trillions of rays. There are various extensions of the Monte Carlo
discrete sampling integration technique that tackle the variance reduction, such as
adaptive sampling, stratified sampling or Metropolis sampling.

In practice, the difference between the exact rendering (the one we get if we could
solve all integrations analytically) and its Monte Carlo discrete integral approximation
rendering is perceived as “noise” in the image. The larger the variance, the bigger the
amount of noise, and the greyer the synthesized image (see Figure 7.7). Figure 7.7
shows two images computed by a Monte Carlo path tracer using different sampling
rates. Observe the large amount of noise in the undersampled image. There are yet
some other biased and nonbiased variance-reduction techniques to further filter and
partially remove some “noise.”

7.4 Randomizing Incremental Algorithms

We have presented earlier (in Section 5.2.3) the edge-flip Delaunay triangulation
algorithm that starts from any arbitrary triangulation of a point set, and flips edges of
triangles that define nonempty Delaunay circles (see page 308) until the triangulation
becomes Delaunay. This algorithm unfortunately has quadratic running time, in the
worst case. Here, we present the randomized incremental construction of the Delaunay
triangulation of a planar point set, using edge flips. Let P = {p1, ..., pn} be a planar
point set in general position (no four points cocircular). For ease of presentation,
we’ll add three triangle points ti, to, and ts, so that P is fully contained inside this
bounding triangle Ty = Atjtats (with P C Tp). The incremental construction of the
Delaunay triangulation adds a point at a time, so that at the ¢th stage, we have the
Delaunay triangulation of P; = {ty, ta,ts, p1,...,pi}. At the (i + 1)-th stage, we add
point p;+1 € P. First, we find the triangle T;11 of the current Delaunay triangulation
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FIGURE 7.7 Monte Carlo path tracing. Image (a) has been calculated by taking
100 jittered rays/pizel. Images (b) and (c) have been obtained by increasing
the sampling rate to 400 and 1600 rays/pizel, respectively.  Observe that
undersampling is much visible in (a) as noise. Image (d) has been calculated
using the bidirectional path-tracing method (1600 rays/pizel) that significantly
improves the quality over the ordinary path-tracing Monte Carlo method.
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FIGURE 7.8  Incremental Delaunay Triangulation. (a) The new inserted point
Pi+1 i first located on the current Delaunay triangulation and its triangle is split
into three new triangles, yielding the initial star-shaped polygon. The dashed arc
shows a nmonempty disk defined by a triangle of the initial star-shaped polygon
(grey polygon). This shows that the initial star-shaped polygon anchored at p;y1
needs to be updated since one of its triangles is not Delaunay ( i.e., nonempty
circle). (b) The updated star-shaped polygon and its boundary edges where edge
flips have been performed. Here, 6 — 3 = 3 edge flips have been called.

D; that contains the newly inserted point p;+1. This triangle necessarily exists because
we added the three “bounding” vertices of Tp. We then split triangle 7;11 into three
triangles using point p;y1, and perform edge flips, so that the triangulation remains
Delaunay. It turns out that vertex p;y1 in the triangulation defines a star-shaped
polygon (see Section 5.1), as depicted in Figure 7.8. The boundary of the star-shaped
polygon consists in all edges of triangles incident to p;4; but not sharing and edge
endpoint with p;;1. Moreover, every new edge-flipped triangle necessarily contains
vertex p;4+1 at one of its apex. Indeed, each edge flip replaces an edge with a newly
created edge having extremity p;y+1. Thus, the number of edge flips is exactly the
difference of the two star-shaped polygon number of edges. That is, the difference of
the number of edges of the star-shaped polygon after having finished updating the
Delaunay triangulation minus the number of edges of the initial star-shaped polygon
(the three edges of triangle T;41). This is also equal to the degree of p;;+1 minus three
in the updated Delaunay triangulation D;1,. Let us now analyze the total number of
edge flips when building the incremental Delaunay triangulation of P. Consider any
random permutation of the points in P, and let us look at all possible combinatorial



