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What is information geometry? (1/4) 
Consider a set of parametric probability distributions called the statistical model

What kinds of geometric structures for this family of normal laws?

A few related questions:
• How to interpolate between two normals?
• How to define distances between them?
• Are they several ways to proceed?

If so why? And how to choose the right structure?

Parameter space Λ is the upper plane

2

For example, the set of normal distributions with mean μ and variance σ2



• Which invariance principles shall be satisfied by the geometric structures 
and the distances between statistical models 

• First invariance principle: If we parameter Gaussians by (μ,σ2) or (μ,log(σ)) 
instead of (μ,σ), it should not change their distances nor the interpolating 
paths called ``geodesics''

What is information geometry? (2/4) 

Same family of Gaussians

Thus we need these
two invariance properties:

①

②
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Euclidean distance
between parameters

not invariant!



Differential geometry of statistical models
• To each point of the manifold corresponds a unique parametric distribution: 

• Statistical model is identifiable when

• Often a single global chart = atlas which covers the parameter domain

Several global charts (atlas with a single chart)

In general, need several local charts
to cover a manifold
(eg., two charts for the sphere) 
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Abstract figure
depicting a manifold

Domains
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What is information geometry? (3/4) 
Information geometry: study geometric structures on the manifold induced by 
identifiable statistical models

• Use language of geometry: geodesics, balls, information projection, statistical 
curvature and the tensor calculus. This tensor calculus made possible to study the 
efficiency of statistical estimators to higher order. 

• Study the principles of invariance in statisticcs

• The new dual geometric structure can also be used beyond the statistical scope 
(pure geometry). For example, the information-geometric structures have been used 
to analyzed interior point methods in optimization

• Information geometry was born from the mathematical consideration of the Fisher 
metric and its induced geodesic distance to solve classification and statistical 
hypothesis test tasks 

[Mahalanobis 1936] [Hotelling 1930] [Rao 1945]
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Fisher information IX(θ) 
• Consider a parametric family of laws indexed by D parameters Fisher 

Information Matrix (FIM) = covariance matrix of the score 

• FIM is symmetric and positive semi-definite (could be undefined too)

• FIM is said regular when positive-definite (yields the Fisher metric on manifolds)

• Interpreted as the curvature of the log-likelihood function:  

Radius of the osculating circle corresponds
To the inverse of the absolute curvature

MLE: Maximum Likelihood Estimator

Asymptotic normality of the MLE (Cramér-Rao lower bound)
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For a general function f(x), the curvature is defined as
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Fisher information IX(θ) 



Two usual expressions of the Fisher information

• Using the first two Bartlett identity under the regularity condition that we can 
exchange k times the differentiation with the integration operations, we get

• Allows to rewrite the FIM under it is most famous forms:

① First form:

② Second form (negative of the Hessian of the log-likelihood) :

(Bartlett k=1)

(Bartlett k=2)

(Bartlett k)
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• Motivated by the statistical analysis of human skulls   
collected in various regions. Each skull is characterized by d.

• Mahalanobis (1928, 1936) introduced the following D2 
statistics and divergence entre deux groupes S1 et S2 :

• Nowadays the metric Mahalanobis distance:

Divergence = smooth dissimilarity which may be asymmetric 
and may not satisfy the triangular inequality of metric  

Mahalanobis and his generalized distance

Generalized the Euclidian distance when Σ =I,  the identity matrix

P. C. Mahalanobis
(1893-1972)
Found of the

Indian Statistical Institute (ISI)
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Precision matrix = inverse covariance



Mahalanobis distances: 
Vector spaces equipped with an inner product

• Mahalanobis distance rewritten as

• For a symmetric positive-definite matrix (SPD)  Q,  we define the
inner product by the following bilinear form:

• Inner product induces a norm which in turn induces a metric distance:

• Inner product allows us to define the orthogonality between two vectors 
(and their subtended angle) and the vector lengths:

• This geometry corresponds to the extrinsic geometry of tangent spaces of manifolds
10



• Consider the manifold 

gF : smooth fields of inner products on tangent planes 

• vector components

expressed in the natural basis of the tangent plane 

Induced by the (local) chart  θ(.)

