Chapter 9.

Robustness

Writing robust programs for visual applications is an extremely challenging task.
Programmers often perform low-level fine-tuning optimization on their codes, but
tend to ignore robustness issues until their codes crash. Ideally, there should be
no difference between a pseudocode algorithm and its fully-implemented C++ code.
That is, we should certify our programs by formal mathematical proofs that those
implementations perfectly code algorithms, without any flaw. Certifying programs
in practice is extremely difficult, and tends to be limited for toy algorithms, such as
computing the greatest common divisor of two integers. Even in those simple cases,
we need computers to automatically output proofs, hoping thereby that the computer-
generated “proof” program is not buggy itself! Thus, robustness should in fact be
considered first when designing robust algorithms. In practice, robustness problems
cannot, be ignored when implementing algorithms manipulating geometric structures.
This omnipresent robustness issue is illustrated in the research community by the fact
that there has been a trend toward renaming “geometric computing” to the field of
robust “computational geometry.”

Section 9.1 presents various nonrobust scenarios and defines what robustness should
be to handle those bad cases. We then briefly describe the IEEE 754 floating-point
standard in Section 9.2. Section 9.3 gives an overview of filtering techniques that
allows us to compute robustly using floating-point numbers. Section 9.4 introduces
the framework of algebraic degrees of predicates, and explains why algorithms may be
reconsidered from scratch in order to be robust. Finally, Section 9.5 gives an overview
of main libraries and their interfaces for writing robust codes.

470 Visual Computing: Geometry, Graphics, and Vision

9.1 Identifying Code Weaknesses and Defining Robustness

Many problems occur in practice when implementing geometric algorithms. First we’ll
identify those problems and then define what an equivalent robust implementation

should be:

Degeneracies. Often, for the sake of simplicity, we consider nondegenerate input.
We design algorithms for the general case. That is, data is assumed to be in
general position. There is no universal definition of “general position,” as it
depends on the problem the algorithm solves. For example, we assume that:

e 1o three points on the plane are collinear when computing the convex hull.
e no four points are cocircular when computing the Delaunay triangulation.

e no two points have the same z-abscissa when computing line segment
intersections, etc.

However, in practice, we need to implement algorithms for all kinds of input,
including all degenerate instances. Otherwise, imagine someone using your
“general position” line segment intersection on axis-parallel segments of a VLSI
circuitry! If we do not want to consider all possible instance cases, then we
need to assert at least, that the input is in a general position, in order to
avoid system crashes, infinite loops, or even worse, wrong output that we may
believe true. The usual way to “theoretically” get rid of degenerate cases is
to perturbate the input. Since randomly perturbated input may change the
output too (think of a convex hull), perturbation methods need to be precisely
controlled symbolically. That paradigm is called simulation of simplicity. Even
wisely pertubating input does not solve all robustness problems. We’'ll further
review the common implementation pitfalls.

Coherence. Assume we computed a convex hull of points on the plane. We expect
the output to be a convex polygon. If not convex, assuming the algorithm
is indeed correct, clearly something went wrong during the execution of the
program (Figure 9.1). Thus, at the end of the program, it may be worth running
a checking procedure, called program checker, that checks that the output is
plausible. If the result is not correct, this obviously means that the structure
has been miscomputed, and we can either recompute it robustly, or enforce the
expected structure from the corrupted output. Thus, a program checker extends
the traditional framework of testing programs. Furthermore, we do not need to
provide a right suite of tests (a diflicult task in its own) for validating a set of
program outputs against correct results, computed using other robust means.

Chapter 9 Robustness 471

Correctly computed Miscomputed

FIGURE 9.1 Convexr Hull: (a) a coherent structure. (b) a miscomputed
nonconver “conver hull.”

Since the checker is also a program, we face the egg and chicken problem: we
need to design a checker for the checker, and so on. To break this infinite loop
of checkers, we impose that program checkers are simpler than computing the
solution. Moreover, we need the checker to be fast and undoubtedly correct.
Let’s consider Figure 9.1. A program checker for the convex hull problem
may proceed as follows: (1) verify that the edge sequence is the facet graph
of a piecewise linear curve, and (2) verify that this edge sequence is indeed the
boundary of the convex hull of the point set (the right drawing of Figure 9.1
is not). Note that checking for local convexity of the edges of the output does
not suffice to prove it is the correct result, as depicted in Figure 9.2. Let’s give
another coherence example. In computer vision, we know that theoretically the
fundamental matrix is of rank two. Noisy data (pairs of matching points) could
yield an estimated fundamental matrix of full rank (rank three). In that case, we
rather find the closest rank-two matrix (see Section 3.5.7), as there might be no
way to get a rank two matrix from that noisy input, even by considering exact
computing. Instead of checking the output, the program could alternatively
issue a certificate of correctness at the same time it delivers the output (see
Section 6.1).

Numerical Stabilities. Programs differ essentially from algorithms because they
use finite length sequences of bits to represent numbers. When designing
algorithms, it is traditional to consider the real-RAM model of computation.
The real-RAM model assumes that usual arithmetic operations on numbers are
performed: (1) exactly, and (2) in constant time. More precisely, the real-RAM
model of computation is described as follows:

e every memory location stores a real number

e access to any memory location is performed in constant time

472

Visual Computing: Geometry, Graphics, and Vision

S

FIGURE 9.2 Checking local convezity is not
sufficient to assert the correctness of the conver
hull output. A clockwise-oriented closed chain
satisfies local convexily (CW orientation lest)
although 1t is not “globally” convexr because of
the self-intersections.

e exact real-number arithmetic is computed in constant time:
— comparisons: <,<,=,2>,>,#
— arithmetic operators: +, —, x, /

— algebraic and transcendental primitives: NERA sin, cos,exp, log.

Today, this real-RAM model is not realistic when implementing algorithms.
Numerical inaccuracies are thus the fundamental issue to deal with for robustly
implementing algorithms. For example, a real-RAM algorithm written in
pseudocode can be shown to terminate whatever the input, but a straight C++
implementation may loop at infinity due to numerical errors. In particular,
a common source of errors when implementing geometric algorithms is in the
direct application of geometric theorems. For example, consider two lines of
distinct slopes. These lines intersect exactly once in the continous Euclidean
space. However, drawing those lines on the machine number grid,! we obtain
braided lines that possibly intersect several times depending on the choice of the
slope coeflicients.

Once robustness is achieved, we then consider the low-level code optimizations,
which improve running times.

LA process also known as line rasterization.

