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Introduction N SonyCSL  mmmsre
ML & Computational Geometry: A long and fruitful history!

1. Fisher-Rao information geometry
Natural-gradient descent

2. Bregman information geometry
Chernoff information on the exponential family manifold

Some perspectives



Machine Learning &

Computational Geometry:
A long and fruitful cooperation from the start!



Learning machines: Perceptron & geometry (1960’s)
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Marvin Minsky and Seymour Papert:
Perceptrons: An Introduction to Computational Geometry, 1969




Geometric learning machines: SVMs (1970’s/1992)

Linear separator

Support vector

Non-linear separator

(Kernel trick, RKHS)

Principle of Support Vector Machines
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Theory of VC-dimension = expressive power of (geometric) separators



Dual SVM quadratic program amounts to solve a
Smallest Enclosing Ball (= SEB): Computational geometry |

The SVM Framework Widest margin hyperplane separator
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— Convex Quadratic Program
Labels y= {y;} g “Smallest’”’ ball with respect to

y; € {-1, +1} radius or set inclusion

Approximating Smallest Enclosing Balls with Applications to Machine Learning, IJGA 2009



Information geometry in a nutshell

* Born as a mathematical curiosity [Hotelling 1930] [Rao 1945]
Impacted by the success of Riemannian geometry in Einstein’s general relativity (GR)

* Information geometry studies the geometric structures and statistical
invariance (sufficient statistics/Markov kernels) of a family of probability
distributions: the statistical model

+ demonstrate its use in information sciences: statistics, ML, etc.

 Geometric method: coordinate-free objects with computing operating in (local)
coordinate systems: free to choose coordinates to ease the computations!

* Dualistic structures pioneered by Prof. Shun-ichi Amari & statistical invariance
pioneered by Chenstov

[Amari 1985] [Amari & Nagaoka 2000] [Amari 2016] [Chentsov 1982]



statistics

——« geometry

The fabric of information geometry
and the untangling of its geometry, divergence, statistical

divergence

1. Fisher-Rao information geometry
Riemannian geometry



Fisher information matrix (FIM)

* A parametric family of distributions P = {ps}sco

* Fisher information matrix is positive-semidefinite matrix:
FIM = Covariance of the score: T (8) = Cov(sy) -
X =(z1.....2p)" ~py Positive
semi-definite
matrix
* Score: s(0):=Vylogpy(x)

* Under independence, Fisher information is additive:

Y = (Yl C ?K?f)miidpﬂ = I}/(Q) —nly (9)



Fisher information matrix

* Under regularity conditions | = FIM type 1 :

1,(8) = E,, [(Vologpe)(Velogps) ]

* Under regularity conditions Il = FIM type 2 .

FIM can be singular in hierarchical models like mixtures & neural networks
! FIM can be infinite (irregular models, e.g., support depend on parameter)
Difficult to estimate FIMs for NNs:
Spectral FIM properties from random matrix theory RMT), relative FIM

Sun & N, Relative Fisher information and natural gradient for learning large modular models, ICML 2017
Soen and Sun, On the Variance of the Fisher Information for Deep Learning, NeurlPS 2021



Fisher information and Cramér-Rao lower bound

* The covariance of any unbiased °_’?‘“."°*°“””"‘“ S b
estimator is lower bounded by ) @ 0 @ . @‘

. _1 | |
Cov|d] = Ix () X ~ py @@@@@@@@
Inverse Fisher Information Matrix (IFIM) D@ @ @ @ @ @ @

e Since Fisher information is additive:

A-BeVr,a'(A—DB)x >0 A -

* Accuracy estimators depend on Empirical estimator covariance matrix
model parameters: Fisher efficiency IFIM (Tissot indicatrix)

N., Cramér-Rao lower bound and information geometry, Connected at Infinity Il, 2013




Rao’s length distance: Riemannian metric distance

(M,g;): Riemannian manifold At
Parameter space equipped with the Fisher information metric g, | %

1
PRao(Poy: Po;) = Pgp (01, 02) | py(61,6,) = i / dsp(t)dt
{199 ZZQH (f j(f (t) = —gk( ) o C. R Ro with
i=1 j=1

Sir R. Fisher in 1956
— need to calculate Riemannian geodesics 0(t):