positions of the last inserted point p,,. The sum of the degrees of p,, for all possible
configurations is the same as the sum of the degrees of all points in the final Delaunay
triangulation. This is simply because p,, could be chosen as any of the points of the
final Delaunay triangulation. The sum of the degrees of the vertices of any Delaunay
triangulation is equal to twice the number of its edges. Since each point insertion
creates three new edges, we have 3n edges in a Delaunay triangulation, and the sum
of the degrees of vertices of a Delaunay triangulation is 2 x 3n = 6n. Thus, the total
number of edge flips for all configurations of p, is at most 6n — 3n = 3n. It follows
that the overall number of edge flips e(n) for all permutations of the point set P is
obtained by using the following recurrence equation:

e(n) < n xe(n —1)+ 3n < 3n x nl.
—~— ~—
Possible choices for last point p,, Total # edge flips
(7.37)

To get the amortized average number of flips €(n), we now have to divide by the
number n! of possible permutations:

1
é(n) < 3n x n!ﬁ < 3n. (7.38)

The randomized incremental Delaunay construction proceeds by inserting randomly
one vertex at a time. Thus, the overall ezpected number of flips é(n) matches e(n):

é(n) < 3n. (7.39)

This kind of complexity analysis is called the backward analysis. In the algorithm
complexity analysis, we didn’t describe how we efficiently localize the inserted points
into the current Delaunay triangulations. That is, to find efficiently triangles {T;};.
This step can be done using a history direct acyclic graph (DAG) that stores all events
(triangle splittings and edge flips) in a hierarchical way. An amortized randomized
analysis further shows that locations of inserted points into Delaunay triangulations
are done in ezpected logarithmic time. (There are many other algorithmic methods for
this localization step mentioned in the Bibliographical Notes.) We conclude that the
incremental randomized Delaunay triangulation of an m-point set can be computed
in expected ©(nlogn) time, using expected linear memory. The ©(t) notation means
that the algorithm runs in expected O(t) time, and that ¢ is also a lower bound for
the problem too (mathematically written using the notation (¢)).



We summarize the incremental construction of the Delaunay triangulation below:

INCREMENTALDELAUNAYTRIANGULATION(P = {p1,...,Pn})
1. <« Start with a bounding triangle Ty = Atqtats >
2. < D;: Delaunay triangulation at stage i >
3. Dy = Atytats
4. fori+—1ton
5. do T; = LocalizeTriangleInTriangulation(p;, D;—1)
6 SplitTriangle1To3(7T;, p;)
7 S = InitializeStarShapedPolygon(p;)
8 while there exists a non-Delaunay edge e of S
9

. do
10. < Flip e with the other diagonal >
11. < (See quad-edge data structure of Section 5.3.4) >
12. EdgeFlip(e)
13. < D; denotes the current Delaunay triangulation of P; >

7.5 Randomized Incremental Optimization

The randomization analysis can also yield simple yet powerful combinatorial opti-
mization algorithms. We consider the smallest enclosing ball problem that is a core
primitive in many collision-detection algorithms. Indeed, the smallest enclosing ball
(or a fast approximation of it) is often used in computer graphics for collision-detection
algorithms that use bounding sphere hierarchies® (Figure 7.9). A bounding sphere
hierarchy is a hierarchical covering of the 3D model by balls. For checking whether
two 3D models collide or not, we first check whether their sphere coverings intersect or
not. If not, clearly, the included models obviously do not intersect. Otherwise, if the
current sphere coverings intersect then we refine the model sphere coverings. That is,
we go down one level in the multiresolution hierarchy, if possible. At the bottommost
level, we need to check whether the two 3D models intersect or not, a computationally
expensive operation. Fortunately, this last stage model-model intersection check is
seldom performed. Thus, the sphere covering of a 3D model provides a geometric
proxy of its shape. Besides, the smallest enclosing ball is also used for hierarchical
frustum culling as well. For ease of presentation, we consider the planar case. However,
we use the term “ball” as the algorithm generalizes well to arbitrary dimension (say,
up to dimension 30; see Section 8.3.2).