Chapter 9 Robustness 473

In the remainder, we assume that our input is precise, and not noisy. (In computer
vision, noisy input is often modeled, say, by a Gaussian noise.) Our task is to execute
an algorithm robustly, and not take into account noisy input. Consider a program
implementing a correct algorithm: that is, an algorithm that formally returns the
correct result for any input. If the corresponding program does not produce the
correct result, this means that some error has occurred due to numerical inaccuracies.
Let us analyze those sources of numerical errors. A geometric algorithm consists of
predicates that control the flow of the algorithm (mainly in the IF, SWITCH, REPEAT
and WHILE structures), and constructions that compute new geometric structures. At
runtime, predicates are evaluated to decide which branch of the program to proceed on,
while constructions create new geometric structures which may require us to calculate
new numerical values prone to rounding errors (Section 9.3 further discusses those
notions). For example, consider the predicate Orient2D(p,q,r) that returns +1, 0,
or -1 depending on whether triangle Apqr is oriented counterclockwise, clockwise,

or is degenerated (i.e., the three points are exactly aligned). Namely, according to
Section 8.3.1:

Orient2D{p, q, r) = sign det, T T p Er Ty

= sipndet M . 9.1
Yg—Up Yr — Up & par (9.1)

For points oriented clockwise (CW) the determinant is negative, for collinear points
it is zero (ON), and it is positive for counterclockwise (CCW) orientation of the triplet:

CCW iff det Mpgr > 0,
Orient2D(p,q.r) = ¢ ON iff det Mpqr =0, (9.2)
CW iff det Mpge < 0 .

Thus, when implementing geometric algorithms, for degenerate inputs (such as
three collinear points or four cocircular points), programs have to correctly evaluate
predicates that may return the zero value (ON). However, because of numerical
inaccuracies {such as roundings, overflows, or underflows) when computing those
predicate values, programs sometimes compute the wrong sign and therefore branch
on the wrong instructions yielding incorrect construction results {potentially detected
by coherence check) or system crash. Whenever possible, a program should thus
avoid computing predicate signs by privileging topological deductions on the geometric
combinatorial structures.

The traditional way to circumvent numerical inaccuracies is to use exact arithmetic.
The idea of exact arithmetic, is that when adding two numbers a and b, we may need
to increase the bit length of the result number by one bit (carry bit). Let I{a) denote
the bit length of number a. Then, if we want to compute ¢ = a + b, we need to have
l{e) < max{l(a),l{b)} + 1 bits. Similarly, for multiplication ¢ = a x b, we bound the

474 Visual Computing: Geometry, Graphics, and Vision

required number of bits by adding the bit lengths of the inputs: I{c) < I{a) + I{b).
This {ramework defines the ezact integer arithmetic that allows addition/subtraction
and multiplication operations. Division is not supported by exact integer arithmetic.
If divisions are used by the code, we need exact rational arithmetic. Exact rational
arithmetic simply uses homogeneous representation of numbers to code for rational
numbers (ratios of integers as described in Section 3.1.3). Thus, in rational arithmetic,
a number [is stored as the ratio of a numerator n over a denominator d: f = %.
Divisions and multiplications are now handled in the same way. Exact rational
arithmetic is implemented using exact integer arithmetic, but requires us to double the
bit length of numbers (because we handle a pair of integers). Since rational arithmetic
costs time, we further speed up implementations using floating-point filters to avoid
most of the time exact arithmetic. Floating-point numbers can either be manipulated
in standard C++ single or double precision, or in multiprecision by using dedicated
libraries such as CGAL (type CGAL: :MP_Float), CORE (type BigFloat), GMP (type
mpf_t), or LEDA (type bigfloat), described in Section 9.5. But before explaining
the concept of floating-point filtering, let us review the floating-point standard.

9.2 |IEEE 754 Binary Floating-point Standard

Writing integers in binary form is easy by using a string made of zeros and ones. An
integer n is represented as a sequence of bits bin(b;_1...b2b1by), such that:

-1
n=>Y 2. (9.3)
1=0

Common numeration systems other than the binary system are: octal (base 8),
decimal (base 10, our every day life numeration system), and hexadecimal (base 16).
Computers internally crunch binary numbers.? For efficiency purposes, integer binary
sequence lengths are handled in machine words. That is, the length of bit sequences
is fixed: 16 bits (short ints), 32 bits (long ints), and more on graphics processor
units (GPUs). The big-endian notation stores the most significant bytes of a number
first, while the little-endian denotes the reverse byte order: n = bin(bgbiba...b;_1).
Usually, we consider big-endian notation, although Intel® uses little-endian. Thus,
both little-endian and big-endian options should be considered for code portability.
Once the word length is chosen (say [= 32 bits), we encode negative integers using
the frontmost bit, called sign bit. By conventions, we set the front bit to zero for
positive integers, and to one for negative integers.

Thus, the range of integers (bounded by its maximum and minimum) we can
represent with this fixed-size encoding of integers is [—25‘1 + 1,201 — 1]. Note that 0

*This is because of the on/off nature of transistors.

Chapter 9 Robustness 475

is coded twice, as +0 and —0. There is a better integer binary representation, called
the two’s complement representation, that allows to simplify the arithmetic circuits of
signed integers. In complement notation, for each positive number n with leading bit
set to zero, we define its negative number {(—n) such that n + (—n) = 0 is calculated
using the 1-bit addition (a XOR? operation) without carry out. This is as if the
leading bit of negative numbers has positional value —2'=1 (and not 2/~1):

-2

(—n) =271+ > "2, (9.4)

i=0
For example, using 3-bit integers, number 2 is encoded as 010, and its complement
(—=2) as 110. In 3-bit two’s complement notation, we have the following numbers:

000 — O
001 — 1
010 — 2
011 — 3
111 — -1
110 — =2
101 — =3
100 — —4

Thus, zero is represented only once, and the signed integer range is asymmet-
ric: [—271, 2171 —1].

Expressing floating-point numbers is a little trickier. The main difficulty resides
in choosing the right position for the decimal point. Thus, when designing a floating-
point number format, we have to select a tradeofl for the range, precision, and
complexity of arithmetic operations on those floating-point numbers. It was necessary
to standardize a floating-point format, the IEEE 754 standard, so that scientific
computations yield the same numerical results, independently of the programming
language and platform used. The solution, pioneered by Kahan in the early 1980’s,
that ITEEE has chosen is to use scientific notation. In scientific notation, numbers
are written using both a mantissa (also called significand) and an exponent part. For
example, 23121971 is written as 2.3121971 x 107. That is, any Hoating-point number
f is written as f = m x 10° where m is the mantissa and e denotes the exponent.
Because computers crunch numbers in binary representations, floating-point numbers
use powers of two instead of powers of ten. In summary, an effective encoding of a
nonzero floating-point number f is as follows:

(—1)Sign x (1 + fraction) x gexponent—bias, (9.5)

*a XOR b (eXclusive OR) is true if, and only if, exactly one of the two variables a or b is true.