...characterized as (locally) shortest curves in Riemannian geometry

Square root
embedding

For example, Rao distance in the probability simplex:

,‘ ﬂFHR(P; q ) = 2arccos Z )\; )\’f} s O ~ __;.-_-._-._‘__‘_i -~
‘ 1=0 | gsitive orthant
' Standard simplex | shere




Reparameterization of the statistical model:
Invariance, covariance and contravariance

* Smooth reparameterization of the model: P ={py : 0 €O} ={p, : ne H}
* The line element ds is invariant and hence Rao distance is invariant:
dsf‘:" — dST} PRao (p'm ) p?;g) — PRao (p91 ) p@g)

* Fisher information matrix is covariant:

00 06

0) 0% 1) = [ 2] ot < [ 2

|

* Cramér-Rao bound is contravariant:

. 1 |
Var[6,,] = 5[51(9) !

e Jacobian calculus: 07}3’ _ _ b
J J

= . on; _1 | 9
ar\n,| = — |- ‘
Vsl = 1 | 5| B0 |5




In practice, calculating Rao’s distance can be difficult!

No closed form of Rao’s distance between multivariate normals! (MVNs)
Two reasons for intractability:

1. Need to solve the Ordinary Differential Equation (ODE) for finding the
geodesic:

But easy to solve
when r=0:
Line segments!

6 =0=06(t)= (1—1t)6 +ths

o 1 i (agt-m(a) L 99im(8) _ 99:;(0)

mk S .
891 a,lgm )g (9)" E:.}ﬁk_]':'“‘ﬁp!

—use the Levi-Civita connection derived from the metric tensor g
In general, geodesics depend on choice of the connection viaT.

2. Need to integrate the infinitesimal length elements ds along the geodesics



Natural-gradient descent: Steepest Riemannian descent

Ordinary gradient descent:

. Covariant gradient:
9t—|—1 — 975 — aVE(Ot)

Type mismatch on (M, g)

 depends on the choice of the parameterization
* plateau phenomena near singularities Contravariant gradient

Natural gradient descent with natural gradient :

Qt—i—l — Qt — Q@E(Qt)

* NG invariant to reparameterization: ~9/ Zeise
VE,(n) = VE,(6) i =
. ToMe: a tangent space with “~“# a learning curve
e avoids platea us a local inner product ¢(8)

Amari, Natural gradient works efficiently in learning." Neural computation, 1998
Sun & N, Relative Fisher information and natural gradient for learning large modular models, ICML 2017
Li et al., Tractable structured natural gradient descent using local parameterizations, ICML 2021



First-principle of geodesics: Affine connections

* Riemannian geodesics are locally minimizing length curves

* General definition of geodesics is wrt. to an affine connection:
For Riemannian geodesics, the default connection = Levi-Civita connection.
This special Levi-Civita connection is derived from the metric tensor g.
* A geodesic y(t) with respect to a connection V is an V-autoparallel curve
In physics, “straight” free fall particle

where V,T is the covariant derivative of a tensor T wrt. a vector field X
[EIG 2020] An elementary introduction to information geometry, Entropy 22.10 (2020)



What makes the Levi-Civita connection so special?

An affine connection V defines how to V-parallel transport a vector from one
tangent plane to another tangent plane

 Fundamental theorem of Riemann geometry:

Levi-Civita connection is the unique torsion-free metric connection induced
by the metric tensor g

v v Metric
e = < [ul_[ v 1 U> v compatible V — gv
¢ clt)

Levi-Civita connection

)=c(t)  c(0)—=c(t)

[EIG 2020]



Affine connection V:
Curvature & parallel transport on infinitesimal loops

Elie Cartan
Cylinder is flat: . 1865-13>1
Parallel transport is Sphere has constant curvature:
independent of path Parallel transport is path-dependent

A connection is flat is there exists locally a coordinate system 6 such that the
Christoffel symbols I are all zero: I'(6)=0
— Geodesics plotted in that coordinate system are line segments



