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Outline of this talk

Introduction

ML & Computational Geometry: A long and fruitful history! 

1. Fisher-Rao information geometry                     

Natural-gradient descent

2. Bregman information geometry                          
Chernoff information on the exponential family manifold

Some perspectives



Introduction:

Machine Learning & 
Computational Geometry: 

A long and fruitful cooperation from the start!



Learning machines:  Perceptron & geometry (1960’s)

MIT Press, 3rd 1987
Connectedness…

Connectionism machine
≠ von Neumann machine

Marvin Minsky and Seymour Papert:

Perceptrons: An Introduction to Computational Geometry, 1969

MIT Press, 1969

XOR cannot be learned… NN winter…

Decision boundary:
geometric hyperplane separator

1969



Linear separator

Kernel machines

Feature map

1970 1992

Non-linear separator
(Kernel trick, RKHS)

Inner product
(Hilbert space)

Support vector

Geometric learning machines: SVMs (1970’s/1992)

Theory of VC-dimension = expressive power of (geometric) separators

1998



Dual SVM quadratic program amounts to solve a 
Smallest Enclosing Ball (= SEB): Computational geometry !

Smallest enclosing ball:
``Smallest’’ ball with respect to

radius or set inclusion

Approximating Smallest Enclosing Balls with Applications to Machine Learning, IJGA 2009 

Widest margin hyperplane separator

New 
insight!



Information geometry in a nutshell
• Born as a mathematical curiosity [Hotelling 1930] [Rao 1945]

Impacted by the success of Riemannian geometry in Einstein’s general relativity (GR)

• Information geometry studies the geometric structures and statistical 
invariance (sufficient statistics/Markov kernels) of a family of probability 
distributions: the statistical model

+ demonstrate its use in information sciences: statistics, ML, etc.

• Geometric method: coordinate-free objects with computing operating in (local) 
coordinate systems: free to choose coordinates to ease the computations!

• Dualistic structures pioneered by Prof. Shun-ichi Amari & statistical invariance 
pioneered by Chenstov

[Amari 1985] [Amari & Nagaoka 2000] [Amari 2016]                 [Chentsov 1982]



1. Fisher-Rao information geometry
Riemannian geometry

The fabric of information geometry
and the untangling of its geometry, divergence, statistical models

geometry
divergence statistics

models



• A parametric family of distributions

• Fisher information matrix is positive-semidefinite matrix:
FIM = Covariance of the score:

• Score:

• Under independence, Fisher information is additive:

Fisher information matrix (FIM)

Positive 
semi-definite 

matrix



Fisher information matrix
• Under regularity conditions I = FIM type 1 :

• Under regularity conditions II = FIM type 2 :

Sun & N, Relative Fisher information and natural gradient for learning large modular models, ICML 2017
Soen and Sun, On the Variance of the Fisher Information for Deep Learning, NeurIPS 2021

FIM can be singular in hierarchical models like mixtures & neural networks 
FIM can be infinite (irregular models, e.g., support depend on parameter)
Difficult to estimate FIMs for NNs: 

Spectral FIM properties from random matrix theory RMT), relative FIM



Non-
asymptotic

Fisher information and Cramér-Rao lower bound

N., Cramér-Rao lower bound and information geometry, Connected at Infinity II, 2013

• The covariance of any unbiased 
estimator is lower bounded by

• Since Fisher information is additive:

• Accuracy estimators depend on 
model parameters: Fisher efficiency

Inverse Fisher Information Matrix (IFIM)

Empirical estimator covariance matrix
IFIM  (Tissot indicatrix)



Rao’s length distance: Riemannian metric distance

C. R. Rao with 
Sir R. Fisher in 1956

For example, Rao distance in the probability simplex:
Square root
embedding

(M,gF): Riemannian manifold 
Parameter space equipped with the Fisher information metric gF

⟶need to calculate Riemannian geodesics θ(t):
….characterized as (locally) shortest curves in Riemannian geometry

Standard simplex

Positive orthant
of the sphere



Reparameterization of the statistical model:
Invariance, covariance and contravariance

• Smooth reparameterization of the model:

• The line element ds is invariant and hence Rao distance is invariant:

• Fisher information matrix is covariant:

• Cramér-Rao bound is contravariant:

• Jacobian calculus:



In practice, calculating Rao’s distance can be difficult!

