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Outline

|. Background:

« Divergences are everywhere in information sciences for different purposes!

* Principles of
(D f-divergences
(2) Bregman divergences
(3) Rao distances

II. In this talk, three recent advances and concepts:

1. Fisher-Rao distances and projective distances
2. Bregman divergences and comparative convexity

3. f-divergence analysis via maximal invariant



Why statistical distances in information sciences?

« Probability theory: convergence theorems wrt probability metrics

- Statistics:
« Divergence-based estimators: dissimilarities between empirical distributions and models

« Scoring rules: evaluates forecasts, probabilistic predictions
 Information theory: Mutual information of random variables

. S_ignaICP_rocessing: Decompositions, approximate matrix factorization: NMF
via (5 -divergence in sound processing, etc.

« Machine learning, pattern recognition: Loss functions for training models,

n
optimal transport, Integral probability metrics (MMDs)

« Information geometry: canonical divergences of geometric structures, geometry
of divergences



Statistical distances in information sciences
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Historically, many distances with purposes:--

Sony CSL

| Taxonomy of principal distances and divergences

Euclidean geometry & Hyperbolic/spherical geometry
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Optimal transport geometry —-— Sinkharn divergence (h-regularized OT) (©2023 Frank Nielsen

https://franknielsen.github.io/Divergence/index.html



Seeking principles and properties of distances

B
o st
<]

f convex, strictly convex at 1
— 7 \
If(p:q) = fpf(q/p)d# If(p:q) = ffi'f(P/Q‘)dH

« Only separable distances which are monotone under Markov kernels
« Invariant under " "sufficiency”
F strictly convex and smooth
. . T
Bp(01:02) := F(01) — F(62) — (61 —62) VF(6)
« Only distances with right-sided centroids = centers of masses
« Canonical divergences of dually flat spaces in information geometry
scaled Bregman tlj\it-,gvmv Bel- 1) ‘

) ] ] . |nmB.-(-;,-m,maa\—<w~.u.~[n(.:.]‘ ‘Bll‘;;ln-mlli\'('r'-;vuwBp(‘:‘]| ‘(r\iw‘u f-m\.vr;,n-m-f;(—:—n‘
« Minimize transport cost wrt a ground distance pron - i
. P b0~ (5 )

Fast regularized OT with dense plan, fast sparse reg. OT

» Csiszar, "On information-type measure of difference of probability distributions and indirect observations," Studia Sci. Math. Hungar. 2 (1967).

« Bregman, "The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming"”, USSR computational
mathematics and mathematical physics 7.3 (1967)

» Kantorovich, "Mathematical methods of organizing and planning production,” Management science 6.4 (1960)

+ Nielsen, "An elementary introduction to information geometry", Entropy 22.10 (2020)



Fisher-Rao geodesic metric distances

- Statistical model {p,. A € A} with model dimension dim(A)=m

- Use Riemannian geodesic distance for the Fisher metric exoressed in
chart (A, A\) using Fisher information matrix: ¢(\) = —E[V3 log py(2)]

Fisher length of a curve: Length(c) = [\/C(t () eyt = /dsN(t)dt:/ 168 ooy at
JO J0O

Geodesic is locally length minimizing curve:  pa(N(A1),N(A2)) = iﬂ{ {Length(c)},
E.

c(0)=px,
c(1)=pa,
Fisher-Rao distance = Fisher length of geodesic
. . o . 16; ffb'
Geod t Fisher Levi-Civita connection: ‘ rk i —
eodesic wrt Fisher Levi-Civi | ZZ i a’t

i=1 j=1
Solve ODE with:
Initial value problem or
Boundary value problem
: Can be difficult to calculate: eg, no formula for multivariate Normals, autodiff

* Invariant to reparamerization: a geometric distance!
« Role of Riemann-Christoffel, Ricci, sectional curvatures in statistics



