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ABSTRACT

We present a generalization of Badoiu and Clarkson’s al-
gorithm [3] for computing a (1 + ¢)-approximation of the
smallest enclosing ball of a point set equipped with a Breg-
man divergence as a distortion measure.

Categories and Subject Descriptors

1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling— Geometric algorithms, languages, and sys-
tems

General Terms:
Algorithms, Theory
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1. INTRODUCTION

Given a set S = {s;}i=; of d-dimensional points, we are
interested in finding a center point ¢* of S, where the “dis-
tance” measure d(-,-) between any two points of S, is a di-
vergence (also called distortion'). Two optimization criteria
may be considered for finding such a center: MINAVG which
minimizes the average divergence or MINMAX which mini-
mizes the mazimal divergence (¢* = argmin_d(c,S), where
d(c,S) denote the divergence from c to the furthest point
of S: d(c,S) = max;d(c,s;)). These problems have been
widely studied in computational geometry (1-center prob-
lem), computational statistics (1-point estimator), and ma-
chine learning (1-class classification). It is known that for
the squared Euclidean distance (L3) the centroid £ 3" |'s;
is the MINAVG(L3) center [2]. For the Euclidean distance
Lo, the circumcenter of S is the MINMAX(L2) center, and
the Fermat- Weber point is the MINAVG(L2) center (see Fig-
ure 1). Finding the circumcenter of the unique smallest
enclosing ball of S is weakly polynomial, and can be solved
efficiently either numerically using second-order cone pro-
gramming (SOCP), or combinatorially using a recent ball
deflating heuristic, up to dimension 1000 and more [1].

2. BREGMAN DIVERGENCES

In computational machine learning, the L2 geometric dis-

tance seldomly reflects the distance between two d-dimensional
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1Symmetry and triangle inequality properties may not hold.
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Figure 1: Three centers of a point set: centroid (x),
circumcenter () and Fermat-Weber point (o).

points. A more general distance framework, known as Breg-
man divergences, is rather used. Bregman divergences Dp
are parameterized families of distortions defined on a con-
vex domain X C RY for strictly convex and differentiable
functions F on int(X) (Figure 2) as Dr(p,q) = F(p) —
F(q) — (p—4, Vr(q)), where V r denotes the gradient op-
erator, and (-,-) the inner product (dot product). Infor-
mally speaking, a Bregman divergence Dp is the tail of a
Taylor expansion of F. Bregman divergences include the
squared Euclidean distance Dr(p,q) = ||p — q|* (F(x) =
[1x||?), the Kullback-Leibler divergence (also known as the
Information divergence) Dr(p,q) = Z?zl pilog £ (F(x) =
Z?zl x; log x; the negative entropy defined on the d-simplex),
and the Itakura-Saito divergence Dr(p,q) = Zle(Z—z —
log 22 —1) (F(x) = — Z;izl log z; defined on R%). Bregman
divergences define two families of Bregman balls: Be, =
{x€X:Dp(c,x)<r}and B., ={x€X:Dp(x,c) <1},
that are not necessarily convex nor identical (Figure 3). For
a point set S, the two smallest enclosing balls B*(S) and
B'"(S) have been shown to be unique [4]. Bregman balls
have many important applications in machine learning. For
example, finding the minimum enclosing Itakura-Saito ball
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Figure 2: Visualizing the convex function F' and its
associated Bregman divergence Dr(-, ).
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Figure 3: Examples of Itakura-Saito (x2), squared
Euclidean (x1) and Kullback-Leibler (x2) balls.

is used to find the closest signal to a set of given signals in
speech recognition [4].

3. APPROXIMATION ALGORITHMS

Bédoiu and Clarkson [3] introduced the notion of core-
sets for balls. An e-core-set C for the MINMAX ball of S is a
subset C C S such that the circumcenter ¢ of the MINMAX
ball of C is such that d(c,S) < (1 + €)r*, where r* is the
radius of the smallest enclosing ball of S. They show that
core-set sizes are independent of the dimension, and of size
bounded by % Further, they described a simple guaranteed
O(i—g)-time (1 + €)-approximation algorithm. Applying this
algorithm to “skewed” divergences does not make sense and
yield poor results [4]. In [4], we generalize their approxima-
tion algorithm to arbitrary Bregman divergences: BBC.
Choose at random ¢ € S
fort=1,2,..,T do

s « argmaxg/cs Dr(c,s’)

c— V! (HLIVF(C) + H%VF(S))

4. EXPERIMENTS AND CONCLUSION

Figure 4 presents our experiments for Itakura-Saito and
Kullback-Leibler divergences. Empirical studies suggest that
the theoretical convergence is well below the upper bound
% of [3]. Figure 5 depicts the observed convergence rate for
the Kullback-Leibler divergence. Banerjee et al. [2] proved
that MINAVG(Dr) is always the centroid whatever the Breg-
man divergence, and described a bijection between Bregman
divergences and the exponential families in statistics. We
exhibit yet another bijection between Bregman divergences
and functional averages of core-sets [4].
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Figure 4: Algorithm BBC: Bregman enclosing balls
after the first, second, and 10th iteration for
the Itakura-Saito and Kullback-Leibler divergences.
White lines depict the geodesics followed by c.
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Figure 5: Convergence rate for the Kullback-Leibler
divergence: n = 1000, d =2 on 100 runs. Plain curve

represent w, and dashed curve is the

+ upperbound for L3 [3].