8The bounding sphere hierarchy is a particular case of bounding volume hierarchies (BVHs).



FIGURE 7.9  Ezample of a bounding sphere hierarchy of a 3D bunny model. (a)
shows the 3D model, and (b) a bounding sphere hierarchy used as a geometric
proxzy for efficient collision detection. The 3D bunny model is courtesy of ©) The
Stanford 3D scanning repository, Marc Levoy. Used with permission.

Let Ball(p, ) denote the ball of center p and radius r:
Ball(p,7) = {x € R? | ||px|| < r}. (7.40)

Denote by P the point set P = {p1, ..., pn}. The smallest enclosing ball of P is the
unique ball B* = Ball(c*, r*), fully enclosing P (P C Ball(c*,r*)), and of minimum
radius r*. Historically, Sylvester first studied the 2D instance in 1857. Since then,
there have been many types of algorithms, mostly numerical though. A breakthrough
was the exact combinatorial randomized algorithm of Welzl in 1991. We present
the framework in 2D, although the approach extends to arbitrary dimensions and
minimum enclosing ellipsoids as well. The smallest enclosing ball is defined by its
combinatorial basis, in 2D, a set of at most three points lying on the boundary 0B* of
the smallest enclosing ball B*. Note that many more points can possibly lie on 0B*,
in case of cocircular degeneracies (> 4 points lying on a same circle). Figure 7.10
illustrates those different configurations. Figure 7.10(a) shows an instance where the
basis is of size two (a pair of diametrically opposed points). Figure 7.10(b) and (c)
respectively shows an instance of basis three in nondegenerated and degenerated cases.



Welzl proposed a simple combinatorial optimization algorithm whose randomized
analysis yields an optimal linear expected time bound. The algorithm cleverly
proceeds by determining a basis for the smallest enclosing ball.

We summarize this recursive MINIBALL algorithm for the planar case, in pseudocode:

MINIBALL(P = {p1, ..., Pn}, B)
1. < Initially the basis B is empty >

2. < Output: B contains a basis solution >
3. < That is, two or three points defining the minimum enclosing ball >
4. <« Function MINIBALL returns the smallest enclosing ball B* >
5. if |B| =3
6. then return B = SOLVEBASIS(B)
7. else
8. if [ PUB| <3
9. then return B = SOLVEBASIS(P U B)
10. else
11. Select at random point p € P
12. B = MINIBALL(P\{p}, B)
13. ifpg B
14. then < Then p belongs to the boundary of B*(P) >
15. return B = MINIBALL(P\{p}, BU {p})

The SOLVEBASIS procedure has to determine the circle passing through either one
(trivial case), two basis points p; and pe, or three basis points pj, p2, and ps (see
Figure 7.10). For two points, because the basis pair lies diametrically opposed on the
boundary of the smallest enclosing ball, its circumcenter is ¢* = w. For three basis
points, the circumcenter is the intersection of the three perpendicular bisectors defined
by the triangle Apipaps. Thus, ¢* necessarily lies inside” the triangle Apipaps.
Another way, to compute the circumcenter of the circle passing through three points
is to use the determinant approach, as detailed in Section 8.3.1, or to solve a linear
program (see the Bibliographical Notes).

Additional source code or supplemental material is provided on the
book’s Web site:

www. charlesriver.com/ Books/ BookDetail.aspz? productID=117120
File: MiniBall.cpp

WWW

9In arbitrary dimension, it can be shown that the circumcenter of the smallest enclosing ball lies
necessarily inside the convex hull of its basis points.



Unique Basis 2 Unique Basis 3 A basis 3

(cocircular degeneracies)

(a) (b) (©)

o Circumecenter

x Point

e Point belonging to a combinatorial basis

FIGURE 7.10 Smallest enclosing disk. The smallest enclosing disk B* is defined
by its combinatorial basis, of size 2 (a) or 3 (b) in the planar case. The basis is
unique for point sets without cocircularities (a) and (b), and chosen arbitrarily

otherwise (c).