Dualistic information geometry: (M,g,V,V*)

* Given an affine torsion-free connection V and a metric g, we can build a
unique dual affine torsion-free connection: the dual connection V" such that
the metric (inner product) is preserved by the primal and metric-compatible
dual parallel transports:

A% vV
(1,0)c(0) = < H u, ]_[ v :
L"{ L,[” v

0)—=c(t)  c(0)—c(t)

c(t)

1 U g(vi, 1) =g (Hgﬂ 1:1}1'[3(;) t’gj

* This amounts to say that V" is defined uniquely by geometric equation:

Meaning for each point p of M: X,¢,(Y,,Z,) = gp((VxY)p, Zp) + 80 (Y, (VX Z)p).

* The dual of a dual connection is the primal connection: (V*)" = V.
[EIG 2020]



Statistical invariance wrt sufficient statistics

* A statistic is a function of a random vector (e.g., mean, variance)
A sufficient statistic collect and concentrate from a random sample

all necessary information for estimating the parameters.
Informally, a statistical lossless compression scheme...
e Definition: conditional distribution of X given t does not depend on 6

. t=T(X) contains all
PI‘(SB ‘ 9) — Pr (m ‘ t) Information about ©
* Fisher-Neyman factorization theorem: Statistic t(x) sufficient iff. the density

can be decomposed as:  p(x; A\) = a(x)by (t(x))
Example: Normal distributions have D=2 sufficient statistics:

N(u, o) H(Xn. X)) =) X (X1 X)) =) X7

;
Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)




Natural exponential families: Finite sufficient statistics

* Consider a positive measure M (usually counting or Lebesgue)
* A natural exponential family is a parametric family of densities that write as

p(X; (9) — exp(@x — F(Q)) p(z; A) = a(z)by(t(z))
where F is real-analytic, strictly convex and differentiable: S:t':::,:t
T(X)=X

F(0) = Iog/exp(@x)du(x)
Natural parameter space (& — {9 . fexp((?a:)dﬂ(:c) < oo}

F: Log-normalizer (also known as log partition function or cumulant function)
Barndorff-Nielsen, Information and exponential families: in statistical theory. John Wiley & Sons, 2014

Sundberg, Statistical modelling by exponential families. Vol. 12. Cambridge University Press, 2019
N., Garcia, Statistical exponential families: A digest with flash cards." arXiv:0911.4863



Many common distributions are exponential families in disguise...

Parametric

Probablhty measure

\

/\

Exponential families

Univariate

Multivariate

Non-parametric

Non-exponential families

Uniform

Cauchy

uniparameter

Bi-parameter

/

Binomial

/

multi-parameter

Bernoulli

Poisson

Exponential | | Rayleigh Gaussian

\

Multinomial

Dirichlet

Weibull

Exponential

families

Lévy skew a-stable

.. Once you relax natural EFs
to be general exponential families

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)
Tojo and Yoshino, On a method to construct exponential families by representation theory, GSI 2019 (Springer)



Exponential families: From Natural EFs to simply Efs!

* Consider a t(x), model order D, d-variate densities
* Consider an additional carrier measure term k(x) d;/(g;) — ek(ﬁ)dﬂ(g;)
e Consider an inner product between t(x) and 6

(usual scalar/dot product) p(z; ) = a(z)by (t(z))

po(z) = exp((0,t(x)) — F(0) + k(z)) Satstic

t(X)

Exponential families have finite moments of any order
Properties: E[t(X)] — VF(H) e o "
essian of —log py(x):
COV[t(X)] — V2F(9) — 1(9) This is FIM oftypcee 2




2. Bregman manifolds:

As known as...
..Dually flat spaces in IG

Frank Nielsen Editor

Progress in
Information

Geometry

2021



Dually flat geometry from any strictly convex function
Cov[t(X)] = V2F(6) = I(6)

Exponential family Mathematical programming

l LP, SDP (CP)

Linear systems

(ARMA time-series)

cumulant function

barrier function

_ All you need
Dual Geometry | strictly proper score is a C3 strictly
Game theory convex function!