Hyperbolic Fisher-Rao Gaussi

isometric embedding on the 3D pseudo-sphere

an manifold and partial

(p,0) € IHI}

1 (x — p)°

P= g = exp | — A=
{PA( ) T ( el
0 Fisher-Rao geodesic dlstﬂazce ) (
I(p,0) [ a? ] -

[Pu o1 ]);202 =2

iy = ()
. dp* + 2d‘72 Only this band can be
F= o2 embedded as a 2D surface of 3D

geodesics
Constant curvature -1/2

(= hyperbolic manifold)

Poincaré upper half-plane

geodesics

minimal length curves

Constant Gaussian
on pseudosphere

negative curvature K=-l/2

Isometric embedding
(partial/periodic)

Pseudosphere generated by tractrix



Precursors of statistical manifolds/information geometry

o - G oy 5
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[Hotelling 1930]
Space of statistical parameter

ON THE GENERALIZED DISTANCE IN STATISTICS.

By P. C. MAHALANOBIS.
(Read January 4, 1936.)

Equation (2'5) can then be written in the form
P, Al=a,, . (da). (dx)” .. . o2
Comparing with the formula for ds®

det=g,, . (o). (d2)* .. .. .. @7

we notice that P. A® in statistics is the exact analogue of ds® in the res-
tricted theory of relativity.

This merely implies that a consistent geometrical representation is pos-
sible in both cases. 1t is possible, however, to use this formal equivalence
to establish an exact correspondence between results in the two subjects.

3. We seo therefore that a statistical field in which the dispersion is
same everywhere (values of a,,’s AMS of the field and indepen-
dent of mean values) corresponds to the physical field in the restricted theory
of relativity (g,,’s same everywhere and independent of co-ordinate values).
In fact «,,’s play the same part in statistics as g,,’s in the theory of rela-
tivity, and all the results.involving ds® can be formally obtained from the
results for a statistical field in which the dispersion is constant by putting

[Mahalanobis 1936]
Statistical field

Information and the Accuracy Attainable
in the Estimation of Statistical Parameters

C. Radhakrishna Rao

The Population Space

Let the distribution of a certain number of characters in a population be
characterised by the probability differential

#(x, 0,,..., 6,) dv. (6.1)

The quantities 6;, 6,, ..., 6, are called population parameters. Given the
functional form in x’s as in (6.1) which determines the type of the distribution
function, we can generate different populations by varying 0,05 ..., 8.1
these quantities are represented in a space of g dimensions, then a population
may be identified by a point in this space which may be defined as the popula-
tion space (P.S).

Let 0,,6,,..., 6, and 6, +d0,, 0, + db,, ..., 0, + dfl, be two contiguous
points in (P.S). At any assigned value of the characters of the populations
corresponding to these contiguous points, the probability densities differ by

dpl8y, 0y, ..., 8,) (6.2)

retaining only first order differentials. It is a matter of importance to consider
the relative discrepancy dg/¢ rather than the actual discrepancy. The distribu-
tion of this quantity over the x’s summarises the consequences of replacing
0y, 6,,....6,by 6, +db,, ..., 0, + db,. The variance of this distribution or the
expectation of the square of this relative discrepancy comes out as the positive
definite quadratic differential form

ds* =3 Y g;db, db,, (6.3)

v 2)62) =
[Rao 1945]
Population space

where



Fisher-Rao geometry: multivariate normals (MVNs)

2 _% €Tr— TE_I T —
N(p,X) ~ pus(r) = (dit(z) exp (—( w2 ""))
N(d) ={N(\) : A= (1. 3) € A(d) = R? x Sym , (d,R)}

Fisher information matrix (vector, matrix):

FlShE"lf(JH Z) CDv[v ]_{'_'}gp{ﬁ;z} (I)]

(x)d

Fisher metric tensor:

SO (01, V1), (02, V2)) = ((01,V1), (02, V2)) 3,

= [or] "= o] 4 (2 ARV,

: v= vector space R¢
Length element: a3x) = [ i ] I(1,T) [ i ] V=Symmetric matrix
) P 1 1.\2 vector space
= du'z d“*z“((z ax) ) [Skovgaard 1984]

& Non-constant sectional curvatures which can also be positive, not a NPC space (d>1)



Fisher-Rao geodesic equation for MVNs:

Using (vector, Matrix) parameterization: | - )3 Dy = 0,
Second-order ODE: | ¥ +pp' —¥871% = 0.