476 Visual Computing: Geometry, Graphics, and Vision

/.I Bxponent () Mantissa (23)
Sign
‘ Exponent (11) MaﬂtlSSa (52)

FIGURE 9.3 Description of the encoding of the IEEE 75/ single-precision (32
bits) and double-precision (64 bits) floating-point numbers.

The sign of f is determined by the sign bit. For positive numbers, the sign bit is
set to zero (we have (—1)Y = 1). Conversely, for negative numbers, the sign bit is set
to one (and (—1)! = —1). Moreover, we can always assume that the leading digit of
the mantissa is one. Indeed, if not, we just have to increase the exponent. In that way,
we can save an extra bit since it is enough to encode only for the remaining fractional
part. That is, we consider the normalized floating-point number representation (see
Eq. 9.5). Finally, the power of two is always set to an integer value (positive or
negative), which we encode for efficiency as a positive integer that is added to some
bias value. The bias allows to center around zero the exponent without requiring yet
another extra sign bit {numerical order follows the lexicographic order). In summary,
IEEE proposed two kinds of floating-point numbers representations in its IEEE 754
format, defined as follows (Figure 9.3):

Single-precision. Single-precision floats are encoded into a 32-bit string (bias value
set to 127 = 27 — 1): sign (1 bit), mantissa (23 bits), exponent (8 bits).

Double-precision. Double-precision floats are using twice as many bits (64 bits)
with bias equal to 1023 = 2% — 1: sign (1 bit), mantissa (52 bits), exponent (11
bits).

For example, consider the decimal floating-point value 123456.7830123. Then, its
IEEE 754 single-precision floating-point binary representation is:

0 10001111 (1.)11100010010000001100100,
S N—— ;

T43-127=16 yocinal value=1.8838010

and its IEEE 754 double-precision floating-point binary representation is:

0 10000001111 (1.)1110001001000000110010011111110010110101110010001010.

N

- 1039-1023=16 Decimal value=1 E83801 1018722533

Chapter 9 Robustness 477

TABLE 9.1 Single-precision floating-point number encodings: normalized,
denormalized, and special numbers.

Exponent Mantissa Encoded Number
1-254 Anything Normalized floating-point number
0 Nonzero Denormalized floating-point number
255 0 Infinity (inf)
255 Nonzero Not-a-number (NaN)
0 0 0

Note that:

1.8838011018722533 x 210 = 1.8838011018722533 x 65563 ~ 123456.7890123 (with
rounding).

The TEEE 754 standard also defines other 43-bit and 80-bit extended floating-
point formats, but those are mostly used internally by microprocessors for rounding
purposes. For example, in the TIA-32 Intel architecture (commonly called x86), the
processor arithmetic and logic unit {ALU) is based on the former 8087 floating-point
coprocessor, and there is a limited set of floating-point registers that have internal
formats 80 bits wide. IBM PowerPC® and MIPS Technologies MIPS® architectures
have similar registers with dedicated floating-point instructions. Graphics card makers
also provide floating-point formats on their GPUs: NVIDIA’s CeForce® 6 series
supports both 16-bit (1 sign bit, 10 mantissa bits, and 5 exponent bits) and 32-
bit floating-point formats. ATT’s Radeon® supports a 24-bit floating-point format (1
sign bit, 16 mantissa bits, and 7 exponent bits).

The TEEE 754 standard specifies special loating-point numbers too. For example,
zero is a special floating-point number since it cannot be represented directly from the
above explanation, because of the implicit leading bit in the mantissa (see Eq. 9.5).
Thus, zero is rather represented by two zeros +0 and —0 (zero or one sign bit followed
by 31 or 63 zeros).

Arithmetic on floating-point numbers can vield underflow or overflow situations.
An underflow situation occurs whenever a number is so small that it cannot be
represented using the finite length binary string. The converse situation is an overflow
produced when adding two big numbers. In those cases, IEEE 754 chose to encode
the inf symbol (infinity co) by setting all exponent bits to one, and all mantissa bits
to zero. We summarize those special floating-point formats in Table 9.1.

A denormalized floating-point number has all its exponent bits to zero but the
fractional part nonzero {(otherwise, it would the interpreted as the special floating-
point number zero). The value of a denormalized number is computed without
assuming the implicit mantissa leading 1 bit. Thus, a denormalized floating-point

478 Visual Computing: Geometry, Graphics, and Vision

TABLE 9.2 Smallest positive representable numbers and machine epsilons of the
IEEE 754 format.

Single-precision Double-precision
Normalized 27126(~ 1175 x 10738) 271022(L 2. 225 x 10798)
Denormalized 27127 5 2723 = 9~ 130 271023 5 9=52 = - 1075

(~ 7.0 x 10749) (~ 2.5 x 10732%)
Machine epsilon ~ 272%(~ 1.19 x 1077) 2792(~ 2,22 x 10716)

number with sign bit s and fractional part f is assigned value (—1)* x 0.f x 2712
for simple-precision, and (—1)% x 0.f x 27'%22 for double-precision. (We can
interpret zero as a special extension of denormalized numbers.) For single-precision
floating-point numbers, the smallest positive representable (denormalized) number is
27127 % 2723 = 27190 (~ 7.0107%%). For double-precision, the smallest (denormalized)

number is approximately 2.5107%24 (271979)

. Table 9.2 provides the smallest positive
representable normalized and denormalized numbers for single-precision and double-
precision floating-point numbers.

Even for special numbers, some arithmetic is still possible, such as:

inf +inf = inf, (9.6)
fo_
=0, (9.7)
% = inf (9.8)

But there are also cases when numbers cannot be defined, such as:

inf B

— —[7]
inf (9:9)
0 x inf =[7], (9.10)
——=-=[7] (9.11)
mod 0 = Z, (9.12)
inf mod— = . (9.13)

In these cases, numbers are classified using the label Not a Number (NaN). NaNs
are represented by setting all the exponent bits to one, and the mantissa as any
nonzero number (see Table 9.1).

Chapter 9 Robustness 479

Because the IEEE 754 floating-point standard only samples a finite number of the
infinite set of reals R, we need to round numbers. The standard defines four rounding
options for snapping any real number to a close IEEE 754 floating-point number:

Round nearest. It is the usual rounding mode which chooses the nearest repre-
sentable floating-point value {that has a low-order digit).

Truncation. Truncation simply discards the high-order digits to get the repre-
sentable floating-point number (rounds toward zero).

Round up. Rounds toward plus infinity. That is, choose the closest larger floating-
point number.

Round down. Rounds toward minus infinity. That is, choose the closest smaller
floating-point number.

Rounding requires us to manage internally two extra bits, called the guard bil
and round bit. These are stored on the right sides of the floating-point number
representations. There is also the carry bit stored on the left. Using those extra
bits, the IEEE 754 can provably do correct rounding. That is, the rounding rules for
the TEEE 754 standard are guaranteed exact for +, —, x, /, and v This means
that we compute as if we were using as many needed digits for exact results and then
finally round.