induced by a

negative entropy

convex function

/ ‘\F
Mixture family

_ novel domain
(only component weights vary)
Bregman manifolds are not necessarily related to statistical models,

but can always be realized by a regular statistical model
Van Lé, HOng. "Statistical manifolds are statistical models." Journal of Geometry 84.1-2 (2006)



Bregman divergences from strictly convex function

* F(0): strictly convex and differentiable convex function on an open convex
domain ©

* Design the Bregman divergence as the vertical gap between F(8,) and the

inear approximation of F(8) at 8, evaluated at 9, :
A

Bp(0y:0;) = F(b) — (F(02) + (02 — 91)TVF(92))J

Yy

W

F(0) Lpg,(01)
/- = F(Ql) — F(Hg) — (91 - HQ)TVF(HQ)
F(6,) ¢ - Br(0::02) ]

LF,92 (91) = F(@Q) + (92 — 91)TVF(92)

¢
¢
=Y

[Bregman 1967]



Discrete Kullback-Leibler divergence:
A non-separable Bregman divergence

* The KLD between two categorical distributions a.k.a. multinoulli amounts
to a non-separable Bregman divergence on the natural parameters of
the multinoulli distributions interpreted as an exponential family.

)\1
AP

P)\:(P}U---}Pf)elﬁfg_p Zpi: 0" =log—,i€{l,...,

Fxi,(0) = log(1 + Z exp(#;)) =: LogSumExp_ (A, ....0p)

LogSumExp is only convex but LogSumExp, is strictly convex  [nH 2019]

[NH 2019] Monte Carlo information-geometric structures, Geometric Structures of Information, 2019.
Guaranteed bounds on information-theoretic measures of univariate mixtures using piecewise log-sum-exp inequalities, Entropy, 18(12), 2016



Legendre-Fenchel transformation: Duality

* Consider a Bregman generator of Legendre-type (= proper, lower semi-
continuous). Then its convex conjugate obtained from the Legendre-
Fenchel transformation is a Bregman generator of Legendre type.

Concave programming:

P = sldn - FO)

0<0 F*(n) =sup{0@'n—F(0)} = sup{E(0)}
= — éﬂé{F(H) —_ (:)T-]r?} fce fce
=

VEW#)=n—VF@)=0={n=VF(#)

* Legendre-Fenchel transformation applies to any multivariate function
* Fenchel-Moreau’s biconjugation theorem for F of Legendre-type: F = (F*)

[Touchette 2005] Legendre-Fenchel transforms in a nutshell
[N 2010] Legendre transformation and information geometry



Duality regular exponential families/Bregman divergences

Exponential Family <~ Dual Bregman divergence
pr(zlg)  duality By

Spherical Gaussian <  Squared Euclidean divergence

Multinomial & Kullback-Leibler divergence
Poisson & I-divergence
Geometric & Itakura-Saito divergence
Wishart < log-det/Burg matrix divergence

Maximum Likelihood Estimator = Bregman centroid for the dual convex conjugate:
_ 1 n 1 m
maxgen (051, 20) = ;((t(:ci), 0) = F(0) + k(z:)) (P mingen ; Bp+(t(x:) : 1)

Inference exponential families wrt F(8) | Dual Bregman clustering wrt F'(n)
Maximum likelihood (MLE) Bregman centroid
Expectation/Maximization (EM) MEF Bregman soft clustering

Classification EM = k-MLE Bregman k-means

Banerjee et al., Clustering with Bregman divergences, JMLR 2005
k-MLE: A fast algorithm for learning statistical mixture models, ICASSP, arxiv:2012 1203.5181



Legendre-Fenchel transform:
Mixed coordinates and dual Fenchel-Young divergences

* Dual parameterizations: 0 = VF*(-:;)ﬁ n=VEF(®)

* Convex conjugate expressed as: F*(n) =1'VF*(n) — F(VF*(n))

* To get in closed form the convex conjugate F*, we need VF'(n), i.e.,
invert VF(0): difficult in general! . 4
VF* = (VF)

* Fenchel-Young inequality: F(01) + F*(12) > 0, 1
with equality if and only if
* Fenchel-Young divergence use mixed parameterization 6/n: 172 = VF(t)

