On Approximating the Smallest Enclosing Bregman Balls

Frank Nielsen Sony Computer Science Laboratories Inc. Tokyo, Japan Frank.Nielsen@acm.org

ABSTRACT

We present a generalization of Bădoiu and Clarkson's algorithm [3] for computing a $(1 + \epsilon)$ -approximation of the smallest enclosing ball of a point set equipped with a Bregman divergence as a distortion measure.

Categories and Subject Descriptors

I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—*Geometric algorithms, languages, and systems*

General Terms:

Algorithms, Theory

Keywords

Minimum enclosing ball, core-set, Bregman divergence

1. INTRODUCTION

Given a set $S = {s_i}_{i=1}^n$ of *d*-dimensional points, we are interested in finding a center point \mathbf{c}^* of \mathcal{S} , where the "distance" measure $d(\cdot, \cdot)$ between any two points of \mathcal{S} , is a divergence (also called distortion¹). Two optimization criteria may be considered for finding such a center: MINAVG which minimizes the average divergence or MINMAX which minimizes the maximal divergence ($\mathbf{c}^* = \operatorname{argmin}_{\mathbf{c}} d(\mathbf{c}, S)$, where $d(\mathbf{c}, \mathcal{S})$ denote the divergence from \mathbf{c} to the furthest point of \mathcal{S} : $d(\mathbf{c}, \mathcal{S}) = \max_i d(\mathbf{c}, \mathbf{s}_i)$). These problems have been widely studied in computational geometry (1-center problem), computational statistics (1-point estimator), and machine learning (1-class classification). It is known that for the squared Euclidean distance (L_2^2) the centroid $\frac{1}{n} \sum_{i=1}^n \mathbf{s}_i$ is the MINAVG (L_2^2) center [2]. For the Euclidean distance L_2 , the *circumcenter* of S is the MINMAX (L_2) center, and the Fermat-Weber point is the $MINAVG(L_2)$ center (see Figure 1). Finding the circumcenter of the unique smallest enclosing ball of \mathcal{S} is weakly polynomial, and can be solved efficiently either numerically using second-order cone programming (SOCP), or combinatorially using a recent ball deflating heuristic, up to dimension 1000 and more [1].

2. BREGMAN DIVERGENCES

In computational machine learning, the L_2 geometric distance seldomly reflects the distance between two *d*-dimensional

*http://www.csl.sony.co.jp/person/nielsen/BregmanBall

Copyright is held by the author/owner(s). *SCG'06*, June 5–7, 2006, Sedona, Arizona, USA.

ACM 1-59593-340-9/06/0006.

Richard Nock University of Antilles-Guyane Martinique, France Richard.Nock@martinique.univ-ag.fr

points. A more general distance framework, known as Bregman divergences, is rather used. Bregman divergences D_F are parameterized families of distortions defined on a convex domain $\mathcal{X} \subseteq \mathbb{R}^d$ for strictly convex and differentiable functions F on $int(\mathcal{X})$ (Figure 2) as $D_F(\mathbf{p}, \mathbf{q}) = F(\mathbf{p}) F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \boldsymbol{\nabla}_F(\mathbf{q}) \rangle$, where $\boldsymbol{\nabla}_F$ denotes the gradient operator, and $\langle \cdot, \cdot \rangle$ the inner product (dot product). Informally speaking, a Bregman divergence D_F is the tail of a Taylor expansion of F. Bregman divergences include the squared Euclidean distance $D_F(\mathbf{p}, \mathbf{q}) = ||\mathbf{p} - \mathbf{q}||^2$ ($F(\mathbf{x}) =$ $||\mathbf{x}||^2$), the Kullback-Leibler divergence (also known as the Information divergence) $D_F(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^d p_i \log \frac{p_i}{q_i} (F(\mathbf{x}) =$ $\sum_{i=1}^{d} x_i \log x_i$ the negative entropy defined on the *d*-simplex), and the Itakura-Saito divergence $D_F(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{d} \left(\frac{p_i}{q_i} - \frac{p_i}{q_i}\right)$ $\log \frac{p_i}{q_i} - 1$) $(F(\mathbf{x}) = -\sum_{i=1}^d \log x_i \text{ defined on } \mathbb{R}^d_+)$. Bregman divergences define two families of Bregman balls: $\mathcal{B}_{\mathbf{c},r} =$ $\{\mathbf{x} \in \mathcal{X} : D_F(\mathbf{c}, \mathbf{x}) \leq r\}$ and $\mathcal{B}'_{\mathbf{c},r} = \{\mathbf{x} \in \mathcal{X} : D_F(\mathbf{x}, \mathbf{c}) \leq r\},\$ that are not necessarily convex nor identical (Figure 3). For a point set \mathcal{S} , the two smallest enclosing balls $\mathcal{B}^*(\mathcal{S})$ and $\mathcal{B}^{\prime *}(\mathcal{S})$ have been shown to be unique [4]. Bregman balls have many important applications in machine learning. For example, finding the minimum enclosing Itakura-Saito ball