Riemannian Fisher metric tensor field aka Fisher metric

11



Tangent plane representation for a manifold induced 
by a statistical model: Reinterpret the inner product

• On a tangent plane, we can choose any arbitrary basis to express vectors

• Inner product of two vectors is independent of the choice of basis: the 
component vectors depend on the basis but the vectors are geometric objects

• Express a vector v by a representation v(x)

• Basis vectors of Tθ can be chosen as the score vectors:

• The inner product can be reinterpreted as: 

Bartlett I

Expectation 12



• Fisher metric:
• Visualize I(θ) by an ellipsoid
• Visualise the metric tensor field by 

Tissot indicatrix 

Visualizing the Cramer-Rao lower bound  :
• For each grid position (μ,σ) :
- Sample iid N (μ,σ)
- Maximum likelihood estimator of (μ,σ)
- Repeat k times to get an empirical estimator 

of the covariance matrix of the 2D 
parameters.

Converge to the scaled inverse FIM  

Visualizing the Fisher metric and the Cramér–Rao bound

Inverse of the FIM displayed with Tissot indicatrix

Upper plane (μ,σ)  
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Rao distance on the Fisher-Rao manifold

In practice:
• Need to calculated geodesics which are curves locally minimizing the length 

linking two endpoints (equivalently minimize the energy of squared length elements)

• Finding Fisher-Rao geodesics is a non-trivial tasks: No-known closed-form 
for the Fisher-Rao geodesic/distance between  multivariate Gaussians!

Length element

14

Here, γ is the Riemannian geodesic  
(or add a minimizer on all paths γ) 



Invariance under reparameterization of Rao’s distance

Consider two different parameterizations of a statistical model:

Covariance transformation  of the FIM under reparameterization

... However the length element is invariant :

So that the Fisher-Rao distance is invariant :

⮞ This is the first principle of invariance of information geometry
15
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Fisher-Rao geometry of univariate normal distributions

FIM and domains
for various

parameterizations

stretched Poincaré 
half-plane

Fisher metric
Rao’s distance or

Fisher-Rao distance

In general, location-scale families yield a hyperbolic Fisher-Rao geometry

COVARIANT COVARIANT

INVARIANT INVARIANT



Fisher-Rao manifolds: Intrinsic vs extrinsic viewpoints
• A Riemannian manifold of dimension  D  can be embedded as a surface of 

Euclidian space in dimension O(D2) : 

Isometric embedding of the manifold

• For example, Rao’s distance between two Bernoulli distributions or categorial 
distributions can be easily found by embedding the standard simplex on the 
positive orthant of the 1D sphere of radius 2 in R2  by the 2 x square root 
transformation

Parameter space
Intrinsic Fisher-Rao manifold
of dimension 1
(Bernoulli family )

Fisher-Rao manifold
Extrinsic
Embedded in R2
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Covariance transformation of the FIM



• A neural network (like the multilayer perceptrons, MLPs) is 
described by a feed-forward architecteur by means of a large 
number of parameters θ

• Consider stochastic neural networks (SNNs)  with noisy output: 

• Neuromanifold is

• Maximizing the likelihood of a SNN with Gaussian noise amounts to 
minimize the mean quadratic error 

• Given a training set, we learn the parameter of the NNs using 
gradient descent. We can visualize the learning process as a 
trajectory on the neuromanifold modelling the parameter space. 
We observe plateau phenomena when nearning a singularity on 
the manifold where the Fisher information matrix is rank deficient 
or close to (small eigenvalues of the FIM).  

