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Which geometric structures for statistical models? 

Some benefits of the geometric approach: 

① foster geometric intuition & creativity!

② leverage most advanced geometric calculus with coordinate-free tensors

③ may get exact geometric characterization when non-closed algebraic formula

④ obtain new pure geometry for mathematics: dual statistical structures

Voronoi diagrams Information 
projection

Mid distribution
information fusion

model 
evolution



Geometric structures of statistical models & uses?

• Model identifiability:

Geometry of 
convex functions

Dual α-geometry of 
statistical models/divergences

Algebraic geometry
resolving singularities

Geometry of 
domains Θ/manifolds

Geometry of 
regular statistical models

statistical manifolds

Geometry of singular 
hierarchical models
(mixtures, DNNs)

Non-parametric
statistical models
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Function spaces
(approximations)



Outline

1. Fisher-Rao manifolds & numerical Fisher-Rao Gaussian distances

2. Hilbert geometry & fast distances between multivariate 
Gaussians

3. Bregman manifolds and some usages for statistical models:
The family of categorical distributions view either as:

• A mixture family manifold : Jensen-Shannon centroid

• An exponential family manifold: Chernoff information/Chernoff point

Overview of three geometric structures for the statistical models of 
normal distributions and categorical distributions with applications:



Fisher-Rao manifolds

Riemannian geometry

[Hotelling 1930, Rao 1945]

Photo 1956

In the beginning…

``Killer’’
application1854 1915, GR

Length element
ds



Fisher-Rao manifolds
• Manifold viewpoint: Parameter space Θ interpreted as a global 

coordinate chart of a manifold M (vs general case in geometry)

• Fisher metric: Consider Fisher information matrix of statistical 
models as metric tensor* field g in θ-coordinate system

• Metric tensor g(.,.) provides a way to measure vector lengths, angle 
between vectors (orthogonality)

• Length element is independent of parameterization:

• Fisher-Rao distance is length* of shortest path ( = Riemannian 
distance): integrate length element along Riemannian geodesic

Metric distance satisfying the triangular inequality



• Riemannian modeling (M=PΘ,gFisher) allows to define various 
curvature notions: sectional curvatures (4D Riemann-Christoffel 
curvature tensor,  Ricci curvature tensor, Ricci scalar tensors, etc.)

• Example 1 : Family of categorical distributions with m+1 choices

• Example 2 : Family of univariate normal distributions (m=2)

• Example 3 : location families*  

m-dim location parameter l

Fisher-Rao distances: Curvatures in Statistics

Positive sectional curvatures:
spherical geometry

Negative sectional curvatures:
hyperbolic geometry

Zero sectional curvatures:
Euclidean geometry



Problem: Tractability of Fisher-Rao geodesics/distances

• Need (1) to solve geodesic ODE equation 

and (2) integrate length element along the geodesic

• Solve geodesic ODE either with initial value conditions (IVC) or 
with boundary value conditions (BVC)

Christoffel symbols:
derived from metric tensor g



Tractability of Fisher-Rao distance: 
Yet the open case of the multivariate normal family!

Non-constant sectional curvatures which can also be positive!
(geodesics are always unique when negative sectional curvatures)

Geodesic ODE:

Bivariate normal
(represented by ellipsoids)  

[BV: Kobayashi 2023][IV: Eriksen 1987]

Solve ODE with 
initial values (IV) or

boundary values (BV)

Fisher length:



Fisher-Rao geodesics with initial values 
emanating from the standard bivariate Gaussian

Blue vector is initial  tangent vector for μ0

Green vectors are the 2 eigenvectors of the
initial  tangent vector for Σ0  ,  symmetric matrix

[IV: Eriksen 1987]



Fisher-Rao geodesics with boundary  

Red ellipsoids are the boundary conditions:
That is bivariate normal distributions 
(μ0,Σ0) and (μ1,Σ1)

[BV: Kobayashi 2023]

Technically, MVN Fisher-Rao geodesic:
Riemannian submersion of a horizontal geodesic 
of a Riemannian symmetric space in 2d+1 dimension



No known closed-form for Fisher-Rao 
between multivariate normal distributions

• May always consider distance to standard normal distribution

because of the invariance under action of the positive affine group:

• In general, hard to prove uniqueness of geodesics when some sectional 
curvatures are positive: The case of MVN Fisher-Rao manifold!!!