We give below a complete C++ implementation of the MINIBALL code:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

void MiniDisc (point* set, int n, point*x basis, int b,
pointé& center , number& rad)
{

point cl; number rl;
int k;

// Terminal cases
if (b==3) SolveDisc3(basis[0], basis[1l], basis[2], cl, rl);

if ((n==1)&&(b==0)) {r1=0.0; cl=set[0];}

if ((n==2)&&(b==0)) SolveDisc2(set[0],set[1], cl, rl);

if ((n==0)&&(b==2)) SolveDisc2(basis|[0], basis[1], cl, rl);
if ((n==1)&&(b==1)) SolveDisc2(basis[0], set[0], cl, rl);

// General case
if ((b<3)&&(nt+b>2))
{
// Randomization: choosing a pivot
k=rand ()%n; // between O and n-1
if (k!=0) SwapPoint(set [0],set[k]);

MiniDisc(&set [1] ,n—1,basis ,b,cl,rl);



23
24 if (cl.Distance(set[0])>rl)

25 {

26 // Then set[0] necessarily belongs to the basis.
27 basis [b++]=set [0];

28 MiniDisc(&set [1] ,n—1,basis ,b,cl,rl);

29 }

30 }

31 center=cl;rad=rl;

32 }

The C+4++ primitives for computing the disk passing through either two or three
points is written as follows:

1 // The unique circle passing through exactly three non-collinear
points pl, p2 ,p3

2 void SolveDisc3 (point pl, point p2, point p3, point & center,
number &rad)

34

4 number a = p2.x — pl.x;

5 number b = p2.y — pl.y;

6 number ¢ = p3.x — pl.x;

7 number d = p3.y — pl.y;

8 number ¢ = a*(p2.x + pl.x)*0.5 + bx(p2.y + pl.y)=0.5;

9 number f = (c*(p3.x + pl.x)*0.5) + (d*(p3.y + pl.y)=*0.5);
10 number det = axd — bxc;

11

12 center.x (d*e — bxf)/det;

13 center.y = (—cxe + axf)/det;

14

15 rad =pl.Distance(center);

16 }

17

18 // The smallest circle passing through two points
19 void SolveDisc2(point pl, point p2, point & center, number &rad)
20 {

21 center.x = 0.5%(pl.x+p2.x);

22 center.y = 0.5x(pl.y+p2.y);

23

24 rad =pl.Distance(center);

25 }

To analyze the time complexity of the procedure MINIBALL, we proceed by upper-
bounding the number of times we have some point p € B (since this event triggers a
new recursive call).

Let ¢(n) denote the number of recursive calls to MINIBALL with an n-point set P
and a b-point set basis B. Trivially, we define ¢;(0) = 0, for 2 < b < 3. The probability

that MINIBALL(P, B) #MINIBALL(P\{p}, BU {p}) is bounded by at most 2=t (with
3-b

— < %), since at most 3 — b points belonging to the boundary of an enclosing ball



are enough to define uniquely that ball already constrained to pass through b points.
This yields the following simple recursion equation:

3—0b

cp(n) < cp(n —1) + 1 +
MiniBall without p —current call

pri(n—1) . (7.41)

Balls are different case

Solving this recursive equation yields to c3(n) < n, ca(n) < 3n, and ¢;(n) < 10n.
Therefore, the above randomized incremental combinatorial optimization procedure
runs in expected O(ci(n) + c2(n) + c3(n)) = ©(n) optimal time and memory.