Neuromanifolds and deep learning

Learning trajectory

[SN 2017]

... Eg a Gaussian noise:
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Artificial 
Neural Network
Modelled by a
neuromanifold

Parameter space θ :
Connection weights+bias



Natural gradient: Steepest Riemannian descent
Ordinary gradient descent (GD) method for minimizing a loss function E(.) :

• Ordinary GD depends on the parameterization
• Plateau phenomena near singularities (almost degenerate Fisher information)

Natural gradient is invariant to reparameterization and avoids plateaus: 

Natural gradient descent (NGD)

Natural gradient descent is different from the Riemannien gradient descent which
relies  on the  Riemannian exponential map which is time consuming (retraction)
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Where α = step size

Learning step or rate



• A dual structure  which allows to explain the duality between statistical 
inference like the maximum likelihood estimator and a family of statistical 
models obtained from the maximum entropy principle: Information 
geometry explains the link between Shannon entropy, the Kullback-Leibler
divergence and exponential families in statistics. 

• Second principle of invariance by sufficient statistic

This core dual structure of information geometry:

• Open new perspectives: For example, non-extensive entropies like Tsallis
entropy, complex systems, conformal geometry of deformed exponential 
families, etc.  

• Many applications of information geometry ranging from signal processing 
(Radar, Brain-Machine interfances, etc. ), to medical imaging, to machine 
learning and AI, etc.

What is information geometry?  (4/4)
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x ∈ sample space Ω



Geodesics are defined according to affine connections

• In Riemannian geometry, geodesics are locally length minimizing curves

• Geodesics γ(t) defined by connection ∇ as ∇-autoparallel curves:

where ∇XT is the covariant differentiation operator and X is a vector field

D3 Christoffel symbols Γ which are functions characterizing the affine 
connection ∇ (covariant derivative)

• In Riemannian geometry, we use by default the Levi-Civita connection which is 
derived from the metric tensor field g (thus implicit in Rie. Geo.) :

21



Cylinder is flat, 0 curvature
Sphere has positive constant curvature

Affine connection ∇ :  Visualizing the curvature by the 
∇-parallel transport along smooth loops

A connection is flat is there exists a coordinate system θ for which the 
Christoffel symbols all vanish: Γ(θ)=0
⟶Geodesics are plotted as line segments in the local chart θ

Élie Cartan
1869-1951
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Geodesics of flat connection
=

Line segments



The key dual structure of information geometry

• Given a torsion-free affine connection∇ and a metric tensor g, we can build a 
unique dual torsion free connection ∇* such that the metric is preserved by the 
bi-parallel transport  

• The dual connection of the dual connection is the original connection 

• Question: How to find meaningful dual connections? 
• Method of Amari-Nagaoka (1982) : the statistical expected α-connexions (Chentsov 1972)

• Method of Eguchi (1983): Build dual connections from dual divergences (contrast functions)

such that

23



Some α-connections:

• 0-connection = Levi-Civita metric connection of Fisher metric :  Fisher-Rao mfd

• 1-connection is called the exponential connection [Efron 1975] 

• -1 connection is called the mixture connection                          [Dawid 1975] 

The dual α-geometry of Amari and Nagaoka  

∇α Defined by the Christoffel symbols

Structure 

Dual geometry em used to study the duality between estimators/stat models
24

Dual connections with respect to Fisher metric



Eguchi’s dual geometry induced by a  divergence

• Structure

• Get a divergence (contrast function) from a statistical divergence 
between parametric distributions. For example,  the Kullback-Leibler
divergence between two parametric distributions from a family P: 

• Eguchi Levi-Civita metric associated to D is  

• Eguchi connection associated to D 

• Define the dual divergence en by swapping the parameter order:

• Get dual affine connections 

25

Parametric divergence
contrast divergence

Statistical divergence

Levi-Civita connection is recovered from

Divergence information geometry
(self dual when divergence is symmetric)

-



f-divergences and their induced connections
• Relative entropy or the Kullback-Leibler divergence belongs to a broader 

class of dissimilarities : f-divergences [Csiszar'63] [Ali&Silvey'66]

• Generator f(.) is convex, strictly convex at 1. 