1. Need to solve the Ordinary Differential Equation (ODE) for finding the 
geodesic:

2.     Need to integrate the infinitesimal length elements ds along the geodesics

No closed form of Rao’s distance  between multivariate normals! (MVNs)
Two reasons for intractability:

⟶use  the Levi-Civita connection  derived from the metric tensor g
In general, geodesics depend on choice of the connection via Γ.

But easy to solve
when Γ=0:

Line segments!



Natural-gradient descent: Steepest Riemannian descent
Ordinary gradient descent:

• depends on the choice of the  parameterization
• plateau phenomena near singularities

Amari, Natural gradient works efficiently in learning." Neural computation, 1998
Sun & N, Relative Fisher information and natural gradient for learning large modular models, ICML 2017
Li et al., Tractable structured natural gradient descent using local parameterizations, ICML 2021

Natural gradient descent with natural gradient :

• NG invariant to reparameterization:

• avoids plateaus

Contravariant gradient

Covariant gradient:
Type mismatch on (M,g)



First-principle  of geodesics: Affine connections
• Riemannian geodesics are locally minimizing length curves

• General definition of geodesics is wrt. to an affine connection: 

For Riemannian geodesics, the default connection = Levi-Civita connection. 

This special Levi-Civita connection is derived from the metric tensor g.

• A geodesic γ(t) with respect to a connection ∇ is an ∇-autoparallel curve 

In physics, “straight” free fall particle

where ∇XT is the covariant derivative of a tensor T wrt.  a vector field X
[EIG 2020] An elementary introduction to information geometry, Entropy 22.10 (2020) 



An affine connection ∇ defines how to ∇-parallel transport a vector from one 
tangent plane to another tangent plane

• Fundamental theorem of Riemann geometry:

Levi-Civita connection is the unique  torsion-free metric connection induced 
by the metric tensor g

What makes the Levi-Civita connection so special?

[EIG 2020]

Levi-Civita connection 

Metric 
compatible



Cylinder is flat:
Parallel transport is 
independent of path

Sphere has constant curvature:
Parallel transport is path-dependent

Affine connection ∇: 
Curvature & parallel transport on infinitesimal loops

A connection is flat is there exists locally a coordinate system θ such that the 
Christoffel symbols Γ are all zero: Γ(θ)=0

⟶ Geodesics plotted in that coordinate system are line segments

Élie Cartan
1869-1951



Dualistic information geometry:

• Given an affine torsion-free connection ∇ and a metric g, we can build a 
unique dual affine torsion-free connection: the dual connection ∇* such that 
the metric (inner product) is preserved by the primal and metric-compatible 
dual parallel transports:

• This amounts to say that ∇* is defined uniquely by geometric equation:

• The dual of a dual connection is the primal connection: 
[EIG 2020]

Meaning for each point p of M:



Statistical invariance wrt sufficient statistics
• A statistic is a function of a random vector  (e.g., mean, variance)

• A sufficient statistic collect and concentrate from a random sample 

all necessary information for estimating the parameters. 

Informally, a statistical lossless compression scheme…

• Definition: conditional distribution of X given  t   does not depend on θ

• Fisher-Neyman factorization theorem: Statistic t(x) sufficient iff. the density 
can be decomposed as:

Example: Normal distributions have D=2 sufficient statistics:

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)

t=T(X) contains all
Information about θ



Natural exponential families: Finite sufficient statistics

• Consider a positive measure        (usually counting or Lebesgue)

• A natural exponential family is a parametric family of densities that write as

where F is real-analytic, strictly convex and differentiable:

F: Log-normalizer (also known as log partition function or cumulant function)

Natural parameter space

Barndorff-Nielsen,  Information and exponential families: in statistical theory. John Wiley & Sons, 2014
Sundberg, Statistical modelling by exponential families. Vol. 12. Cambridge University Press, 2019
N., Garcia, Statistical exponential families: A digest with flash cards."   arXiv:0911.4863 

Sufficient 
statistic
T(X)=X



Many common distributions are exponential families in disguise…

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)
Tojo and Yoshino, On a method to construct exponential families by representation theory, GSI 2019 (Springer)

… Once you relax natural EFs
to be general exponential families

Exponential
families



Exponential families: From Natural EFs to simply Efs!