Hence, we have  



Special case: Centered multivariate normals
Closed form geodesics and Fisher-Rao distances

[James 1973]
[Siegel 1964]

• Submanifold of MVNs with constant mean is totally geodesic

• Fisher-Rao geodesics:

• Fisher-Rao distance:

• Require to compute all eigenvalues (costly)
• Because of sum of log2 , we have

ρ(P1,P2)=ρ(P1
-1,P2

-1) : invariance to matrix inversion



Embedding manifold Gaussian/MVN(d) onto SPD(d+1)
[Calvo & Oller 1990]

The diffeomorphisms {fβ} foliates the SPD cone P(d+1)

Using 1/2 trace metric in P(d+1), get the following metrics on MVN(d):

When  β=1 (constant), get  Fisher isometric embedding of 
MVN(d) into SPD(d+1):

β=1



Fisher-Rao MVN distance: A lower bound

[Calvo & Oller 1990]

• Embed isometrically the Gaussian manifold N(d) into a submanifold 
of codimension 1 into the SPD cone of dimension d+1 but non-totally geodesic:

• Use SPD geodesic in the (d+1)-dimensional cone:

• SPD path is of length necessarily smaller than the MVN geodesic 
in submanifold f(N). Thus get a lower bound on Rao distance:

• Cut MVN geodesics and apply lower bound piecewise : Get fine lower bound!



Fisher-Rao MVN distance: An upper bound

• Geodesics are 1d totally geodesic submanifolds

• Cut the geodesics in many small parts using T+1 geodesic points

• Upper bound for nearby points Fisher-Rao distance by the square 
root of Jeffreys divergence 

• Fine upper bound!



(1+ε)-approximation of Fisher-Rao distance 
between multivariate normal distributions

ApproxRaoDistMVN(N0,N1,ε>0): // multiplicative factor

LB=CalvoOllerLowerBound(N0,N1);
UB=SqrtJeffreysUpperBound(N0,N1);

if (UB/LB>1+ε)
{/* N is midpoint geodesic */
N=GeodesicMVNMidpoint(N0,N1);
return ApproxRaoDistMVN(N0,N,ε)+ApproxRaoDistMVN(N,N1,ε);}

else
return UB;

Then we can convert multiplicative approximation factor by an additive approximation factor 

2403.10089



Implemented 

in library pyBregMan

python Bregman Manifold

https://franknielsen.github.io/pyBregMan/index.html

Precision ε=10-6 with 

192 geodesic discretization steps

Thus MVN Fisher-Rao distance can
be finely approximated with guarantees
but slow…

Other MVN fast distances?



Hilbert geometry 
& 

Birkhoff cone geometry

Projective/Finsler geometry of convex domains

2203.11434
ICML TAG-ML 2023



Hilbert distance: The log cross-ratio metric

ρΩ is a metric distance which satisfies the triangle inequality:

Straight lines are geodesics
=satisfying triangle equality
but geodesics are not unique

Consider an open bounded convex set Ω

Cross-ratio CR

For example: 
open standard simplex



Hilbert geometry on the probability simplex: 
Balls have hexagonal Euclidean shapes

2203.11434

Only when domain is a simplex,
Hilbert geometry amounts 
to a normed vector space
with polyhedral norm (hexagonal metric)

Poly. norm vector spaceHilbert simplex geometry

Fast to compute



Birkhoff: Hilbert projective distance  in a cone

Cone defines a partial ordering:

Birkhoff distance:

Cone:

where

Birkhoff projective distance:

which becomes the Hilbert metric distance on Ω: 



New fast distances between multivariate normals

SPD(d+1) cone

Gaussian(d) manifold

Hilbert geometry

Use Calvo & Oller’s diffeometric/isometric cone embeddings f(μ,Σ)



New fast distance between multivariate normals

• Use Calvo & Oller isometric cone embedding f(μ,Σ)

• In SPD cone, Hilbert projective metric distance

• Pullback the geodesics and distance into the Gaussian manifold

Projective metric on SPD

But proper metric on f(N)

LERP pregeodesics
Straight line edge!