WLOG, fix f'(1)=0 et f''(1)=1 to get a standard  f-divergence

• Dual f-divergence  with

• The Eguchi induced metric tensor of std f-divergences = Fisher : 

• Induced f-connections wrt to f-divergences between distributions of a 
family P  match with the α-connections of Amari and Nagaoka :

26

Separable divergence



Statistical distances and information monotonicity
• Consider a transformation Y=t(X) on random variables between two 

measurable spaces (deterministic or stochastic, Markov kernel):

• Second principle of invariance: We should not increase the power of 
discrimination of divergences by a transformation:

• Fisher information monotonicity:

• Equality holds if and only if t(X) is a sufficient statistic

• A sufficient statistic summarizes all necessary information for inference 
on the parameter θ (statistical lossless compression): 

• Theorem: f-divergences are the only separable monotone divergences
27



Exponential families have finite dim. sufficient statistic vector
• An exponential family is a set of parametric distributions with density which 

can be expressed canonically as :

whereF is an analytic and stricty convexe and differentiable function:

Natural parameter space for full EFs

(eg., Lebesgue or counting measure)

F :  log partition function or cumulant function 
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By default, scalar product = Euclidean inner product



Information geometry of exponential families: Dually flat

• Statistical model:  natural exp. family

or more generally

• Exponential connection and dual mixture connection are both flat:  

Dually flat spaces of exponential families  :

• Fisher information metric is a Hessian metric 

• By using the Legendre-Fenchel transformation, we get a dual coordinate 
system eta

• Moment or mean parameterization:

• Fisher information matrix can be expressed in the moment parameter:
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• The primal and dual geodesics are line segments in the affine theta and eta coordinate 
system:   

• In dually flat spaces, there is a canonical divergence: The Bregman divergence. For 
exponential families, this Bregman divergence amounts to the dual divergence of the 
Kullback-Leibler divergence (=reverse KLD) between corresponding densities : 

Dually flat spaces with Hessian structures

30

Primal geodesic

Dual geodesic



Visualizing a Bregman divergence as a vertical gap
• Let F(θ) be a strictly convex and differentiable function defined on an open 

convex domain ϴ

• Bregman divergence interpreted as the vertical gap between

point (θ1, F(θ1)) and the linear approximation of F(θ) at θ2 evaluated at θ1 :

[Bregman 1967]



• Dual Legendre-type functions

• Convex conjugate of F  is 

• Fenchel-Young inequality :

with equality holding if and only if

• Fenchel-Young divergence  make use of the mixed coordinate systems  θ et 
η to express a Bregman  divergence as                                              : 

Mixed coordinates and the Legendre-Fenchel divergence

Gradient
are inverse

of each other



Dual Bregman and dual Fenchel-Young divergences

• Identity for dual Bregman divergences:

(The Bregman divergence coincides with the reverse Bregman divergence for the convex 
dual generator)

• By definition, dual divergence = divergence on swapped parameter order:

• Thus in a dually flat space, we can write the canonical divergence as :

On a Bregman manifold, we can thus get 2n equivalent formula with n terms



Generalized Pythagoras theorem in dually flat spaces
Generalized Pythagoras’ theorem Pythagoras’ theorem in 

the Euclidian geometry
Self-dual

orthogonality condition:
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Identity of Bregman divergence with three parameters



Information projection uniqueness theorems
• Define the e-projection and the m-projection of a 

point onto a submanifold with respect to the affine 
connections  ∇e (∇+1) and ∇m (∇-1)  where the 
orthogonality is given by the Fisher information  gF

• A submanifold is e-flat if and only if when expressed in 
the  θ-coordinate system, we get an affine subspace.   