To see the importance of the guard bit, we’ll consider the following subtraction: 2 —
1.75 = 0.25. Using 3-bit length notation for the mantissa part, we write:

1.00 x 28 — 1.11 x 2°, (9.14)

For performing subtraction, we first need to align the mantissa (and change
accordingly the exponent part):

+ 1 0 0 x 20
— 0 1 1 x 2t
+ 0 0 1 x 21

Then, we normalize 0.01 x 2! to 1.00 x 27! and find %, and not the correct result

%. Using an extra guard bit, we avoid that problem, as shown below:

+ 1 .00 0 x 2t
— 0 . 1 1 1 x 21
+ 0 0 0 1 x 2!

, the correct result.

AN

That is, after normalization, 1.00 x 272 =

480 Visual Computing: Geometry, Graphics, and Vision

The format also defines a sticky bit for rounding, to keep track whether there are
any one bit beyond the guard and round bits during a sequence of floating-point
operations.

In C++, there are two useful constants defined in the <float.h> header
file: FLT_EPSILON (for single-precision) and DBL_EPSILON (for double-precision). Those
constants are defined as the smallest single/double-precision floating-point number
such that 1.0 + f # 1.0. They are called machine epsilons (see Table 9.2):
275 ~1.19 x 1077 for single-precision, and 27°% ~ 2.22 x 1076 for double-precision
floating-point numbers. The smallest floating-point number is obtained in C+—+ as:

1 numeric_limits <float >::min ()

Those constants are used as initialization values for filtering, described in the
following section (see also Section 2.7.3).

Note that even if our floating-point numbers are well defined (that is not a NaN),
the result can be “fairly” different from the real result. A typical example is to
compute the area of a triangle using Heron’s formula: given the side lengths a, b, and
¢ of a triangle 7', its area is mathematically calculated as:

area(T) = /s(s — a)(s — b)(s — ¢), (9.15)

where s is the half-perimeter: s = %"H'C of triangle 7.

Kahan showed the pitfalls of a naive implementation and proposed an accurate
implementation using machine arithmetic. For example, let’s take:

(a,b,c) = (31622.77662,0.0155555, 31622.77661), (9.16)

then the area is computed robustly as 245.95399999480249 but a naive im-
plementation using C++ double yields 245.95399996791997 (same digits are
emphasized in bold face). Even worse, consider (a, b, ¢) = (10000, 5000.000001, 15000),
then using the naive computation on float we get 0 but the exact truncated
result is 612.37243572131004. Thus, if this triangle area computation is involved
for determining the sign of a predicate, we may obtain two different algorithm
workflows: the correct workflow (positive area), and the wrong workflow (degenerate
triangle) that might yield disastrous consequences (looping program, system crash,
ete.).

Additional source code or supplemental material is provided on the
book’s Web site:

www. charlesriver.com/ Books/ BookDetail.aspz? productID= 117120
File heron. cpp

WWW

Chapter 9 Robustness 481

1 float a,b,c,heron,s;

2 double A B,C, HERON, S;

3

4 a=10000; b=5000.000001; c=15000;
5 s=atbtc;s/=2.0;

6 heron=s=x*(s—a)x*(s—b)*(s—c);

7 heron=sqrt (heron);

8

9

10 A=10000; B=5000.000001; C=15000;

11 S=AHB4C; S5 /=2.0;

12 HERON=S % (S—A) # (S-B) *(S-C) ;

13 HERON=sqrt (HERON) ;

14

15 cout.precision (10);

16

17 cout<<” Heron ’s._.formula_for _.computing._the_area_of_a_triangle:\n”;
18 cout <<’ Area.using.single—precision.floating —point.numbers:”;
19 cout <<heron<<endl;

20 // We find O

21

22 cout <<” Area_using._.double—precision.floating —point _numbers:” ;
23 cout <<HERON<<endl;

24 // We find 612.3725394

In summary, floating-point numbers are a subset of rationals unevenly distributed
on the real line R. They are not closed under basic operations because of the roundings,
and do not satisfy the associativity nor distributivity properties. However, the IEEE
754 floating-point number standard correctly rounds usual operations and provides a
format consistent across machines {including the handling of special numbers).

9.3 Filtering Predicates

A geometric algorithm consists of predicates that control the flow of the algorithm
(mainly in the IF, SWITCH, REPEAT, and WHILE structures), and constructions that
compute new geometric structures. At program runtime, predicates are evaluated
to decide which branch to proceed on, while constructions create new structures,
which may require us to calculate new numerical values prone to rounding errors if
no exact arithmetic is used. That is, constructors build geometric embeddings of
the combinatorial structures induced by the flow of the algorithm (say, a Delaunay
triangulation or an arrangement of line segments). Typical combinatorial structures in
computational geometry are the incidence graphs of faces of polytopes, line, or curve
arrangement graphs (trapezoidal maps) or simplicial complexes. Thus, the output of
any geometric algorithm is a combinatorial structure induced by predicates with an
associated geometric embedding obtained from constructors.

482 Visual Computing: Geometry, Graphics, and Vision

FIGURE 9.4 Combinatorial structure defined by the
intersection points of a set of line segments. The quad
sequence P12.3. P14, P45, P2.5 8 easily proven a closed
simple polygon by looking at the index numbers of the
intersection points. Any lwo consecutive points on the
quad share a common line segment (see the respective
point indices).

Let us give some concrete examples. Computing the circumcenter and radius of
the circle passing through three points is a geometric construction prone to numerical
errors. To compute the convex hull of a planar point set, we do not need to compute
new point coordinates, but rather select the extreme points as vertices of the convex
hull. Then, the combinatorial structure of the hull is a convex polygon made of
those selected extreme vertices linked by straight-line edges. Similarly, to find the
intersection points of a set of segments, rather than explicitly creating new points
resulting from the intersection of segments, we should rather store for each intersection
points the (at least) two segments that yield this intersection point. The main
advantage of this method is that we can now identify logical intersection points:
two intersection points may be found distinct because of floating-point roundings
although they represent the same logical intersection point. Also, this representation
allows us to store intersection “segments” when some segments partially coincide in
their interior.

Actually, it is known and mentioned in Section 2.8 that we can count the total
number of intersection points faster than enumerating all of them. This means that
there is a certain structure in the list of intersection points that can be compressed.
Intersection points are not just plain unorganized intersection points, but rather
critical locations of an arrangement of segments. For example, looking at Figure 9.4
we know that there is a closed convex quad in the arrangement of segments from

Chapter 9 Robustness 483

the combinatorial information stored at the intersection points. This combinatorial
information manipulated on top of the point numerics is useful in various contexts.
For example, if we need to compare two abscissa of intersection points, and we know
that they share a common segment (by inspecting their indices), then the comparison
test can be implemented more robustly (see also Section 9.4).

