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ABSTRACT
We present a generalization of Bădoiu and Clarkson’s al-
gorithm [3] for computing a (1 + ε)-approximation of the
smallest enclosing ball of a point set equipped with a Breg-
man divergence as a distortion measure.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Geometric algorithms, languages, and sys-
tems

General Terms:
Algorithms, Theory
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1. INTRODUCTION
Given a set S = {si}ni=1 of d-dimensional points, we are

interested in finding a center point c∗ of S , where the “dis-
tance” measure d(·, ·) between any two points of S , is a di-
vergence (also called distortion1). Two optimization criteria
may be considered for finding such a center: MinAvg which
minimizes the average divergence or MinMax which mini-
mizes the maximal divergence (c∗ = argmincd(c,S), where
d(c,S) denote the divergence from c to the furthest point
of S : d(c,S) = maxi d(c, si)). These problems have been
widely studied in computational geometry (1-center prob-
lem), computational statistics (1-point estimator), and ma-
chine learning (1-class classification). It is known that for
the squared Euclidean distance (L2

2) the centroid 1
n

�n
i=1 si

is the MinAvg(L2
2) center [2]. For the Euclidean distance

L2, the circumcenter of S is the MinMax(L2) center, and
the Fermat-Weber point is the MinAvg(L2) center (see Fig-
ure 1). Finding the circumcenter of the unique smallest
enclosing ball of S is weakly polynomial, and can be solved
efficiently either numerically using second-order cone pro-
gramming (SOCP), or combinatorially using a recent ball
deflating heuristic, up to dimension 1000 and more [1].

2. BREGMAN DIVERGENCES
In computational machine learning, the L2 geometric dis-

tance seldomly reflects the distance between two d-dimensional

∗
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1Symmetry and triangle inequality properties may not hold.
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Figure 1: Three centers of a point set: centroid (×),
circumcenter (�) and Fermat-Weber point (◦).

points. A more general distance framework, known as Breg-
man divergences, is rather used. Bregman divergences DF

are parameterized families of distortions defined on a con-
vex domain X ⊆ R

d for strictly convex and differentiable
functions F on int(X ) (Figure 2) as DF (p, q) = F (p) −
F (q)− 〈p− q, ∇F (q)〉, where ∇F denotes the gradient op-
erator, and 〈·, ·〉 the inner product (dot product). Infor-
mally speaking, a Bregman divergence DF is the tail of a
Taylor expansion of F . Bregman divergences include the
squared Euclidean distance DF (p,q) = ||p − q||2 (F (x) =
||x||2), the Kullback-Leibler divergence (also known as the

Information divergence) DF (p,q) =
�d

i=1 pi log pi
qi

(F (x) =�d
i=1 xi log xi the negative entropy defined on the d-simplex),

and the Itakura-Saito divergence DF (p,q) =
�d

i=1(
pi
qi
−

log pi
qi
−1) (F (x) = −�d

i=1 log xi defined on R
d
+). Bregman

divergences define two families of Bregman balls: Bc,r =
{x ∈ X : DF (c,x) ≤ r} and B′

c,r = {x ∈ X : DF (x, c) ≤ r},
that are not necessarily convex nor identical (Figure 3). For
a point set S , the two smallest enclosing balls B∗(S) and
B′∗(S) have been shown to be unique [4]. Bregman balls
have many important applications in machine learning. For
example, finding the minimum enclosing Itakura-Saito ball

pq

F (·)

DF (p,q)

〈p − q,∇F (q)〉

Figure 2: Visualizing the convex function F and its
associated Bregman divergence DF (·, ·).



Figure 3: Examples of Itakura-Saito (×2), squared
Euclidean (×1) and Kullback-Leibler (×2) balls.

is used to find the closest signal to a set of given signals in
speech recognition [4].

3. APPROXIMATION ALGORITHMS
Bădoiu and Clarkson [3] introduced the notion of core-

sets for balls. An ε-core-set C for the MinMax ball of S is a
subset C ⊆ S such that the circumcenter c of the MinMax
ball of C is such that d(c,S) ≤ (1 + ε)r∗, where r∗ is the
radius of the smallest enclosing ball of S . They show that
core-set sizes are independent of the dimension, and of size
bounded by 2

ε
. Further, they described a simple guaranteed

O( dn
ε2

)-time (1+ ε)-approximation algorithm. Applying this
algorithm to “skewed” divergences does not make sense and
yield poor results [4]. In [4], we generalize their approxima-
tion algorithm to arbitrary Bregman divergences: BBC.
Choose at random c ∈ S
for t = 1, 2, ..., T do

s← arg maxs′∈S DF (c, s′)

c←∇−1
F

�
t

t+1
∇F (c) + 1

t+1
∇F (s)

�

4. EXPERIMENTS AND CONCLUSION
Figure 4 presents our experiments for Itakura-Saito and

Kullback-Leibler divergences. Empirical studies suggest that
the theoretical convergence is well below the upper bound
1
T

of [3]. Figure 5 depicts the observed convergence rate for
the Kullback-Leibler divergence. Banerjee et al. [2] proved
that MinAvg(DF ) is always the centroid whatever the Breg-
man divergence, and described a bijection between Bregman
divergences and the exponential families in statistics. We
exhibit yet another bijection between Bregman divergences
and functional averages of core-sets [4].
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[3] M. Bădoiu and K. L. Clarkson. Smaller core-sets for balls. In
ACM-SIAM Sympos. Discret Algorithms, pp. 801–802, 2003.
http://cm.bell-labs.com/who/clarkson/

[4] R. Nock and F. Nielsen. Fitting the smallest enclosing
Bregman ball. In European Conference on Machine
Learning (ECML), LNCS #3720, pp. 649–656, 2005.

Itakura-Saito Kullback-Leibler

Figure 4: Algorithm BBC: Bregman enclosing balls
after the first, second, and 10th iteration for
the Itakura-Saito and Kullback-Leibler divergences.
White lines depict the geodesics followed by c.
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Figure 5: Convergence rate for the Kullback-Leibler
divergence: n = 1000, d = 2 on 100 runs. Plain curve

represent DF (c∗,c)+DF (c,c∗)
2

, and dashed curve is the
1
T

upperbound for L2
2 [3].