7.6 Skip Lists

The skip list is one of the data structures that has been designed to overcome the
complexity of balanced binary search trees, such as red-black trees'® or Adelson-
Velskii-Landis trees,'! commonly called AVL trees. A skip list is a probabilistic data
structure pioneered by Pugh, in 1990. Consider a set S of n scalar elements {s1, ..., s, }
with s; < s;41 for all 1 <i < n (ordered elements). Let us add two extrema: elements
—o0 and oo, such that —oo < s1 and s, < 0o in S. A skip list is a sparse bidimensional
list, where cells store elements organized into levels. To build a skip list on S, we first
start by building the first level L of the skip list as a singly connected list on all
elements of S. Then, we build a next level L;;; by independently tossing a coin for
each list element of L;. For one face of the coin, we let the element survive to that
level L; 1, otherwise we discard it for all the remaining layers L;, with j > i+ 1. We
add the two extremal elements to all layers, and we link each cell of layer L;; with
its corresponding cell at layer L;. Because those corresponding cells store identical
elements, we rather store the element once. That is, for each element, we create a
tower structure storing only once the element value and we associate to that tower
an array of links. For each layer of the tower, we point to the immediate successor
tower of that level, as depicted in Figure 7.11. We reiterate until no more elements
are available.

Let Li,...,Lg be the k levels of the skip list (see Figure 7.11). A skip list
can be interpreted as an interval search tree data structure (but not necessarily
binary tree), where levels successively represent coarser partitions of the real

10Red-black trees are binary search trees such that every node is colored either in red or black, and
stores a value. The root node is colored black. Red-black trees satisfy the following properties: (1) for
each node, its value is greater than the value of its left child and less than the value of its right child.
(2) Every path from the root to a leaf contains the same number of black nodes. (3) Every red node
has only black children. It can be shown that red-black trees have logarithmic depths.

ILAVL trees are binary search trees such that for each node, the heights of its right and its left
subtrees differ by at most one. The height of leaves is one. AVL trees have logarithmic depths.
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FIGURE 7.11  Example of a skip list. The top figure explains the skip list
construction. The bottom figure is a visual interpretation of the implicit interval
tree representation of the above skip list. Observe that the implicit tree is not
binary (degree 3 of the node [4,0)).

interval (—oo, 00) (Figure 7.11). First, we create for each layer a node for each element
present at that level. We then define the interval range of a node: each node has an
associated range beginning from its element and ending to the following element of
the same layer. Then, two nodes of consecutive levels are linked if, and only if, their
corresponding intervals intersect. Observe that the degree of nodes in the interval tree
can be arbitrarily high. (Fortunately, the randomization construction yields expected
degree two, on average.)

A FIND operation localizes an element s by starting from the highest level and



successively querying for its position on the singly connected list of that level. Once
the node interval where s lies in has been identified, we branch to the lower level of
the appropriate child, and so on until the element is found, or proved not to belong
to the skip list.

The overall cost of a FIND query is proportional to the number of visited nodes.
At a given level L;, it is proportional to the number of cells visited on the list, which
is probabilistically bounded by the expected number of children of any cell at level
L;y1 (the parent node where we come from). Thus, the time complexity ¢ of a FIND
procedure is written as:

k
t<O (Z(l + ExpectedVisitedChildren(Li))> . (7.42)
i=1

It turns out that a randomization analysis shows that # is logarithmic. That is

t = O(logn). Similarly, INSERT and DELETE query operations can be defined.
Basically, the running time of query primitives on skip lists depend on the number

of layers k (see Eq. 7.42). With high probability, let us prove that k& = O(logn).
Indeed, consider any element s and its stack of cells from level L to level L; with
[ = level(s). All levels level(s;) (s; € S) are interpreted as independent and identically
distributed (iid) random variables S; distributed geometrically with parameter % (one
of the two sides of a coin). Thus, we have:
5 n
Pr[max S; > 1] < o (7.43)
(2
Plugging | = clogn and setting k£ = max; S’i, we get:

n 1

Pr[k > clogn] < gclogn < o1

(7.44)

That is, the maximum level of elements of S is of order logn with high probability.
A similar result holds for the expected level, and the expected memory requirement
is also shown linear.