• Consider a (sufficient) statistic t(x), model order D, d-variate densities

• Consider an additional carrier measure term k(x)

• Consider an inner product between t(x) and θ

(usual scalar/dot product) 

Properties:

Exponential families have finite moments of any order

Hessian of –log pθ(x):
This is FIM of type 2

Sufficient 
statistic

t(X)



2. Bregman manifolds:

As known as…
…Dually flat spaces in IG

2021



Dually flat geometry from any strictly convex function

Bregman manifolds are not necessarily related to statistical models, 
but can always be realized by a regular statistical model

Vân Lê, Hông. "Statistical manifolds are statistical models." Journal of Geometry 84.1-2 (2006)

All you need 
is a C3 strictly 

convex function!



Bregman divergences from strictly convex function

• F(θ): strictly convex and differentiable convex function on an open convex 
domain ϴ

• Design the Bregman divergence as the vertical gap between F(θ1) and the 
linear approximation of F(θ) at θ2  evaluated at θ1 :

[Bregman 1967]



Discrete Kullback-Leibler divergence: 
A  non-separable Bregman divergence

• The KLD between two categorical distributions a.k.a. multinoulli amounts 
to a non-separable Bregman divergence on the natural parameters of 
the multinoulli distributions interpreted as an exponential family.

[NH 2019] Monte Carlo information-geometric structures, Geometric Structures of Information, 2019.
Guaranteed bounds on information-theoretic measures of univariate mixtures using piecewise log-sum-exp inequalities, Entropy, 18(12), 2016

LogSumExp is only convex but LogSumExp+ is strictly convex [NH 2019]



Legendre-Fenchel transformation: Duality
• Consider a Bregman generator of Legendre-type (= proper, lower semi-

continuous). Then its convex conjugate obtained from the Legendre-
Fenchel transformation is a Bregman generator of Legendre type.

• Legendre-Fenchel transformation applies to any multivariate function

• Fenchel-Moreau’s biconjugation theorem for F of Legendre-type:

[Touchette 2005] Legendre-Fenchel transforms in a nutshell
[N 2010] Legendre transformation and information geometry

Concave programming:



Duality regular exponential families/Bregman divergences

Banerjee et al., Clustering with Bregman divergences, JMLR 2005
k-MLE: A fast algorithm for learning statistical mixture models, ICASSP, arxiv:2012 1203.5181

Maximum Likelihood  Estimator = Bregman centroid for the dual convex conjugate:

Convex conjugate:

Inference exponential families wrt F(θ) Dual Bregman clustering wrt F*(η)

Maximum likelihood (MLE) Bregman centroid

Expectation/Maximization (EM) MEF Bregman soft clustering

Classification EM = k-MLE Bregman k-means

duality



• Dual parameterizations:                        

• Convex conjugate expressed as : 

• To get in closed form the convex conjugate F*, we need ∇F*(η), i.e.,  
invert ∇F(θ): difficult in general!

• Fenchel-Young inequality:

with equality if and only if 

• Fenchel-Young divergence use mixed parameterization θ/η: 

Legendre-Fenchel transform: 
Mixed coordinates and dual Fenchel-Young divergences

On a Variational Definition for the Jensen-Shannon Symmetrization of Distances Based on the Information Radius, Entropy 2021 
Blondel et al., Learning with Fenchel-Young losses, JMLR 2020



Dual Bregman & dual Fenchel-Young divergences

• In general, dual divergence  or reverse divergence:

• Identity of dual Bregman divergences:

• Primal, dual or mixed parameterizations of Bregman divergences:

On a Bregman manifold, 2n equivalent formula with n terms!



• Generalize the law of cosines for the squared Euclidean distance

• yields a generalization of the Pythagorean theorem 

when

3-parameter identity of Bregman divergences

On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 2021



Statistical divergences between parametric models
= parameter divergences

Statistical divergences between densities of a parametric model         
amount equivalently to (parameter) divergences between corresponding 
parameters:

For which statistical models and statistical divergences, 
do we obtain DM(θ1 : θ2) as a Bregman divergence?



Example 1: Natural exponential family models & KLD*

• Parametric model                         with densities 

• Examples of natural exponential families: 
• Exponential distributions (continuous): p.d.f. 

• Poisson distributions (discrete): p.m.f. 