On a Variational Definition for the Jensen-Shannon Symmetrization of Distances Based on the Information Radius, Entropy 2021
Blondel et al., Learning with Fenchel-Young losses, JMLR 2020



Dual Bregman & dual Fenchel-Young divergences

* In general, dual divergence or reverse divergence: D*(0, : 03) := D(0s : 01)

* Identity of dual Bregman divergences: B (0 : 03) = Bp- (12 : 11)

* Primal, dual or mixed parameterizations of Bregman divergences:

On a Bregman manifold, 2" equivalent formula with n terms!



3-parameter identity of Bregman divergences

* Generalize the law of cosines for the squared Euclidean distance

2 =a?+b%—2abcosC

* vields a generalization of the Pythagorean theorem
when (91 — 93)T(VF(92) — VF(Gg)) =0

Tor @

q .
Dp(p:r))=Dr(p:q)+ Dr(q:7)
Br(0(p) : 0(r)) = Br(0(p) : 0(q)) + Br(0(q) : 0(r))

(0(p) — 0(q)) " (n(r) = n(q)) = 0 & A,e(0) L, 42,.(0)
On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 2021



Statistical divergences between parametric models
= parameter divergences

Statistical divergences between densities of a parametric model F = {fo(x)}o
amount equivalently to (parameter) divergences between corresponding
parameters:

For which statistical models and statistical divergences,
do we obtain D,,(0, : 6,) as a Bregman divergence?



Example 1: Natural exponential family models & KLD"

* Parametric model & = {¢y(x)}, with densities ey(x) = exp (Zt 0) + k(2 ))

* Examples of natural exponential families:
* Exponential distributions (continuous): p.d.f. Ae ™™ >0
* Poisson distributions (discrete): p.m.f. Pr(X—k) — Nre

k!

* Examples of exponential families with density «\(z) =exp (Zti(w)ﬁi(h) — F(0) + k(i‘))
Gaussian distributions once reparameterized with natural parameters
0(A\)=6(p,0?)

* We have |Dyile with Bregman generator:

the log-normalizer convex real- analytlc function: F:(0) = (f exp( Zz‘ ) dp(a ))

On a Variational Definition for the Jensen-Shannon Symmetrization of Distances Based on the Informatlon Radius, Entropy (2021)



Example 2: Mixture family models & KLD

* Let 1, py(x), -..,pp(x) be (D+2) linearly independent densities

D
 Mixture family M = {ms(z)}s with densities: me(a Zmpl (1 _ Z“) po(z)

 We have:

e with the Bregman generator = Shannon negentropy:

Fam(0) = /m.g(:r_'f) log me(x)dpu(x) Natural parameters

Usually F,,(8) not in closed-form...
But 2-mixture family of Cauchy distributions has closed-form!

The dually flat information geometry of the mixture family of two prescribed Cauchy components, arXiv:2104.13801



Bregman information geometry: Bregman manifolds

e Start from a potential function F(0)
Fg=V2F(6)
g p—

* Get the dual potential function F*(n)

V-affine coordinate system 6 V™*-affine coordinate system 7 F g* — vz F* (,r])

02 = 0P) = VF(6)

 Define the primal flat connection:
e = n(F2)

F _
b = 6(P) pubiiliy / : L'y, (0) =0 .
e Define the dual flat connection:

m=n(h) FF*ij (77) —0

Potential function F'(f) = » Dual potential function F*(n)

Legendre-Fenchel transform

 Getthe dual Bregman divergences
F*(n) = supgee{0'n — F(0)}

(or dual Fenchel-Young divergences)

The many faces of information geometry, Notices of the AMS, January 2022



In a Bregman manifold,
natural gradient = ordinary gradient for the dual parameter!