Being robust requires us to make the right decision at branching tests of programs.
That is, the programs needs to calculate the correct signs {+1,0, —1) of mathematical
expressions, in order to have the same control flow as the algorithm. We could compute
those signs using exact arithmetic but this is time costly, and after all, we just want
the sign and not the full value. So instead of using exact arithmetic, we calculate
predicates using optimized operations on floating-point numbers. In most of the
cases, we can guarantee the sign from floating-point computations. Thus, the idea
is to calculate predicates as follows: First, we apply a fast floating-point computation.
If the sign cannot be asserted correctly, then eventually we require exact arithmetic.
Note that for the degenerated cases (sign 0), we often need exact arithmetic. This
framework of evaluating predicate expressions is called filtering. It was shown
experimentally on a 3D Delaunay triangulation implementation that the percentage
of wrong sign answers of predicates Orient3D and InSphere3D (see Section 8.3.1)
was zero for one million points randomly distributed inside the unit cube, but
above 0.1% on a CAD model exhibiting many flat portions. Remember that the
percentage measure is not a good clue of robustness since a single miscomputation can
potentially yield a system crash, a looping program, or a wrong result. The following
pseudocode exemplifies how filtering is used in the program control structures (sign
of a predicate f):

ROBUSTNESSWITHFILTERING/()
1. < Start with standard floating-point computation o
precision = floating-point standard precision
< Determine the sign of a predicate >
while precision < max_precision
do f = EVALUATEPREDICATEEXPRESSION(precision)
if f > error_threshold(precision)
then return —+ 1
else if —f > error_threshold(precision)
then return —1

© 0T OR LN

H
=

else Increase precision
< At last step, use exact arithmetic
return EVALUATEPREDICATEEXPRESSION (exact)

—_ =
[N

For example, considering the procedure ROBUSTNESSWITHFILTERING, we can ini-
tially start with single-precision floating-point numbers for first evaluating function f(-).

484 Visual Computing: Geometry, Graphics, and Vision

- B
T4 T2 0 S(f) 11 T3
2
@ ._)/X e >
D
B 1

-

0]

FIGURE 9.5 Determining the sign of a rounded
root value 1 according to the separation bound
s{(f) of the polynomial f.

If the absolute value of the expression value is below an error threshold bound
(depending on the current level of precision), then we need to increase precision to
double-precision, extended multiprecision and finally arbitrary large precision {exact
computation). This floating-point filtering method is quite effective in practice.
Indeed, it was observed experimentally that a robust implementation with filtering
slows down a nonrobust implementation by just 10%-40%. There are two drawbacks
of filtering: first, filtering requires us to mathematically calculate the right error
threshold values for the different precision levels, and second the source code for
computing standard geometric predicates becomes clumsy. For example, Shewchuk
uses a four-stage floating-point filtering technique that reuses computations of earlier
stages for improving time performance. Shewchuk’s predicate routines are complex.
To give an idea, his InSphere3D has about 500 lines of code.?
We distinguish and further explain three types of predicate filters:

Static Filters. Static filtering is a simple technique that computes at compile time
the error bounds. For predicates, we consider as zero any number below a
constant threshold {usually chosen as a power of 2). This threshold depends on
the separation bounds s{ f) of the polynomial roots r of f. To determine the sign
of an albegraic expression, we first calculate the separation bound s(f) of the

s(f)

2

polynomial f. Then, we evaluate a root 7 with precision at least . Finally, we

conclude that if |7 > S(z—f) then sign(r) = sign(7), otherwise it is zero. Figure 9.5

s(f)
2
error() are based on the bit lengths of input data and intermediate numbers
generated by a code. Let u{f) denote an upper hound of the absolute value of

f (say, used in a sign predicate). For example, the addition/subtraction and

depicts a case where sign(71) = sign(r{) because |7{| > . The error bounds

*Check the routines at http: // www-2.cs.cmu.edu/ afs/ cs/ project/ quake/ public/ code/ predicates.c.

Chapter 9 Robustness 485

multiplication rules on double type numbers is given by:

For the error bound, we have:

o error(a + b) = error{a) + error(b) + ul{a + b) x 279,

e error(a x b) = error{a)u(b) + error(b)ula) + u(a x b) x 273,

Static filters do not apply for divisions and become useless as u{f) approaches
the maximal representable floating-point number.

Semistatic Filters. In semistatic filtering, for each call of a predicate, we inspect
the bit length representation of data at the time the predicate is called. Since we
often call predicates on the difference of point coordinates that are in proximity,
semistatic filtering can prove useful over static filtering. For example, when
computing the Delaunay triangulation, an InSphere3D predicate is likely to
have its argument points close to each other. So that the difference of them is
better upper bounded compared to bound indicated by the static rule u(a = b).
Thus, semistatic filtering requires to add some piece of code to the program to
compute on-the-fly error bounds.

Dynamic Filters. Dynamic filtering consists of estimating the error bounds for all
predicate computations. The popular method is to use interval arithmetic, as
it is done in CGAL (hitp://www.cgal.org). Interval arithmetic stores a pair
of numbers for each computed predicate. Each pair defines a range where the
true algebraic value® of the predicate is known to lie. Error bound intervals are
updated whenever an arithmetic operation is carried on. In practice, interval
arithmetic is quite easy to implement as a new number data type in C++. Thus,
the use of dynamic filtering is quite transparent to programmers. To get a flavor
of the mechanisms involved in interval arithmetic, we’ll consider [x] and [y] two
such “interval” numbers: [z] = [z, Z] and [y] = [y,7|. The interval error updating
rules are as follows: B

o [z|+ [yl =[z+yT+7
o [z] -yl =[z-7.7—y
o [z] x [y] = [min{zy, 27, Ty, T¥}, max{zy, 27, Ty, T7]

®An algebraic number is defined as a root solution of a polynomial with integer coefficients. For
example, v/2 is an algebraic number defined as the positive root solution to polynomial z? = 2.

486 Visual Computing: Geometry, Graphics, and Vision

o % = (—o0,00) if 0 € [y], and % = [z] x [%, i] otherwise

o /[z] = [yZ, VT forz >0
Because z and T may not be contained in the finite set of floating-point numbers,
those dynamic filter rules depend on the floating-point rounding modes. We

consider intervals [x| = [z,Z], with z rounded toward minus infinity, and =
rounded toward plus infinity.

Remember that in practice, filters are evaluated in cascading style for efficiency:

static filter — semidynamic filter — dynamic filter.