Now, we are ready to prove with high probability that any FIND query is performed
in O(log n) expected time. Since we have already shown with high probability that
the number of levels of the skip list is O(logn), it remains to bound the time
spent at each level, as written in Eq. 7.42. The key observation is to notice that
ExpectedVisitedChildren = % = 2. More precisely, it is 1—1) if we consider to let survive
an element to the next 1eve21 with probability p. Indeed, the expected number of
siblings at a node is % because for a node to be a sibling it must have failed to advance
to the next level of the skip list. Thus, ExpectedVisitedChildren is the same as asking
the number of times we need to flip a coin to get a heads: ExpectedVisitedChildren =
%. Plugging this result in Eq. 7.42, we prove that any FIND query costs O(logn) time,



with high probability (and for any fixed p). Similarly, INSERT and DELETE primitives
require only expected logarithmic time. To conclude, randomized skip lists provide
an elegant and efficient alternative to deterministic balanced search trees. Moreover,
skip lists can be made deterministic too (see the Bibliographical Notes).

7.7 Bibliographical Notes

Randomization is a subarea of computer science that has its own devoted textbooks.
The book by Motwani and Raghavan [233] surveys with a wide scope the many
different aspects of randomization. Randomization in computational geometry is
detailed in the book by Mulmuley [236]. The paper by Clarkson and Shor [82] further
explains the random sampling in computational geometry.

The QuickSort sorting algorithm is due to Hoare [165]. Sedgewick wrote a note [290]
on implementing QuickSort. We recommend the book by Flajolet and Sedgewick [291]
for rigorous analysis of algorithms. The book by Skiena [313] explains how to
generate a random permutation of an array of elements. We chose the QUICKSORT
algorithm to define the Las Vegas randomized algorithms because of its simplicity,
and its widespread use in practice. The randomized SELECTELEMENT algorithm
was described in 1961 by Hoare [166]. The first deterministic linear-time algorithm
for selection is due to Floyd et al. [37]. Readers interested in order statistics may
check the paper by Cunto and Munro [90] that describes a better method for choosing
pivots when selecting the k-th smallest element of an array. They achieve a remarkable
n+k+O(1) comparisons on average for the selection algorithm. Proving lower bounds
of problems is a difficult task. Ben-Or [26] describes a general topological method for
obtaining lower bounds for the height of algebraic decision trees. In randomized
analysis, we often need to approximate probabilities of the tails or spreads of general
random variables by inequalities. See the inequalities explained in [236] by Markov,
Chebychev and Chernoff [277]. For example, Chernoff bound allows us to prove that
QuickSort runs in O(nlogn) with high probability.

The random sample consensus was first explained by Fisher and Bolles, in their
seminal paper [115]. The technique has further been combinatorically improved
by Irani et al. [171]. Nielsen [245] also describes how random samples can be
efficiently geometrically filtered. Since its inception in the early 1980s, many other
robust estimators [316] have been studied in computer vision: M-estimator [191],
least median of squares [234] (LMedS), iterative closest point [33] (ICP), and so on.
Brown and Lowe [61] showed how to use Scale Invariant Feature Transform (SIFT)
features [212] with RANSAC for automatically recognising and creating panoramas
from a large set of unordered pictures. A demo program autostitch is available online
at hitp: // www.cs.ubc.ca/~mbrown/ autostitch/ autostitch.html. Automatic stitching
has numerous applications for stabilizing, summarizing, compressing or pulling out



alpha mattes of videos.

The Monte Carlo method is used a lot in computer graphics where complex
integrals need to be approximated fast. The seminal ideas appeared in the “Rendering
Equation” paper [177] by Kajiya. The Ph.D. theses by Veach [332] and Lafortune [190]
also give plenty details of the Monte Carlo principles in computer graphics. Finally,
a state of the art tutorial was given at the ACM SIGGRAPH 2004 [103]. Let us
mention the bidirectional path-tracing [190] and the Metropolis light transport [332]
as two main extensions of the ordinary Monte Carlo method. We recommend the book
by Pharr and Humphreys [262] for an introduction to physically based rendering, and
the book by Jensen on photon mapping [174]. The recent paper by Ostromoukhov et
al. [256] provides a fast hierarchical importance Monte Carlo sampling algorithm with
applications to computer graphics. Chazelle’s book [75] on discrepancy is a must for
anyone interested in knowing more about distribution irregularities that provide some
hints on the discrete/continuous sampling gap.