• Examples of exponential families with density                     

Gaussian distributions once reparameterized with natural parameters  

θ(λ)=θ(μ,σ2)

• We have                                                                       with Bregman generator:

the log-normalizer convex real-analytic function:

On a Variational Definition for the Jensen-Shannon Symmetrization of Distances Based on the Information Radius, Entropy (2021)



• Let 1, p0(x), …,pD(x) be (D+2) linearly independent densities

• Mixture family                          with densities:

• We have:

• with the Bregman generator = Shannon negentropy:

Usually FM(θ) not in closed-form…

But 2-mixture family of Cauchy  distributions has closed-form! 

Example 2: Mixture family models & KLD

The dually flat information geometry of the mixture family of two prescribed Cauchy components, arXiv:2104.13801

Information geometry/reconstruction

Natural parameters



Bregman information geometry: Bregman manifolds
• Start from a potential function F(θ)

• Get the dual potential function F*(η)

• Define the primal flat connection:

• Define the dual flat connection:

• Get the dual Bregman divergences
(or dual Fenchel-Young divergences)

The many faces of information geometry, Notices of the AMS, January 2022



In a Bregman manifold, 
natural gradient = ordinary gradient for the dual parameter!

On a Bregman manifold, we have

Natural gradient
wrt θ

Ordinary gradient wrt η

Used in variational inference (VI)

Khan & D. Nielsen, Fast yet simple natural-gradient descent for variational inference in complex models, ISITA 2018
arXiv:1807.04489
A note on the natural gradient and its connections with the Riemannian gradient, the mirror descent, and the ordinary 
gradient



• Regular statistical parametric models

(identifiable and finite positive-definite FIM)

• Amari’s α-connections

• 0-connection is Fisher Levi-Civita connection

• 1-connection is exponential connection: flat for exponential families! 

• -1 connection is mixture connection:  flat for mixture families!

NB: A dually flat is usually not 0-flat! (eg., normal manifolds)

Amari’s  α-geometry of probability families  

Amari, Differential geometry of curved exponential families-curvatures and information loss, Annals of Statistics (1982) 

Dual
structure



Chernoff information on exponential family manifolds

Probability simplex

Exponential family manifold
An information-geometric characterization of Chernoff information, IEEE Signal Processing Letters, 2013

Probability of error in binary Bayesian hypothesis testing wrt MAP rule
(equal prior, asymptotic regime)

Geodesic
exponential

arc

Geometrically 
exact!



Chernoff information: Multiple hypothesis testing

Exponential family manifold
Bregman Voronoi Diagrams

Probability simplex manifold
Kullback-Leibler Voronoi diagram

Closest pair
with respect to 

Chernoff information

Westover, Asymptotic geometry of multiple hypothesis testing, IEEE Trans. IT, 2008
Hypothesis testing, information divergence and computational geometry, GSI 2013, Springer LNCS
Bregman Voronoi diagrams, Discrete & Computational Geometry, 2010

Probability of error:
(equal prior)

Computational
Geometry!



Sometimes you need to go through singularities!

Challenge: IG/NGD for large-size hierarchical singular NN models!

Relative Fisher Information and Natural Gradient for Learning Large Modular Models, ICML 2017
Lightlike Neuromanifolds, Occam's Razor and Deep Learning, arXiv:1905.11027
Towards Modeling and Resolving Singular Parameter Spaces using Stratifolds, OPT2021, arXiv:2112.03734

Semi-Riemannian geometry: Lightlike manifolds

Relative Fisher information matrix, Relative NGD

Stratifold



Fisher-Rao Riemannian geometry 
vs

Amari’s dual α-geometry
• From the viewpoint of statistical 

invariance, Fisher information metric is 
unique (up to a scaling factor):

Riemannian manifold with Rao distance 

• Given a parametric statistical model, get 
a dualistic α-geometry

• For exponential families and mixture 
families, ±1-structure yields Bregman 
manifolds (dually flat spaces) with 
generalized Pythagoras theorems



AMS Notices feature article, January 2022
8 pages + 1 historical poster

AMS Notices, March 2018
3 pages

Thank you very much for your attention.