9.4 Predicate Degrees

We have stressed the crucial role of predicates for controlling a program flow,
and presented the exact arithmetic paradigm for evaluating them. Moreover, we
presented the floating-point filtering technique that avoids exactly computing the
sign of mathematical expressions that could be decided without errors with fast
standard floating-point operations. Here, we focus on comparing predicates with
each other. Designing an algorithm can be done in an axiomatic fashion: First, we
define the geometric predicates that define the control blocks (the axioms) and then
build an algorithm to solve a specific task using them. Thus, the set of predicates we
allow in our algorithm construction will directly affect the algorithm design and its
implementation robustness. We review the predicate terminology pioneered by Liotta,
Preparata, and Tamassia, in 1996.

e To each input data (point coordinate, etc.) we associate a variable.

e An elementary predicate has to compute the sign (-1, 0, +1) of a homogeneous
multivariate polynomial defined on the input variables.

e To define the degree d of an elementary predicate, first we consider its irreducible
factors of the predicate polynomial. Polynomials are factorized over the
rationals. We remove all irreducible factors that have constant signs (say,
z* +1 > 0), and take the maximum degree of the remaining factors as the
degree measure.

e A predicate is either elementary or expressed as a Boolean function of elementary
predicates. The degree of a predicate is the maximum degree of its elementary
predicates.

Chapter 9 Robustness 487

The degree of an algorithm is defined as the maximum degree of its predicates. The
degree of a problem is then defined as the minimum degree of any algorithm’s solving
it.

Computational geometry has traditionally considered the real-RAM model of
computation and ignored robustness issues of algorithm implementations. Today,
researchers focus on the geometric computing paradigm that considers the bit-RAM
model. That is, algorithms are desighed and analyzed at the bit level. Thus, the
complexity of an algorithm directly depends on the number of bits it requires (input
and intermediate variables) to solve a problem. In that context, the degree d of
an algorithm is a pertinent measure, as it is connected to the robustness/speed of
implementations. Using this framework, we further define the predicate arithmetic of
degree d which only allows us to compute the sign of the predicate polynomials of
degree d, and the exact arithmetic of degree d model which computes exactly both the
sign and the value of a predicate. For input on b bits, each monomial occurring in a
predicate is upper bounded by 2(b+1)d Exact arithmetic of degree d requires roughly
db-bit exact arithmetic. Let m be the maximal number of variables occurring in a
predicate and d the degree of an algorithm. Then this algorithm can be implemented
using p < d{(b+ 1+ logm) bits in the exact arithmetic model of degree d. Note that
there are many tricks for determining the sign of a polynomial quicker than evaluating
its value. Some polynomials such as OrientdD or InSpheredD (see Section 8.3.1)
can be expressed using determinants. Note that predicate OrientdD is of degree
d. There have been tailored algorithms to compute only the sign of a determinant
(see the Bibliographical Notes in Section 9.6). There are also some mathematical
rules of thumb such as Descartes’ rule of signs. Descartes’ rule of signs is an elegant
method for determining the maximum number of positive and negative real roots
of a polynomial function f{z). The maximum number of positive roots is found
by counting the number p, the number of times the sign of monomial coefficients
change when starting from the lowest to the highest monomial. Furthermore, the
true number of positive roots can only be in {p,p — 2,p — 4,...,2,0}. To find an
upper bound on the number n of negative roots, we consider f(—z) that monomial
coefficients only invert sign for odd degrees, and apply the same counting. For
example, consider f(z) = 102® + 62> — 32* + 22% + 22 — 100z, then p = 3. Writing
f(—z) = 102° —62° — 223 + 22 + 100z, we get n = 2. Furthermore, real root isolations
can be achieved using Sturm sequences that go beyond the scope of this book.

Orientation tests described in Chapter 8.3.1 are useful to build more complex
predicates such as detecting whether a set of line segments intersect or not. For
example, let us consider the following geometric problem to solve:

“Report all pairs of intersecting line segments.”

488 Visual Computing: Geometry, Graphics, and Vision

FIGURE 9.6 Checking whether two line segments intersect or not.

Let us first examine the basic primitive: decide whether two line segments intersect
or not. Two line segments [a;b] and [agbs] intersect if and only if (see Figure 9.6):

Orient2D(a1, by, as) # Orient2D(a1, by, bg)

and

Orient2D(az, bo, a1) # Orient2D(as, b, by).

The C—++ code below shows an implementation of the basic line segment
intersection predicate:

inline double drand(){return rand() /(double)RANDMAX;}

class Point2D/{
public: double x,y;

1
2
3
4
)
6 friend ostream &operator<<(ostream & o, const Point2D & p)
7 { o<<” (P<<p . x<<” L M<<p . y<<")", return o}

8 };

9

10 // Orientation test: 2x2 determinant sign

11 #define KRR 1.0e—6
12 int Orient2D (const Point2D& p, const Point2D& q, const Point2D& r

)
13 |
14 if ((q.x—p.x)*(r.y—p.y) > (r.x—p.x)x(q.y—p.y)+ERR) return CCW;
15 if ((q.xp.x)*x(r.y—p.y) < (r.x—p.x)*(q.y-p.y)-ERR) return CW;
16
17 return ON;
18 }
19
20 class Segment2D/{
21 public: Point2D a.,b;

Chapter 9 Robustness 489

22
23 Segment2D : : RandomDraw ()
24 {
25 a.x=drand () ;a.y=drand () ;
26 b.x=drand () ;b.y=drand () ;
27
28 // swap extremities
29 if (a.x>b.x) swap(a,b);
30)
31
32 friend ostream &operator<<(ostream & o, const Segment2D & s)
33 {o<<” Segment o ["<<s . a<<” [<<s . b<<” |7 return o;}
34
35 bool Intersect(Segment2D s)
36 {
37 if (Orient2D(a,b,s.a)=—Orient2D (a,b,s.b)) return false;
38 if (Orient2D(s.a,s.b,a)=—Orient2D(s.a,s.b,b)) return false;
39 return true;
40 }
A1}
Additional source code or supplemental material is provided on the
book’s Web site:
WWW . :
www.charlesriver.com/ Books,/ BookDetail.aspz? productID=117120

File: segmentintersection-primitive.cpp

This segment intersection test predicate can further be optimized so that it requires
only two orientation tests. Assume without loss of generality (otherwise swap segments
and /or endpoints using at most three comparisons) that:

a; <g by, as <, bo, and a; <g as, (9.17)

where <, denotes the x-coordinate increasing order. If by <, as then clearly the two
line segments do not intersect. Therefore, assume in the following that as <, by.
Figure 9.6(b) and (c) depicts the two remaining combinatorial cases: bs <, by or

b, <, bo.
If by <, by then
[a1b1] N [agbg] # @ <= Orient2D(a;, by, as) # Orient2D(a1, by, ba). (9.18)
If by <, by then

[a1b{] N [asbs] # @ <= Orient2D(a;, by, as) = Orient2D(asz, ba, by). (9.19)

490 Visual Computing: Geometry, Graphics, and Vision

The C++ piece of code for this optimized predicate becomes:

1 // Assume a.x<s.a.x
2 // Only two orientation predicate evaluations

3 bool IntersectOptimize(Segment2D s)

4 {

5) // can be separated by a vertical line

6 if (b.x<s.a.x) return false;

7

8 if (s.b.x<b.x)

9 {

10 if (Orient2D(a,b,s.a)!=0Orient2D(a,b,s.b)) return true;
11 else return false;

12 1

13 else

14 {

15 if (Orient2D(a,b,s.a)=—Orient2D(s.a,s.b,b)) return true;
16 else return false;

17 }

18 }

Observe that the degrees of predicates quickly increase when predicates make use of
intermediate geometric variables (say, for example, a predicate based on the vertices of
the Voronoi diagram). Thus, we did not require to explicitly compute the intersection
point to report its presence.