Pullback Hilbert distance/geodesics between 
MVNs
Only require to calculate 2 extreme eigenvalues (power method iteration)

Hilbert-Fisher-Rao distance



Comparisons Fisher-Rao vs Fisher-Rao-Hilbert geodesics

Boundary conditions
Fast Fisher-Rao-Hilbert distance (extreme SPD matrix eigenvalues)
Slow guaranteed Fisher-Rao distance



Bregman manifolds:
Geometry of convex conjugates

Dual Hessian geometry

[Koszul’64, Shima’70’s, Amari&Nagaoka’80’s]



Bregman divergence  (1960’s)
• Let F: Θ⊆ℝm→ℝ be a strictly convex and smooth 

real-valued function on a Hilbert space <.,.>

Bregman divergence BF: Θ x Int(Θ) →ℝ

• Unify squared Euclidean divergence with Kullback-Leibler divergence F(θ)= Σi θi

log(θi) and Itakura-Saito divergence F(θ)= Σi -log(θi). 
• The L22, KLD and ISD belong to a single family of β-divergences, learn β

Lev M. Bregman
(1941 - 2023)

Photo: courtesy of 

Alexander Fradkov

28

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2) >

Popular in geometry, information theory, signal/sound processing! 



Bregman divergences in machine learning…
• Kullback-Leibler divergence between two probability densities:

DKL[p(x):q(x)]= ∫ p(x) log (p(x)/q(x)) dμ(x)
difficult to calculate in closed form because of the integral ∫  …

• But the Kullback-Leibler divergence between two probability densities of 
an exponential family like Gaussian, Poisson, Dirichlet, Gamma/Beta, 
Wishart                             

amount to a reverse Bregman divergence BF
rev(θ1 : θ2):= BF(θ2 : θ1)

DKL[p(x|θ1) : p(x|θ2) ]=BF
rev(θ1 : θ2)= BF(θ2 : θ1)

⇒ Easy calculations

• Notice divergence between parameters BF vs divergence between 
functions KL
Azoury, Katy S., and Manfred K. Warmuth. "Relative loss bounds for on-line density estimation with the exponential 
family of distributions." Machine learning 43 (2001)

p(x| θ) ∝ exp(<x, θ >)

29

Bypass the ∫, ∇F easy!



Convex duality via Legendre-Fenchel transform
• Legendre-Fenchel transform of a convex function F: 

F*(η)=sup θ ∈ ϴ {< θ, η >-F(θ)}

• Consider “nice convex functions” = Legendre-type functions (ϴ,F(θ)) :  
(i) ϴ open, and  (ii) lim θ→ ∂ϴ ‖ ∇F (θ) ‖=∞

Then we get:
❶  reciprocal gradient maps η= ∇F (θ) and θ=∇F* (η), ∇F*=(∇F)-1

❷  conjugation yields (H,F*(η))   of Legendre type 
❸  biconjugation is an involution:  (H,F*(η))*= (H*=ϴ,F**=F(θ)) 

• Convex conjugate: F*(η)= < ∇F-1 (η), η >-F(∇F-1(η)) since η= ∇F (θ)
30



Duo Bregman divergences: 
Generalize BDs with a pair of generators

F1(θ) ≥  F2(θ)

• Recover Bregman divergence when  F1(θ) =  F2(θ) = F(θ)

• Only pseudo-divergence because BF1,F2(θ’’: θ’’) positive, not zero
31

One generator majorizes the other one:

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2)>

Then

≥ BF(θ: θ’)

θ’’

BF1,F2(θ’’:θ’’)



KLD between nested exponential families 
amount to duo Bregman pseudo divergences

• Consider an exponential family on support X1:

p(x| θ) = exp(<x, θ >-F1(θ)) dμ(x)

with cumulant function F1(θ)=log ∫X1 exp(<x, θ >) dμ(x) 