. g%nEsider either initial value conditions or boundary value conditions of

(vo = f1,S0 = Xo) [Initial values, 1987]
Source+tangent vector

* Yet, once Fisher-Rao geodesics are known, integrate Fisher-Rao length
elements to get Rao distance.

1 1 1 " eoeo
Length({?):/ﬂ \/(é(f),é(f))cmdf:/ﬂ dSN(f)d_f:/{] 16() 1o it MVN: No closed form yet




Demos: MVN Fisher-Rao geodesics on bivariate
normal Fisher-Rao manifold

I * Fisher-Rao geodesics from bivariate normal standard with initial val..  — X ‘

Geodesics with initial values Geodesics with boundary values



Strategy to get lower bounds on Fisher-Rao distances

- A Riemannian mamfold gj) of dimension m

c(:)a(n a)lvvays be embedded in Euclidean space (E gEuchdea of dimension
m3

2D manifold embedded in 3D
Intrinsic

2D manifold Figure from

[Zhong et al’ 2018]

Let S={f(p), p € M} be the submanifold. If geodesics between f(p) and f(q)
stay in S wrt g¢,.40an then the manifold is totally geodesic

Riemannian distance in (E,g¢,q140an) 1S |F(p)-f(q) ],

Rao distance in (M,g) lower bounded by |[f(p)-f(a)|l, : == o (p,q) = ||f(p)-f(0)]],

We may embed (M,g) into high-dimensional non-Euclidean manifolds

(M’,g") too (next slide!) and get 0 I\/I(p'q) > 0 I\/I’( ( ),f(q))



Diffeomorphic embeddings of MVN(d) onto SPD(d+1)

The diffeomorphisms {f,} foliates the SPD cone P(d+1)

)
£5(N) = fa(,E) = [ PR B ] e P(d+1)

Using half trace metric in P(d+1), get the following metrics on MVN(d):

ato = yue((FmDarene)),

_ 1/dp\?> _ 1 _ -
B=1 _ 2(;) +BdpTx 1dy+2tr((2 'dx) ) [Calvo & Oller 1990]

When B =1 (constant), we thus get a Fisher isometric embedding
of MVN(d Into SPD<d+1> dS%ishcrzd,uTE_ldﬁJr%tr ((z—ldg)z)



Fisher-Rao MVN distance: A lower bound

« Embed isometrically the Gaussian manifold N(d) into a submanifold
of codimension 1 into the SPD cone of dimension d+1:
non-totally geodesic submanifold {f(N)}:

)
FN) = f(u,m) = | 2]

» Use closed-form SPD geodesic in the (d+1)-dimensional cone:

[Calvo & Oller 1990]
B=1

2= B (g imy, )y

« SPD pathis of length necessarily smaller than the MVN geodesic
in submanifold f(N). Thus get a lower bound on Rao distance:

-ld-l—] _
o (N1, N2) = pco(f(p1,Z1), f (2, 22)) = \ 5 Y log” A;(P;1D,).
i—1

\_l\’p—“\_ll\"_"’
P P,




New fast distances between MV Normals

pHilbert (No, N1) = pribert (f(No), f(N1))

:
FN) = f(n,) = | 2 H ]

Gaussian(d) manifold

Projective Hilbert SPD distance:

1

pHﬂbert(P[]jPl) _ log (}Lmax(P[]lgplpug))

_1 _1

Ar:n:lin(*p[] 2JPIJP[) 2)

Amax (P 1P

— log( ( 0_1 1))
)\min(Pn Pl)

Pulling back S Ne=fi(N)

‘\
.
‘\
.