• Similar definition for a  m-flat submanifold wrt η

• Generalized Pythagoras’ theorem allows to prove that 
the  e-projection of a point onto a n-flat submanifold 
is unique and corresponds the minimization of a 
Bregman divergence. Similarly, m-projection of a point 
onto a e-flat submanifold is unique and can be obtained as the 
minimization wrt to the dual Bregman divergence 
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Maximum likelihood estimator as a m-projection
Let {x1, ..., xn} be i.i.d variates of an exponential family P (e-flat)
The empirical distribution is called the observed point

Maximum likelihood estimator:

By considering an arbitrary  divergence D[.:.] instead of the Kullback-Leibler
divergence we get D-estimators. MLE is interpreted as the KLD-estimator

36

MLE is equivalent to this optimization problem:
Canonical divergence:



Maximum entropy and e-projection
• Given observations with E[ti(x)]=mi, the maximum entropy principle of Jaynes 

estimate the distribution which maximizes Shannon entropy under the 
moment contraints

• Set of distributions maximizing entropy under the constraints E[t(x)]=η for all η
form an exponential family

• For example, the MaxEnt distributions  for E[x]=η1 et E[x2]= η2 yield the family 
of normal distributions  (univariate of order 2, dim. of natural parameter space) 

37

MaxEnt problem amounts to
Canonical dual divergence:



Alternating projections: The em algorithm (= ∇e∇m)
• Find the minimal distance between two submanifolds

= Solve jointly the following minimization:

• When a submanifold P is m-flat and the submanifold Q 
is  e-flat then we get  unique sequence of  e/m 
alternating projections. Starting from q1 we repeat:

• converge towards the pair of points which minimize 
the Kullback-Leibler divergence between P and  Q :

The em algorithm is useful for :
- Interpreting the EM alg. in statistics
- To analyze generative models in 
deep learning like the VAEs or GANs

e-projection         : 

m-projection        :



Bregman cyclic projections (in a chart)

• Let  n convex objects O1, ..., On be defined in a 

θ-coordinate system on a convex ϴ

• Goal: find a common point in the intersection of these
objects if intersection is non-void

• Repeat cyclically the Bregman projections:

• This sequence converges towards a common point 
for non-empty intersection



Chernoff information and Bayesian hypothesis tests

When P1 and P2 are two densities of a same 
exponential family, we have:

• Let P1 and P2 be two distributions, and take n  i. i. d. variates  x1, ..., xn

from the statistical mixture model 1/2 P1 + 1/2 P2

• Which rule to classify these n samples with labels P1 or P2?
• Best rule minimizing the probability of error is maximum a posteriori (MAP)
• Probability of error is bounded by

where  C  is the following Chernoff divergence (or Chernoff information) 

where α* is the optimal exponent in (0,1) 2207.03745



Chernoff information for multiple  hypothesis

Exponential family manifold (dually flat)
Bregman Voronoi diagram

Standard simplex (categorial distributions)
Voronoi diagram wrt
Kullback-Leibler divergence

Closest pair of points
wrt Chernoff divergence

Computational geometry to calculate the Bregman Voronoi diagrams

Probability of error:



Natural gradient in dually flat spaces

On a global Hessian manifold (Bregman manifold induced by a convex function F), 
the Fisher information matrix can be expressed  

Find many applications in optimization in machine learning:

Natural evolution strategies (NES), Bayesian inference, etc.

Natural gradient
wrt θ :

Définition du paramètre moment 

Ordinary gradient
wrt η
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Chain rule derivation



To summarize information geometry in 1 slide!
• Geometric structures for a parametric family of 

distributions: the statistical model
• Invariance wrt distribution parameterizations 

(θ) and sufficient statistics (on sample space Ω). 
Distance cannot increase by a measurable 
transformation Y=t(X), and does not change only 
if t is a sufficient transformation

• Fisher-Rao geometry equipped with the Rao 
Riemannian geodesic length distance

• Dual α-geometry (they are not necessarily 
associated divergences, except when dually flat)

• Interpret statistical estimator (maximum 
likelihood estimator) and statistical model 
(maximum entropy): Pythagoras’ theorem and 
information projections in dually flat spaces
(e.g., exponential/mixture families)

Dual α-geometry

Fisher-Rao Riemannian geometry
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Thank you (1/2)
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Fresh from the press 
(July 2022)
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