• Another exponential family with nested supports:  X1 ⊆ X2  

q(x| θ) = exp(<x, θ >-F2(θ)) dμ(x)

is an exponential family with F2(θ)=log ∫X2 exp(<x, θ >) dμ(x) ≥ F1(θ)

• Then KLD amounts to a reverse duo Bregman pseudo-divergence:

DKL[p(x| θ1) : q(x| θ2) ]= BF2,F1
rev(θ1: θ2)=BF2,F1(θ2: θ1)

"Statistical divergences between densities of truncated exponential families with nested supports: Duo Bregman and duo 
Jensen divergences." Entropy 24.3 (2022)

X1

X2

p(x| θ) 

q(x| θ) 

0 log(0/0)=0

DKL[p(x):q(x)]= ∫ p(x) log (p(x)/q(x)) dμ(x)

q(x| θ)» p(x| θ) 

32



Dual geometry of smooth Legendre-type functions

flat flat

usually
non-flat

∇-geodesic ODE:



Dual geometry of Bregman manifolds: 
Convex conjugates (F, F*) yield dual flat connections

• A connection ∇ is flat 
if there exists a 
coordinate systemθ
such that all 
Christoffel symbols 
vanish: Γ (θ) =0.

• θ is called ∇ –affine 
coordinate system 

• ∇-geodesic solves as 
line segments

(M,F →g(θ)= ∇2F(θ), F → ∇ , F* → ∇*)

"The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.
34



Example: Bregman manifold of multivariate Gaussians

Bregman divergence = reverse  Kullback-Leibler divergence

with respect to natural parameters:

Cumulant function is convex:
(M,g, ∇ , ∇*) 

35

e-geodesic

m-geodesic beware not mixture of Gaussians!

Fisher-Rao geodesic
…but not convex wrt (μΣ) parameters



Jensen difference/Jensen divergence 
(also called Burbea-Rao divergences)

The Burbea-Rao and Bhattacharyya centroids." IEEE Transactions on Information Theory (2011)
A family of statistical symmetric divergences based on Jensen's inequality, arXiv:1009.4004 

• Introduced by Burbea and Rao

• Vertical gap induced by Jensen inequality

Asymptotic scaled skew Jensen divergences amount 
to forward/reverse Bregman divergences

n-point Jensen diversity index:

skewed Jensen divergence



Right Bregman centroid: Bregman/Jensen decomposition

Right Bregman centroid minimizes

From Bregman information-bias decomposition

We get                 with                           . Right Bregman centroid is 
unique.

Furthermore, a D-centroid minimizing                                             at the 
center of mass of parameters is necessarily a Bregman divergence: 
exhaustive propertyBanerjee and Wang: On the optimality of conditional expectation as a Bregman predictor 

IEEE Transactions on Information Theory 51.7 (2005)



The weighted average right Bregman divergence (BD)

decomposes into the sum of a Bregman information (aka Jensen diversity index) 
and a bias divergence term:

where                            is a right Bregman centroid and the Bregman information 
generalizing variance when BD is squared Euclidean distance is:

Bregman information-bias decomposition

Sided and symmetrized Bregman centroids. IEEE Transactions on Information Theory 55.6 (2009)



Jensen-Bregman divergences = Jensen div.

• Jensen-Bregman divergence is Jensen-Shannon symmetrization of Bregman 
divergence:

amounts to a Jensen divergence also called Burbea-Rao divergence.

39
Skew Jensen-Bregman Voronoi diagrams." Transactions Voronoi Diagrams and Delaunay Triangulation (2011)
On the Jensen–Shannon symmetrization of distances relying on abstract means. Entropy 21.5 (2019)



Categorical model as a mixture family

• Set of categorical distributions form a mixture family M, 

a Bregman manifold for the negentropy generator

• Given a set of n discrete distributions (categorical distributions, 
normalized histograms), calculate its Jensen-Shannon centroid

On a generalization of the Jensen–Shannon divergence and the Jensen–Shannon centroid, Entropy 22.2 (2020)