.................. 2—1
o (I
a(N(/L,E)) == [ —/.LTZ—I

SPD(d+1) cone

TR e T

“Fisher-Rao and pullback Hilbert cone distances on the multivariate Gaussian manifold with
apbplications to simplification and auantization of mixtures". ICML TAG 2023




« MVN Fisher-Rao distance needs approximations

by sampling geodesics, require all eigenspectrum of SPD matrices.
« Hilbert SPD distance only requires to calculate extreme eigenvalues
(eg., power method iterations), + geodesics are in simple closed form

Comparison of geodesics for two bivariate normal distributions shown by ellipses centered at means

A simple approximation method for the Fisher—Rao distance between multivariate normal distributions,
Entropy 25.4 (2023): 654

Fisher-Rao and pullback Hilbert cone distances on the multivariate Gaussian manifold with applications to
simplification and quantization of mixtures, ICML TAG 2023.



Fisher-Rao distances for MultiVariate Normals

. goeé)éj]esm equation solved for boundary values recently [Kobayashl

» Guaranteed 1+ & approximation algorithms [N1]

« New fast distances based on Hilbert projective geometry of the
symmetric positive-definite cone [NZ?

- General principles for approximating and bounding Fisher-Rao  [IN3]
distances, specially when Fisher metric is Hessian: 3r(6) : g(6) = V2F(8) - 0

[K] Kobayashi, Shimpei. "Geodesics of multivariate normal distributions and a Toda lattice type Lax pair", Physica Scripta 98.11 (2023)
[N1] "A simple approximation method for the Fisher—Rao distance between multivariate normal distributions", Entropy 25.4 (2023): 654
[N2] “Fisher-Rao and pullback Hilbert cone distances on the multivariate Gaussian manifold with applications to simplification and
quantization of mixtures", Topological, Algebraic and Geometric Learning Workshops 2023. PMLR, 2023.

[N3] "Approximation and bounding techniques for the Fisher-Rao distances", arXiv:2403.10089 (2024)



Projective divergences beyond Hilbert/ Blrkhoff

Projective divergences are pseudo-divergences © )

which are invariant under rescaling of their arguments.
= Divergences between rays on the positive measure
orthant cone ;
D(Ap:A'q)=D(p:q), YAA >0
p
For example, ;
CSD (p,q) = — log J p(x)g(a)dv(z)
\/ [ p(z)?dv(z)) [ G(z)?dv(z) 0
and
HDa . (5 : §) = — log [ p(p(x))7(q(x))dv(x) Lo 5
- (J p(p(x))dv(z)) = ([ 7(¢(x))Pdv(z))” ats=1( )

N, Sun, and Marchand-Maillet, "On Holder projective divergences." Entropy 19.3 (2017)



Projective divergences for statistical inference

- Half-sided projective divergences are useful for estimating
parameters of densities which have intractable normalizers:

For example, in score matching
2
1 p(x
Dyuyvlp:ql = = / V. log [( ) p(x)du(x)
2 q(x)
Empirical distribution pe(x Oz, Intractable model _ Qs (:{:)
Z because of Z 45 () Z(0)

Since we have:

Valog go(2) = Vi log gy («) mmmp min Dyy De i Qo] = min Digyy De i Qo

Estimate unnormalized models



What is a “Statistical manifold”?

Two meanings in the literature:

@ Versus

@ Figure from
[Cheng et al. 2017]

@ I}jlla|n>if0|d of statistical models (points are typed as statistical
models):

For example, the Fisher-Rao manifold of Gaussian distributions

@I\/Ianlfold with a " statistical structure” (differential ]geometry

Lauritzen coined the term ‘statistical manifold” for manitolds equipped
with structure (g,C), a Riemannian metric tensor g and a totally
symmetric cubic tensor C (next slide!)