On a Bregman manifold, we have

Ip(0) = V. F(6) = VoVoF(6) = Vn

Natural gradient veLg (9) . — Ig_l (9) V@LQ (9)

wrt 6
= (Von) ' VenV, L, (n)
— Vn L?’] ('r]) Ordinary gradient wrt n

‘ Used in variational inference (VI)

Khan & D. Nielsen, Fast yet simple natural-gradient descent for variational inference in complex models, ISITA 2018

arXiv:1807.04489
A note on the natural gradient and its connections with the Riemannian gradient, the mirror descent, and the ordinary

gradient



Amari’s a-geometry of probability families
{(P? Pgt! ,PV—OJ, Pv+a)}a€R strll)J:::lzre

* Regular statistical parametric models Pi:{p9($)}9€@

(identifiable and finite positive-definite FIM)
pT% i (0):= Eo [(aga,-; + l%al-fa,-;) (a,l.n] |
[(0; z):=1og L(6; z) = log py(z)

* O-connection is Fisher Levi-Civita connection

: ons V°
* Amari’'s a-connections

* 1-connection is exponential connection: flat for exponential families!

e -1 connection is mixture connection: flat for mixture families!

NB: A dually flat is usually not 0-flat! (eg., normal manifolds)

Amari, Differential geometry of curved exponential families-curvatures and information loss, Annals of Statistics (1982)



Chernoff information on exponential family manifolds

Probability of error in binary Bayesian hypothesis testing wrt MAP rule P = 9P B)
(equal prior, asymptotic regime)
A . —
. C(Py, P,) = — OI;_:H}}IElllOg (Z P} (x) P, }“(X)) C(P,Q) = —lﬂga{g}gﬁ}/p“(i")ql'“(r)dy(m).
NFORMATION X
Bl = D(P;+||P1) = D(P;+|| Py)

C(Pay : Pay) = B(61: 615 ') = B(62: 613 ')

P* = Py; = Ge(P1. P2) N Bim(P1, P2)

m-bisector n-coordinate system

Probability simplex
Geometrically

Geodesic p P/ (x) JD:_,1 A (x) exact!
. Ao —
exponential > v Pl(a) Py " (a) C(0, : 02) = B(6; : 63,)
arc Exponential family manifold

An information-ceometric characterization of Chernoff information. IEEE Sienal Processing Letters. 2013



Chernoff information: Multiple hypothesis testing

Pn _ 2—nC(Pi* ,P;‘)

Probability of error: .

(equal prior) Closest pair

B with respect to
Chernoff information
N\ argmin C'( P, P;)
i#j
Computational X Chernoff distribution between
Geometry! natural neighbours

Probability simplex manifold Exponential family manifold
Kullback-Leibler Voronoi diagram Bregman Voronoi Diagrams

Westover, Asymptotic geometry of multiple hypothesis testing, IEEE Trans. IT, 2008
Hypothesis testing, information divergence and computational geometry, GSI 2013, Springer LNCS
Bregman Voronoi diagrams, Discrete & Computational Geometry, 2010



Challenge: IG/NGD for large-size hierarchical singular NN models!

Model: p(y|©, ) = Y, Zh p(hi|6y,2) p(ha | 02, h1L £(y|03 hs)

HH7 R

Q**X‘ 3;" Nrak !.L{T‘Iu -Mo
Manifold: MQ :3 W
= ; 2 " & Scn+ A, E>0
o z_ “ y —-—— —-| 02 )—.hz—-{ 9, |—- y
Miiitas 3 I(e) 6l gmi (0,) : ™ (0,) :, 9¥(0) > M3 - SD
Relative Fisher information matrix, Relative NGD i

a null curve
(equivalent models)

Sometimes you need to go through singularities!

Leaning Trajectory on Bottom Cone Leaning Trajectory on Top Cone Loss Curve

—— loss (cone model)

5
---— loss (stratifold model)
4
Y \\‘ 1"_ﬁ"‘-._“_ 3
__________ - _.:.‘.'.:a_x
0 10000 20000 30000

Semi-Riemannian geometry: Lightlike manifolds “

Relative Fisher Information and Natural Gradient for Learning Large Modular Models, ICML 2017
Lightlike Neuromanifolds, Occam's Razor and Deep Learning, arXiv:1905.11027
Towards Modeling and Resolving Singular Parameter Spaces using Stratifolds, OPT2021, arXiv:2112.03734

(6,00;) € Rad(TM)




Fisher-Rao Riemannian geometry Fisher-Rao geometry

— Fisher-Rao geodesic distance

VS
Amari’s dual a-geometry

* From the viewpoint of statistical
invariance, Fisher information metric is
unique (up to a scaling factor):

Riemannian manifold with Rao distance

* Given a parametric statistical model, get
a dualistic a-geometry

* For exponential families and mixture
families, £1-structure yields Bregman
manifolds (dually flat spaces) with

. Dual a-geometry
generaHZEd Pythagoras theorems — No default divergence




Thank you very much for your attention.