A mixture family is closed 
under mixture operations

40

Legendre
Convex

generator



Dual geodesics and Fisher-Rao geodesics 
on the categorical manifold

41

Exponential ∇-geodesic

Mixture ∇*-geodesic

Fisher-Rao ∇g-geodesic (Levi-Civita )

Δ1

θ

Coordinate chart
Embedded manifold



Amari-Nagaoka dual ±α-geometry

± 1-geometry or em-geometry ± α-geometry

Derived from
Amari-Chentsov

cubic tensor



Jensen-Shannon centroid for mixture families

• Jensen-Shannon divergence between two mixtures amounts to a 
Jensen divergence:

• Task: Given a set of discrete distributions (categorical distributions, 
normalized histograms), calculate its Jensen-Shannon centroid:

Need to minimize a difference of convex functions
DCA or ConCave Convex algorithm or DCA!

43

F is negentropy
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Jensen–Shannon centroid

Jeffreys/SKL centroid

Jensen–Shannon centroid
do not require same support



Family of categorical distributions is both
an exponential family and a mixture family!

45

Dual of a categorical exponential family is a categorical mixture family,
and vice versa

*



p(x| θ) ∝ exp(<x, θ >)

46

Example:
Gaussian manifold

Generalized
to
exponential family
manifold

Exponential arc

Exponential arc

Bisector

Bisector



Chernoff point

Unique intersection point of 
the exponential geodesic 

with
the dual mixture bisector

Here 2D probability simplex of the family of categorical distributions with 3 choices



Summary:  Geometries of statistical models in ML
• Fisher-Rao manifolds = Riemannian manifolds wrt Fisher metrics. 

Fisher-Rao distance = Riemannian distance, metric distance

Problems: Are geodesics unique? Fisher-Rao distance in closed form?

→ Get fine approximations of Fisher-Rao between MVNs.

• Hilbert geometry on bounded convex domains and  Birkhoff geometry on 
cones, diffeomorphic and metric embeddings of MVN in the SPD cone:

  → Get new fast distances between MVNs, straight line geodesics

• Bregman manifolds = dual geometry of  convex functions  
• Mixture families:  F=negentropy, Jensen-Shannon centroid = Jensen centroid
• Exponential families: F=cumulant function or Z=partition functions 
• Duo Bregman divergences and KLD between truncated exponential family densities
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pyBregMan
A Python library for geometric computing on Bregman Manifolds

Joint work of Frank Nielsen and Alexander Soen

Chernoff point

Bregman/Jensen centroids

Jensen-Shannon centroid

Inductive AHM mean
Geometric matrix mean

https://franknielsen.github.io/pyBregMan/



7th Geometric Science of Information (GSI)
https://conference-gsi.org/

Deadline (8-page LNCS paper): April 2nd, 2025

Saint-Malo, convention center Gala: Mont Saint Michel, France



• Geometric Learning and Differential Invariants on 
Homogeneous Spaces

• Statistical Manifolds and Hessian information geometry

• Renyi Entropy & Information

• Geometric Foliation Structures of Dissipation and Machine 
Learning

• Geometric Structures of Quantum Information & Processing

• Applied Geometric Learning

• Probability, Information and  

• Divergences in Statistics and Machine Learning

• Geometric Statistics

• Geometric Methods in Hybrid Classical/Quantum Systems 

• Computational Information Geometry and Divergences

• Geometric Methods in Thermodynamics

• The Geometry of Classical & Quantum States

• Geometric Mechanics

• Stochastic Geometric Dynamics

• New trends in Nonholonomic Systems

• Learning of Dynamic Processes

• Neurogeometry

• PINN (Physics-Informed Neural Network)  with Geometric 

Structures

• Lie Groups in Machine Learning

• Information Geometry, Toric Manifold  

• A symplectic approach to differential equations

• Lie Group Based Method in Robotics & Kalman Filters

• Geometric and Analytical Aspects of Quantization and Non-

Commutative Harmonic Analysis on Lie Groups

• Probability and Statistics on manifolds

• Deep learning: Methods, Analysis and Applications to 

Mechanical Systems

• Integrable Systems and Information Geometry  

• Computing Geometry & Algebraic Statistics

• Geometric Green & Quantum Machine Learning

• Others

Topics of the 7th Geometric Science of Information: GSI’25
 



Thank you
Quoting Sir Michael Atiyah on thinking geometrically:

‘Algebra is the offer made by the devil to the mathematician. 
The devil says: "I will give you this powerful machine, it will 
answer any question you like. All you need to do is give me 
your soul: give up geometry and you will have this marvellous
machine.“’

Michael  Atiyah

"Mathematics in the 20th century."