Lee et al., "A statistical manifold framework for point cloud data", Intl Conf on Machine Learning, ICML 2022.
Lauritzen, "Statistical manifolds", Differential geometry in statistical inference 10 (1987): 163-216



Dualistic structures of statistical manifolds:
Pure geometric structures

Fisher-Rao geometry
— Fisher-Rao geodesic distance

Dual a-geometry
— No default divergence

a-manifold 0-manifold = Riemannian manifold

a -geometry from (g,C) structure https://www.ams.org/journals/notices/202201/rnoti-p36.pdf

"The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.



Dually flat spaces (M,g, V , V *): Bregman manifolds

« A connection V is
if there exists a
coordinate system 6
such that all
Christoffel symbols
vanish: ' (8) =0.

- y *
Dual geodesic *‘yv

manifold P

— . * . . . . S i .
V-affine coordinate system # V*-affine coordinate system 7

th="0(Fs) ,, —
/ i A = 1(1%) e O is called
b =0(P) 0 = VF*(n) /
=) solves as
Potential function F'(#) Dual potential function F*(7) I I ne s eg men tS
Legendre-Fenchel transform d?6;, _0

Also called Hessian manifolds

"On geodesic triangles with right angles in a dually flat space.” Progress in Information Geometry:
Theory and Applications, 2021



Bregman manifolds in Statistics/ML

« Whenever you have a strictly convex smooth function, you can build a dually
flat space M,g, V , V *).

« Whenever you have a dually flat space (M,g, V , V *), you can reconstruct
the convex conjugates F(8), F*(n), and the dual Bregman divergences

« Thm: Bregman divergences = canonical divergences of dually flat spaces
* In Stats/ML, we often consider exponential families with densities

po(x) o o (x) = exp ( )3 ﬂm) pa(x) o a(x) = exp((B(A), H(x))) h(x)

i=1
Z(0) = [ po(x)dp(x)

e |t turns out that the normalizer Z( 0 ) partition function AND the log-
normalizer F(0 )=log Z(6 ) cumulant function are both convex!

« So we get two dually flat spaces built from Z or F yielding Bregman
divergences. Classically DFS from F was considered---



wo Bregman manifolds from partition/cumulants
funct ons of expone ntial families, two pairs of BDs

= | Po(x)dp(x)  F(O)=log Z(8) Z(6)=exp(F(6)=)
@ BZ(Hl . 92) — 2(91) — Z(Hz) — <91 — 92, VZ(92)> 2 O,
| B Z(61) VZ(6,)
(D) Biogz(01:6,) = 1og( (9;)) - <91 00, > >0,

And furthermore, we can define skewed Jensen divergences from the
convex generators

@ Jza(01:0) = aZ(0)+ (1 —a)Z(0;) — Z(ab, + (1 — a)bs) >0,
fal l—ex
Q) Jiogzalbr:0:) = log Zﬁig?;’(? l(ﬂf)ﬂ)gz) > 0.

Including the symmetric Jensen divergence when a=1/2:

F(6,) + F(8 b1 +6
Jp(gl,gﬂ) ZJF%(Q]_ :92): ( 1) 2 ( 2) _F( 1 2 2)




Statistical divergences corresponding to
BDs wrt cumulant functions F of EFs

¢ _a(l—l—ﬂ‘) lOg fpﬂfql—ﬂfd}'_h o < R\{O? 1}’ ( m(ll_ﬂ:_) ]F,ﬂ‘.(el : 92), K e R\{O, l},
s Dxr(p: q), a=1, Br(6; : 65) =0
D% (p:rq)=( KL 5 C0s) — r(b1:02), a =0,
B, 4DB*(;D, q) o = %, “ IP,rx(Bl 16) =« 4 Jp(01,05), _ %’
\ Dxr'(p:q) =Dxku(q:p) a=0. | Bp(61:62) =Bp(62:61), a=1.