Fisher-Rao manifolds: Interpreting the inner product
• (M,gF): Riemannian manifold equipped with the Fisher information metric

• Inner product at tangent plane Tp expressed using the metric tensor g:

• Interpret back tangent planes and inner product from statistical viewpoint:

using basis

Fisher-Rao manifold

Vector expressed using score functions:

Fisher-Rao inner product as expectation:

Basis wrt 1-resp: 

Other basis: α-representations with inner product expressed as α-expectations

using basis



Other information metrics

• Energetic information metric

• Wasserstein information metrics [LZ 2019] 

• ϕ-entropy metrics (e.g., entropy metric of order α)  [AR 2008]

Adrian & Rangarajan, Information geometry for landmark shape analysis: Unifying shape representation and deformation, 
IEEE TPAMI 2008
Lightlike Neuromanifolds, Occam’s Razor and Deep Learning,arXiv:1905.11027
Li & Zhao, Wasserstein information matrix." arXiv preprint arXiv:1910.11248, 2019 



Bhattacharyya arc: Likelihood Ratio Exponential Family
• Bhattacharyya arc or Hellinger arc induced by two mutually absolutely 

continuous arbitrary distributions p and q (same support       ):

• Strictly convex log-normalizer F(λ)  (i.e., Z is strictly log-convex) 

• Bhattacharyya arc (geometric mixtures) = 1D exponential family:
Log-likelihood sufficient statistics:

Base measure is p0 

Generalizing the Geometric Annealing Path using Power Means, UAI 2021
Likelihood Ratio Exponential Families, NeurIPS Workshop on Deep Learning through Information Geometry 2020



Crouzeix’s identity: x of Hessians of convex conjugates= Id:

Metric tensor using covariant/contravariant notations

2-covariant metric tensor in local coordinates:

Dual  metric tensor in local coordinates:

An elementary introduction to information geometry." Entropy 22.10 (2020)

Reciprocal basis



Structured natural-gradient descent  (Struct-NGD)

• Consider the general optimization problem:

• Standard natural-gradient descent (without structure): 

• Natural-gradient descent preserving structure using local parameterization:

• worked examples on matrix Lie groups and applications: generalizes NGD & xNES evolutionary 
strategy, recovers Newton-like algorithms, obtained new structured second-order algorithms, 
etc.

with

Li et al., Tractable structured natural gradient descent using local parameterizations, ICML 2021



• Parallelogram identity

• In Euclidean geometry:

4-parameter identity of Bregman divergences

On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 2021



Class of Bregman generators modulo affine terms 
& KLD between exponential family densities expressed as log-ratio

• Bregman generators are strictly convex and differentiable convex functions 
defined modulo affine terms:  BF=BG iff. F(θ)=G(θ)+Aθ +b

• Choose for any ω in the support  of the exponential family the Bregman 
generator:

• We get:

• By choosing s points:

Computing Statistical Divergences with Sigma Points. GSI 2021
Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family, 
arXiv:2003.02469 



Chordal slope lemma & Jensen/Bregman divergences

Bregman
Divergences 

(BDs):

Jensen
Divergence (JD)

[EIG, Entropy 2020]BD as a limit of a scaled JD:



Bregman manifolds vs Hessian manifolds

• Hessian metric wrt. a flat connection ∇, function is 0-form on M:

• Hessian operator:

• Bregman manifold: geometry on an open convex domain:

∇ flat

Here, ∇ = gradient Here, ∇, ∇* = affine flat connections

N., On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 
Springer, 2021 

Riemannian Hessian metric when



Rao’s distance between 1D normal distributions

Fisher information metric becomes the Poincare upper plane metric 
after scale change of variable

Poincaré upper space
FIM of  normal distributions

On Voronoi diagrams on the information-geometric Cauchy manifolds, Entropy 22.7 (2020) 

Pseudo-sphere
partial embedding

in R3



• Legendre-Fenchel transformation also called the slope transform

Illustrating the Legendre-Fenchel transformation

(Here, F was chosen as the cumulant function of the Poisson distributions)

Points/Lines



Approximating  geodesics for MVNs: geodesic shooting

Minyeon Han · F.C. Park, DTI Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions, 2014
Calvo, Miquel, and Josep Maria Oller. "An explicit solution of information geodesic equations for the multivariate normal 
model." Statistics & Risk Modeling 9.1-2 (1991): 119-138.

ODE with boundary value conditions

Bivariate normals interpolation



Symmetrized Bregman divergence: Geometric reading

[arXiv:2107.05901] 



Entropy 2020
61 pages