Bulletin of the London Mathematical 
Society 34.1 (2002): 1-15.





Some references for geometric structures
• Fisher-Rao manifolds: 2403.10089, 2302.08175

• Hilbert/Birkhoff geometry:
• Simplex domain (categorical distributions): 2203.11434
• Elliptope domain (correlation matrices): 1704.00454
• Symmetric positive-definite cone (SPDs, MVNs): 2307.10644
• Siegel domain, complex domain including SPD: 2004.08160

• Bregman manifolds:
• Dual geometry of convex conjugate functions: 1910.03935
• Applications to mixture families (Jensen-Shannon centroid): 1912.00610
• Applications to exponential families (Chernoff information): 2207.03745

• Dual statistical structures:
• "The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.
• "An elementary introduction to information geometry." Entropy 22.10 (2020): 1100.

• Semi-Riemannian structures (stochastic NNs): 1905.11027
https://franknielsen.github.io/geometrymodels.html
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Some generalizations of Bregman divergences

Bregman divergence

Duo Bregman pseudo-divergence

Bregman chord divergence

Skew scaled Jensen or Burbea-Rao divergence

Bregman tangent divergence

Bregman-Chernoff divergence

Jensen-Bregman divergence

Duo Fenchel-Young pseudo-divergence

Dually flat divergence & contrast function

≡

=

=

≅

≅  forα → 0

(M,N)-Bregman
divergence

(A,A)

(A,A)

(M,N)-Jensen  divergence

Conformal 
Bregman divergence

But also matrix Bregman divergence, functional Bregman divergence, submodular Bregman divergence, etc.

JS-symmetrization

No ∇F

No ∇F

(ρ, τ)

total Bregman div.

Quasi-convex Bregman

Stochastic Bregman divergence



• Consider the cone of symmetric positive-definite matrices (SPD cone), 
and extend the AHM to SPD matrices:

• Sequence with A0=X and H0=Y  converge quadratically to matrix geometric mean:

Inductive matrix arithmetic-harmonic mean (AHM) 

which is also the Riemannian center of mass wrt the trace metric:

←arithmetic mean 

←harmonic mean 

Riemannian distance

[Nakamura 2001]

What is… an Inductive Mean? Notices of the American Mathematical Society 2023



Geometric interpretation of the AHM matrix mean

Primal geodesic midpoint is the arithmetic center  wrt Euclidean metric
Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric
Levi-Civita geodesic midpoint is geometric Karcher mean 

Dually flat space (SPD, gG, ∇A, ∇H) 

[Nakamura 2001]

(SPD, gG, ∇A, ∇H) is a dually flat space, ∇G is Levi-Civita connection

Here, all 3 connections are metric connections

Repeat:



Symmetrized Bregman centroid 
Use convex duality + dual Bregman information-bias decompositions:

Amounts to simpler dual optimization problems on the sided Bregman 
centroids (2-point optimization vs n-point optimization problems)



Two generalizations of m-Chernoff information
• Historically, Chernoff information defined to upper bound the probability of 

error in Bayesian hypothesis testing, found later applications in information 
fusion, distributed estimation, etc.

• Generalization to m hypothesis: ① minimum pairwise Chernoff information

• Interpret Chernoff information as ②  radius of minimum enclosing 
Kullback-Leibler divergence,   extend Chernoff information to m  

①
②

Revisiting Chernoff information with likelihood ratio exponential families. Entropy, 24(10), 2022



Special case:
Submanifolds of constant covariance matrices

not totally geodesics NΣ0
(hence upper bounds Fisher-Rao)

totally geodesics Nμ0
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ConCave Convex algorithm or DCA
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