Scaled Bhattacharyya/Rényi distances “ Scaled skewed Jensen divergence
for cumulant function F

Proposition 4 ([32]). The scaled a-skewed Bhattacharyya distances between two probability densities pg,
and pg, of an exponential family amounts to the scaled «-skewed Jensen divergence between their natural

parameters:

D (o, = Po,) = Jp o (01,02). (13)




Statistical divergences corresponding to
B8Ds wrt partition functions Z of EFs

af(l —a) f(ap (1_a)q p&ql a) d#’ Oﬁg{ojl} ( ﬁ'jza(gl :92)1 G{E\{OJ 1}1
- Die (P @) = Dxu(q : P) a=0, B, (0: - 0. _
D,(p:q) = KL\P - 4 < _ Bz (01 :03), a =0,
P04 45 G o, QY 0= «}
bl ! ’ 29
DKL( 1 q) a =1 | BL(01:02) =DBz(02:601), a=1.

“ Scaled skewed Jensen divergence

Amari a-divergences u :
for partition function Z

Proposition 5. The a-divergences between unnormalized densities of an exponential family amounts to

scaled a-Jensen divergences between their natural parameters for the partition function:

Do (po, : Po,) = J7 (01 : 02).




KLD between normalized and unnormalized densities
* Fy(0)

Dxv(pe, : pe,) = Br(02:601)—logZ(02)+ Z(02) — 1,
= Z(f2) —1—F(6h) — (62 — 61, VF(62)),

= Bz_1r(02-01).  Wwith Z()—1> F(6)
With generalized BDs to duo Bregman pseudo-divergences:
Bp, g, (01 :02) = F1(01) — Fa(02) — (61 — 602, V5 (02))
with Fi(0) = Z(0) — 1 and F»(0) = F(6)

Kullback-Leibler divergence between two truncated densities of a
same exponential family amount to a duo Bregman pseudo-divergence

Statistical divergences between densities of truncated exponential families with nested supports: Duo
Bregman and duo Jensen divergences, Entropy 24.3 (2022)



Comparative convexity: (M,N)-convexity

Ordinary convexity of a function: f(tz1 + (1 —t)xz2) <tf(z1) + (1 —1t)f(z2)
forall tin [0,1]

« Definition: A function Z is (M,N)-convex iff for in a in [0,1]:

Z(M(x,y;a,1 —a)) < N(Z(2), Z(y); , 1 — )

 Ordinary convexity: (A,A)-convexity wrt to arithmetic weighted mean

A(:}:,y;'&,l —a) = or + (1—a)y fltzy + (1 —t)xy) <tf(z1) + (1 —1t)f(z2)
forall tin [0,1]

- Log-convexity: (A,G)-convexity wrt to A/geometric weighted means:

G("E‘m-&? 1 —a)=z% ~° f(tzy 4 (1 —t)22) < fa1)" flaz)™
| for all tin [0,1]



Comparative convexity wrt quasi-arithmetic means

« Kolmogorov-Nagumo-De Finitti quasi-arithmetic mean for a
strictly monotone generator h(u):

My (z,y;0,1 —a) = h™ ' (ah(z) + (1 — a)h(z)).

 Includes power means which are homogeneous means:
M,(z,y;a,1 —a) = (axf + (1 — &)yp)f% = My, (z,y;0,1 —a), p#0

hp(u) = 54 hyY(u) = (14 up)”

p p
Include the geometric mean when p—0




Generalizing Bregman divergences with
(M,N)-convexity

« Skew Jensen divergence from (M,N) comparative convexity:

Definition:

TN (p 2 q) = No(F(p), F(q)) — F(Ma(p, q)).

Non-negative for (M,N)-convex generators F, provided regular
means M and N (e.g. power means)

Definition 5 (Bregman Comparative Convexity Divergence, BCCD) The Bregman Comparative
Convezity Divergence (BCCD) is defined for a strictly (M, N)-convex function F': I — R by

BYN(p:g) = lim —— JeX(p:g)= lim L (Na(F(p). F(@))) — F(Ma(p,)) | (31)

as1- a(l — a) a—=1- a(l — a)

By analogy to limit of skewed Jensen divergences amount to
forward/reverse Bregman divergences.