If necessary, the intersection point of two nonparallel straight lines:

Li:az+biy+c1 =0 and Lo i asx + boy + co = 0, (9.20)

is calculated using Cramer’s determinant rule as:

det[b1 Cl] det[a1 Cl]

by ¢ ar ¢
(20 1) = —— - (9.21)

a; b ap by

det det

a9 bg as bg

Notice that det [Zl 21] = a1by — agb; = 0 if, and only if, lines L; and Lo are
2 02
parallel, with slope —¢1 = —22.

Note that in Section 3.1.3, we proved that two projective lines l; = [a1 b]T

and I, = [ar by]T intersect in projective point:

[b162 — bgcl -‘
P = azcy] — aics . (9.22)
[a1bo — asby J

Chapter 9 Robustness 491

This formula is compactly written using the cross product as: p = 1 x I,. If the
two projective lines are parallel, the point of intersection is the ideal point associated

with the line direction of slope —3+ = —7%:
1 2
[b1C2 — szl -|
P = [a2C1 — Q1C2 . (923)
0o

Yet there is a better approach to retrieve the intersection point, if it exists: consider
the primitive orient2D(p,q,r) (small “0”) that reports the value of the following
determinant:

orient2D(p, q,r) = det [A] = det Mpqr. (9.24)
Yg —Yp Yr — Yp
Thus, we have:
Orient2D{p, q,r) = sign orient2D(p, q, r). {(9.25)
Then, the intersection point p is:
p =aj; + A(b; —ay), (9.26)

with:

N 0rient2D(a1,e.12, bo) . (9.97)
orient2D(ay, by, bs) — orient2D(ay, by, as)

Now, let us go back to our original problem: “Report all pairs of intersecting line
segments.” The seminal sweep-line intersection algorithm of Bentley and Ottman
described in Chapter 2.4.2 reports the intersection of n line segments in output-
sensitive O((n + k)logn) time. Implementing this algorithm using floating-point
arithmetic yields very unstable behavior. A careful analysis of its predicates reveals
that it is of degree five. Using single-precision floating-point numbers (23 bits in
the mantissa), this means that we can guarantee only the implementation for input
segments encoded on L%J = 4 bits. (there are only 2% = 16 distinct coordinates then).
Of course, in practice the bad configurations rarely happen but this doesn’t mean that
they don’t exist. Now, let us look at the naive quadratic algorithm that consists in
checking pairwise segments. This algorithm is of degree two, much better than five.
In computational geometry, there has been renewed interest in revisiting traditional
problems (Voronoi/Delaunay structures, ray/polygon intersections, nearest neighbor
queries, etc.) with this new complexity degree indicator. To conclude the line segment
intersection problem, let us mention that the current best solution is the algorithm
provided by Balaban in 1995. Balaban’s algorithm runs in O(nlogn + k) time using

492 Visual Computing: Geometry, Graphics, and Vision

degree three. There is no known algorithm of degree two matching this bound (but a
quadratic time degree-two naive algorithm exists).

0.5 OQOverview of Libraries

We have seen that implementing robust geometric programs requires careful handling
of number data types, error bounds, and arithmetic operations. Fortunately, there are
a lot of reusable pieces of code. These have been conveniently organized into libraries.
Using finely optimized libraries allows us to ignore the nitty-gritty details, while still
keeping control on the tradeoff between robustness and time efficiency. The ideal
library usage scenario is illustrated in Figure 9.7: a robust-compliant compiler takes
as input a traditional C++ source code {with eventual annotations) and a preference
file that describes the kind of robustness we look for in the compiled code. Then,
this meta compiler preprocesses the C++ source code to modify variable types and
predicate evaluation procedures (filtering) to generate another C++ code. This last
code is finally compiled using our standard C++ compiler, and linked with tailored
libraries for robustness. Ultimately, robustness should be directly programmable using
language instructions.
We present the most common libraries:

GMP. The GNU Multiple Precision Arithmetic Library (GMP) is the standard
implementation of arbitrary length number types. GMP is widely used and
acclaimed, and has gained a lot from fine-tuned optimization over the years.
GMP (version 4.1.4) can be downloaded from the Internet at http: // www.swoz.

com/ gmp/ .

LEDA. Historically, LEDA pioneered the software engineering aspect of handling
numerical inaccuracies in geometric algorithms. LEDA provides arbitrary length
integers leda: :integer, rational numbers leda: :rational, and algebraic real
numbers leda::real. The real number data type provides mathematical
correct results on expressions including square roots (and k-th roots a). LEDA
also supports big floating-point numbers, floating-point filtering, and interval
arithmetic. The bigfloat package of LEDA calculates efficiently algebraic
numbers using an adaptive evaluation of an expression directed acyclic graph
(DAG) that reuses as much as possible arithmetic portions of formulas. LEDA
(version 5.0) can be downloaded from hitp: // www. elgorithmic-solutions.com/ .

CGAL. CGAL includes a geometric kernel with dynamic filtering implemented using
interval arithmetic. In case the sign of an expression [e¢] cannot be answered
(that is, 0 € [e]), a C++ exception is thrown, and the calculation is done
using exact arithmetic. CGAL provides a C++ wrapper for using GMP. CGAL

Chapter 9 Robustness 493

Source in C++

v

Code Robustness |[«——Preference File

Analysis

;

Geometric Predicates Code
(multistaged filtering)

Libraries———*® COMPILER

‘Robust Code]

FIGURE 9.7 Libraries often provide compiler preprocessors to analyze the code
variables and predicates, and generate robust geometric predicates according to
preference settings.

also proposes semistatic filters for usual geometric predicates. Those filters are
detailed in the online file Class_Filtered_Kernel.html. CGAL (version 3.1) is
available at http: // cqal.org/ .