The incremental construction of the Delaunay triangulation is due to Guibas
et al. [152]. For ease of presentation, we added three auxiliary bounding triangle
vertices ty1, ts, and ts at the initialization step of the incremental Delaunay
triangulation. A better alternative approach consists in adding a single point
at infinity (like in the CGAL triangulation package'?). In practice, the history
DAG has been superseded by other localization methods, such as walk, jump and
walk, and the Delaunay hierarchy structures. Devillers et al. [99] further explain
those methods and their relatives. Historically, Boissonnat and Teillaud invented
in 1986 the Delaunay tree [47, 48], a randomized data structure to compute and
update the Delaunay triangulation that supports queries. (See also the related
Influence DAG (I-DAG) structure and its randomized analysis [43].) The incremental
randomized Delaunay triangulation has further been investigated and refined by
Devillers in [97]. Su and Drysdale provide detailed comparisons on several Delaunay
algorithms [320]. The backward analysis of randomization algorithms is due to
Seidel [292]. Chew [79] gave a simple algorithm for the randomized construction
of the Voronoi diagram and (dual) Delaunay triangulation of a convex polygon, in
expected linear time. Further, the Voronoi diagrams of a few selected generators
can be constructed in an output-sensitive way [244]. Another appropriate choice for
illustrating randomization in computational geometry would have been to consider the
randomized autopartition constructions [126, 127] of binary space partitions useful in
hidden surface removal [260] (painter’s algorithm) or CSG modeling [243].

The seminal MINIBALL ingenious algorithm of Welzl [343] extends to arbitrary
dimension and ellipsoids as well. The running time generalizes to O(blbn), where
n is the input size and b is the maximum basis size. In d-dimensional space, we

have b = d + 1 for balls, and b = w for ellipsoids. Gértner explained in his

12Visit the Web site hittp: //www.cgal.org.



implementation [133] how to use a linear program to solve for the circumcenter
of the smallest enclosing ball tangent to exactly k balls in arbitrary dimension
(2 <k <d+1). Sharir and Welzl extended this kind of combinatorial optimization
paradigm into the class of LP-type [220], where LP is a shorthand for linear
programming. Fischer and Gértner [114] further investigated the d-dimensional case
for ball sets for small instances n = O(d), and designed a new LP-type algorithm.
Nielsen and Nock [248] classified the heuristics for solving or approximating the
smallest enclosing ball into three categories: combinatorial, numerical, and hybrid
combinatorial /numerical. A fast and robust implementation of the smallest enclosing
ball is available at http: // www.inf.ethz.ch/ personal/ gaertner/ miniball.html or in the
CGAL library. Applications of the smallest enclosing balls are found in computer
graphics for collision detection based on bounding sphere hierarchies [173, 53]. A
toolkit for building bounding sphere hierarchies of 3D models is available online
at http://isg.cs.tcd.ie/ spheretree/.  Guibas et al. [2] recently provided the first
subquadratic algorithm for collision detection using so-called deformable necklaces
(that are special sphere coverings) in arbitrary fixed dimension.

The skip list is a probabilistic data structure [273] that was invented by Pugh
in 1990. It was later made deterministic by Munro et al. [240]. Another useful
randomized data structure is the random treap [293], which has also the merit
of having a very short code for simulating common operations found on complex
implementations (and therefore more prone to bugs) of balanced binary search trees.
Note that the CGAL Delaunay hierarchy [42] makes use of a few levels of intermediate
Delaunay triangulations for efficient localization, a technique similar in spirit to the
skip lists.

Sometimes, it happens that randomization yields algorithms that theoretically or
practically perform better. We then would like to get the same benefits without having
to rely on randomness. This process is called derandomization [55] and is tackled using
the discrepancy theory [75].

Unfortunately, computers do not create pure random numbers but only calculate
pseudorandom numbers. Pseudorandom numbers are only almost random, but not
perfectly random. A good introduction to random number generations is provided by
Knuth [184].
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