Generalizing Bregman divergences with

quasi-arithmetic mean convexity

Theorem 1 (Quasi-arithmetic Bregman divergences, QABD) Let F': I C R — R be a real-valued
(M,, M;)-convex function defined on an interval I for two strictly monotone and differentiable functions p
and 7. The quasi-arithmetic Bregman divergence (QABD) induced by the comparative convezity is:

pre . TWEWP) —7(F(g))  plp) —pl9)
1) 7@

F'(q). (45)

Amounts to a conformal Bregman divergence on monotonic representations:

BY(p:9) = 5o Balol) : p(a)

Conformal factor

With generator:
G(z) = 7(F(p~'(2)))

Remark: Conformal Bregman divergences may yield robustness in applications

Shape retrieval using hierarchical total Bregman soft clustering, IEEE Transactions on pattern analysis and machine intelligence (2012)



Maximal invariant: Definitions and Eaton theorem

« Function f(x) is invariant under when f(g ox)=f(x)

« A maximal invariant is a function h such that all orbits
O.=f{h(g ox) | g G} for g in G have distinct values

e Theorem [Eaton]:
Any invariant function is a function of a maximal invariant

Eaton, Morris L. "Group invariance applications in statistics." IMS, 19809.



Maximal invariance: A toy example

» Consider function slope(x,y)=y/x and group of positive reals G=(R ,*,1)
e Invariant under rescaling: slope(s o(x,y))=slope(s*x,s*y)=y/x
- Slope = maximal invariant: group orbits have different values (=slopes)

0

 [takura-Saito divergence is a distance used in sound processing which is
also invariant to rescaling:  p,(y|z) =2 10 L — 1

« Therefore ltakura-Saito divergence can be expressed as a function of
max invariant slope: D(y:x)=h(slope(x,y)) with h(u)=u-log u-1




Maximal invariance: T-divergences between scale models

« Compute relatlve entropY (Kullback-Leibler divergence), Hellinger, chi”2,
etc between location-scale (elliptical) distributions

I(p:q) = [Rp(ﬂr)f (EETD da

- ey 1 /:
« Consider scale families of probabilities: {ps(ﬂ:) =D (f) , zeRs¢€ R>o}

S

Centered normal distributions

* Those f-divergences are all invariant under rescaling: tCaSicgy dtistributions
-ottuaents

If(S O (p81 : psg)) — If((ps1 : pSg))
e Thus, we express them using the maximal invariant:

S
Li((psy * Psy)) = Iy p(slope(si, s2)) = hyp ( ?)

« Calculate h_symbolic regression from data obtained by Monte Carlo

integrationspgf he f-divergences. Useful in practice!

N and Okamura, "On f-divergences between Cauchy distributions, " IEEE Transactions on Information Theory 69.5 (2022)



Computing with maximal invariants

- The Mahalanobis distance and Jensen-Shannon divergence (JSD) between
two isotropic Gaussian distributions are invariant under translation: that is,
the translation = action of group G=(R,+,0

- Mahalanobis distance is maximal invariant for the group action (after dD to
1d reparameterization---)

« Thus, we have J_SD%N(/.ll, 2 ),N(u,,Z))=h(As(u,, u,) for a strictly
monotone function

« JSD between Gaussians does not admit closed-form. Costly numerical
approximations in practice!

 This formula structure result allows to JSDs:
JSD(N1,N2)<JSD(N3,N4) < As(uq, o)< As(ps, uy)
Since Mahalanobis distance A y can be calculated exactly!