Figure 2: Visualizing the convex function F and its associated Bregman divergence $D_F(\cdot, \cdot)$.

¹Symmetry and triangle inequality properties may not hold.

Figure 3: Examples of Itakura-Saito (\times 2), squared Euclidean (\times 1) and Kullback-Leibler (\times 2) balls.

is used to find the closest signal to a set of given signals in speech recognition [4].

3. APPROXIMATION ALGORITHMS

Bădoiu and Clarkson [3] introduced the notion of coresets for balls. An ϵ -core-set C for the MINMAX ball of S is a subset $C \subseteq S$ such that the circumcenter **c** of the MINMAX ball of C is such that $d(\mathbf{c}, S) \leq (1 + \epsilon)r^*$, where r^* is the radius of the smallest enclosing ball of S. They show that core-set sizes are *independent* of the dimension, and of size bounded by $\frac{2}{\epsilon}$. Further, they described a simple guaranteed $O(\frac{dn}{\epsilon^2})$ -time $(1 + \epsilon)$ -approximation algorithm. Applying this algorithm to "skewed" divergences does not make sense and yield poor results [4]. In [4], we generalize their approximation algorithm to *arbitrary* Bregman divergences: BBC.

Choose at random $\mathbf{c} \in S$ for t = 1, 2, ..., T do

4. EXPERIMENTS AND CONCLUSION

Figure 4 presents our experiments for Itakura-Saito and Kullback-Leibler divergences. Empirical studies suggest that the theoretical convergence is well below the upper bound $\frac{1}{T}$ of [3]. Figure 5 depicts the observed convergence rate for the Kullback-Leibler divergence. Banerjee et al. [2] proved that MINAVG (D_F) is always the centroid whatever the Bregman divergence, and described a bijection between Bregman divergences and the exponential families in statistics. We exhibit yet another bijection between Bregman divergences and functional averages of core-sets [4].

5. _ REFERENCES

- F. Nielsen and R. Nock. Approximating smallest enclosing balls. In *ICCSA CGA*, pp. 147–157. LNCS #3045, Springer-Verlag, pp. 147–157, 2004.
- [2] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman divergences. In *Journal of Machine Learning* (JMLR), 6:1705–1749, 2005.
- [3] M. Bădoiu and K. L. Clarkson. Smaller core-sets for balls. In ACM-SIAM Sympos. Discret Algorithms, pp. 801-802, 2003. http://cm.bell-labs.com/who/clarkson/
- [4] R. Nock and F. Nielsen. Fitting the smallest enclosing Bregman ball. In *European Conference on Machine Learning* (ECML), LNCS #3720, pp. 649–656, 2005.

Figure 4: Algorithm BBC: Bregman enclosing balls after the first, second, and 10th iteration for the Itakura-Saito and Kullback-Leibler divergences. White lines depict the geodesics followed by c.

Figure 5: Convergence rate for the Kullback-Leibler divergence: n = 1000, d = 2 on 100 runs. Plain curve represent $\frac{D_F(\mathbf{c}^*, \mathbf{c}) + D_F(\mathbf{c}, \mathbf{c}^*)}{2}$, and dashed curve is the $\frac{1}{T}$ upperbound for L_2^2 [3].