CORE. The key idea of the CORE library is to let us choose the tolerance level of
our code. Level 1 just uses standard double for variables. Level 2 improves over
level 1 by assigning once for all the length representation of numbers. Level 3
guarantees veracity of the first k bits of variables. Note that for correct predicate
signs, we require level 3 with 1 bit certified accuracy. Finally, level 4 offers a
mix of possibilities based on the previous levels. The CORE level is easily set
in programs, using the following syntax {here, we set CORE robustness to level
three):

#define CORE_LEVEL 3
#include "CORE/CORE.h"

Moreover, CORE can also be used in CGAL. CORE (version 1.7) can be

494 Visual Computing: Geometry, Graphics, and Vision

downloaded at http: // www.cs.nyu.edu/ exact/ core/ .

To conclude, robustness of programs should be tackled depending on the program-
mer’s profile:

Novice to Intermediate Level. Programmers consider implementing real-RAM
algorithms as they are described in textbooks or other materials, and handle
robustness issues by using specific libraries when programming algorithms. This
programmation paradigm requires us preferably to have some basic knowledge
of the underlying arithmetic kernels of libraries. Hopefully, in the future, we will
have programming languages that contain special standardized instructions for
setting the level of robustness. With such language compilers, programs will be
closer to algorithms than they are today.

Algorithmician Level. Algorithmicians should consider robustness issues from the
very beginning task of designing algorithms using the bit or machine word model
complexity. This framework allows us to define the basic set of predicates that
define the control flow of algorithms. The main disadvantage of this approach
is that we need to care about the nitty-gritty arithmetic details.

To give an analogy with programming recursive procedures, let’s consider com-
puting Fibonacci sequences (see Section 2.1.2). We can either write the program
using exponential recursion or linear recursion. This corresponds to the “Novice to
Intermediate Level” profile, where the compiler handles the low-level code (that is,
managing the stack). However, we can also redesign the algorithm using a simple
iterative approach based on the mathematical fact that:

F2n—1)=F(n)?+ F(n—1)% (9.28)

This means that whatever the parity of n, Fi(n) and F(n — 1) can be found in
one step from F'(|z]) and F([5] — 1). This new algorithm has complexity O(logn)
for computing the nth Fibonacci number. This latter scheme corresponds to the
“Algorithmician Level.”

9.6 Bibliographical Notes

The IEEE 754-1985 ISO/IEC 559 standard for binary floating-point arithmetic is
implemented in most CPU arithmetic and logic units (ALUs). Because of the
rounding rules, computing with IEEE 754 is more time consuming than using “quick”
floating-point numbers. For example, we need to turn on the IEEE 754 option in
g++ using the flag -mieee. To test whether your code (and CPU®) is compliant

%In 1995, Intel had a massive recall of its Pentium® chip due to a floating-point divide flaw in the
chip design.

Chapter 9 Robustness 495

or not, use the IEEE 754 floating-point test software of Beebe, available online at
hitp: // www.math.utah.edu/~beebe / software/iece/ (see also hitp://www.win.ua.ac.
be/~cant/ iececc754.html). The floating-point standard is briefly reviewed in [135],
and described at length in the manual [259]. Interested readers can get the current
activity status of the IEEE working group ounline, at hitip: // grouper.iece.org/ groups/
754/ . Trigonometric functions are generally computed in hardware using CORDIC
algorithms. CORDIC stands for COordinate Rotation DIgital Computer. The seminal
CORDIC algorithm was proposed by Volter in 1959 [334], as an iterative method
for performing arbitrary angle vector rotations using only shifts and adds. Further
references to CORDIC algorithms are found by visiting online the CORDIC FAQ
at hitp: // www.dspguru.com/ info/ faqs/ cordic.htm. See also the IEEE 854 standard
that is radix-independent (i.e., allow any base).

In computer graphics, it is known that the nonlinearity of the perspective division
eventually yields inaccurate results in the integer-based z-buffer. This phenomenon
occurs depending on whether the setting of the minimum and maximum z range was
done properly or not (see the definition of the perspective frustrum in Chapter 3.3.4).
An alternative to the z-buffer is the w-buffer [35, 192], which is floating-point based.

Implementing robust computational geometry algorithms is known to be a difficult
task, as attested by the early works by Sugihara and Iri [321]. They concentrated on
flawlessly computing the Voronoi diagrams of one million points. Guibas et al. [286]
considered imprecise input in their epsilon geomeiry paper. Edeslbrunner and Miicke
described their simulation of simplicity paradigm [107] using symbolic perturbation.
Melhorn et al. [225] described the {ramework of geometric program checkers, to detect

whether a geometric program was executed correctly or not. The idea of program
checkers is due to Blum and Kanna [38], in 1989.

Shewchuk presented its efficient adaptive precision floating-point filtering technique
in [303]. (Some usual 2D/3D geometric predicates using his technique are available
online, at hitp: // www.cs.berkeley.edu/~jrs/.) Fortune and Van Wyk [123] designed
the LN language for generating automatically geometric filters common to many
predicates. Burninkel et al. [63] developed another expression compiler called EXPCOMP
for automatically handling numerical inaccuracies when implementing geometric
algorithms. Their use of a semistatic filter provides the speed of usual static filters,
but is yet highly customizable (as dynamic filters are).

Goodrich et al. [139] reported an algorithm for efficiently snap rounding 2D/3D
line segments. Bronnimann et al. [56] described the design of efficient dynamic filters
using interval arithmetic in computational geometry. Devillers and Pion [98] focused
on robustly computing the Delaunay triangulation. Brénnimann et al. [59] proposed a
method that determines the sigh of a multivariate polynomial with integer coeflicients
using modular arithmetic. Karamcheti et al. [181] discuss their CORE library in their
paper. The book by Mehlhorn and Nahér on LEDA [224] is a good reference for

496 Visual Computing: Geometry, Graphics, and Vision

programming geometric algorithms using different arithmetics. The paper by Kettner
et al. [182] gives a good overview of the common pitfalls when robustly implementing
algorithms in computational geometry. They provide detailed analysis of “why” and
“when” programs crash.

In computational geometry, predicates are often described using determinants (such
as predicates InSpheredD, OrientdD, etc.) We do not need to compute the exact
determinant but rather its sign. Computing exactly a d x d determinant with integer
input encoded on b bits require db+ dlog d bits. Clarkson [81] presented an algorithm
that robustly evaluates the sign of a determinant of a d x d matrix using 1.5d + 2b
bits, where b is the bit complexity of the input. Avnaim et al. [18] presented a
geometric algorithm to compute the sign of determinants using single-precision integer
arithmetic. The number of necessary bits can be reduced to d + b + log d bits if only
the sign is considered.

Boissonnat and Preparata [45] described a robust plane sweep algorithm (similar
in spirit to the Bentley-Ottman’s algorithm [31]) for reporting the intersections of a
set of line segments, using the notion of algebraic degree of predicates. That notion
of algebraic degrees of predicates in computational geometry algorithms was first
introduced by Liotta et al. [205].

Computing Fibonacci numbers in logarithmic time was presented by Gries and
Levin [144] in 1980.