N and Okamura, "On the f-divergences between densities of a multivariate location or scale family", Statistics and Computing 34.1 (2024)



Maximal invariance and hyperbolic ML

e Hot topic in ML: can be
embedded in for downstream tasks

« We need statistical analysis in hyperbolic spaces
 How to define probability distributions in hyperbolic spaces? and

statistical distances between them?
Probability density

low-distortion
embedding

D ——
inference

Klein disk model
of hyperbolic geometry

N and Okamura, "On the f-divergences between hyperboloid and Poincaré distributions," GSI (2023)



Poincare distributions in the upper plane

Poincaré upper plane

0, = (1.0.0) | -G b= (2.4.4)

polx,y) =
T

vac —b?exp(2vac — b?) ( a(x? + y?) + 2bx + r:) 1
exp | —

Y y?

Theorem 1. Every f-divergence between two Poincaré distributions pg and pe:
. . / l)— . . . .
is a function of (|6],|6|,tr (¢’0~1)). Triplet = Maximal invariant

(i) (Kullback-Leibler divergence) Let f(u) = —logu. Then,

1 0 1 _
Dy |peo : por| = 5 log |‘¢9f|| + 2 (1/\9| — «./\9"\) + (2 + |9|) (tr(#'6~1) — 2).

N and Okamura, "On the f-divergences between hyperboloid and Poincaré distributions," GSI (2023)
Tojo and Yoshino, Harmonic exponential families on homogeneous spaces, Information Geometry (2021)




f-divergences from higher-order chi divergence series

Theorem Let X be a topological space and p be a Borel measure on X with full support. Let
{pe(z)}g be a family of probability density functions on (X, ). Assume that for each 6, py(x) is
positive and continuous with respect to x. We also assume that for each 6 and 6y there exists
C = C(01,02) such that pg,(x) < Cpe,(x) for every x € X. Let f(z) = D> - 1an(z — 1)" be an
analytic function (f € C¥), and denote by r¢ be the convergence radius of f. Assume that ry > 1.
Let Iy be the induced f-divergence. Then,

If ZZ, ((i)j < 1+ry for every x, then, Ii(p,q) = ./Pf(Q/p)d,u

(P02 (2)

pel(iv) —1) p01( )d/_l, Zan X'n(p91 p92)

n=2

k
higher-order chi divergence: D, (p:q) = /(Q(w)(—)f(f)) dp(z).
p\z)*

On the chi square and higher-order chi distances for approximating f-divergences.
IEEE Signal Processing Letters 21.1 (2013) [2101.12459]



Summary: Three concepts for distances/divergences

« Divergences are everywhere in information sciences!

« Fisher-Rao distances: lower bounds by submanifold embeddings.
For MV normals: fast Hilbert Q@ projective distance using only extreme eigenvalues

e (2 Maximal invariants for f-divergences and distances

« Bregman divergences:
e canonical divergences of dually flat manifolds,
« duo Bregman pseudo-divergences for calculating KLD between truncated EF densities
 Generarized BDs from 3 comparative convexity: conformal Bregman divergences




Some references covering concepts in this talk

o Divergences Induced by the Cumulant and Partition Functions of Exponential Families and Their
Deformations Induced by Comparative Convexity, Entropy 26.3 (2024): 193

o Generalizing skew Jensen divergences and Bregman divergences with comparative convexity,
IEEE Signal Processing Letters 24.8 (2017): 1123-1127

« On the f-divergences between densities of a multivariate location or scale family, Statistics and
Computing 34.1 (2024): 60

o On f-divergences between Cauchy distributions, IEEE Transactions on Information Theory 69.5
(2022): 3150-3171

o Fisher-Rao and pullback Hilbert cone distances on the multivariate Gaussian manifold with
applications to simplification and quantization of mixtures, ICML TAG 2023.

o Clustering in Hilbert's projective geometry: The case studies of the probability simplex and the
elliptope of correlation matrices, Geometric structures of information (2019): 297-331

- On Holder projective divergences, Entropy 19.3 (2017): 122



Thank youl!
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