THE GRADUATE STUDENT SECTION

The Many Faces of
Information Geometry

Vg

Frank Nielsen

Information geometry [Amal6, AJLS17, Ama2l] aims at
unravelling the geometric structures of families of proba-
bility distributions and at studying their uses in informa-
tion sciences. Information sciences is an umbrella term re-
grouping statistics, information theory, signal processing,
machine learning and Al, etc. Information geometry was
born independently from econometrician H. Hotelling
(1930) and statistician C. R. Rao (1945) from the math-
ematical curiosity of considering a parametric family of
probability distributions, called the statistical model, as
a Riemannian manifold equipped with the Fisher metric

U, usually chosen as the Lebesgue mesure y; or the count-
ing measure U.), and consider a parametric family ? =
{P; : € € O} of probability distributions, all dominated

byu. Let pg(x) :== '"::;x) denote the Radon-Nikodym deriv-

ative, the probability density function of random variable
X ~ pg. By definition, the Fisher Riemannian metric g5
expressed in the 8-coordinate system is the Fisher informa-
tion matrix (FIM) of the random variable X: [gr]s := Ix(€)
with

Ix(6) = Bp, [s6(x)se(x)"],

WHATIS..

an Information Projection?

Orthogonal Projections as Distance Minimizers

In Euclidean geometry, the orthogonal projection ps of a
vector p onto a subset § as in Figure 1 can be defined
as the point(s) g of § minimizing the distance D(p,q)

from p to q. In general, the projection may not be unique:

for example, projecting the center of a unit ball onto

its boundary sphere yields the full boundary sphere.

However, the projection ps is always guaranteed to be
unique when § is an affine subspace.

Target distribution

s(x)

m-projection

maximum

likelihood

AMS Notices feature article, January 2022
8 pages + 1 historical poster

estimator

Frank Nielsen
Communicated by Cesar E. Silva

we use the notation D(p : g) to highlight the asymmetric
property of information distances and call D(p : gq) a
divergence, assumed to be infinitely differentiable.

Here the word “divergence” is not to be confused
with the divergence operator from calculus. Similar to
the Euclidean case, an information projection of p € M
onto S C M can be defined by minimizing the divergence
D(q : p) for g € S. Since the divergence is asymmetric,
we define a dual divergence D*(p : q) = D(q : p).

AMS Notices, March 2018
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Fisher-Rao manifolds: Interpreting the inner product

* (M,g(): Riemannian manifold equipped with the Fisher information metric
* Inner product at tangent plane T, expressed using the metric tensor g:

(v1,v2) = U1 [Ju (p)|s [’Uz}s using basis B = {e1,....ep}
p - -
<’U1, ’Ug)p — _Ul_;f {g?J (p)hgf [’UQ}BI using basis Bf = {93‘ C ,€b}

* Interpret back tangent planes and inner product from statistical viewpoint:

Vector expressed using score functions:

D
o — Z VoLl () lo(x) = log pe(x)
Basis wrt 1-resp: By = {0ils(x),. .., ,Oplg()}

eo = Ob 10%179(37

nga(ﬂf)

Fisher-Rao inner product as expectation:

Fisher-Rao manifold

Other basis: a-representations with inner product expressed as a-expectations



Other information metrics

* Energetic information metric
* Wasserstein information metrics [LZ 2019]
* (p-entropy metrics (e.g., entropy metric of order a) [AR 2008]

Adrian & Rangarajan, Information geometry for landmark shape analysis: Unifying shape representation and deformation,
IEEE TPAMI 2008

Lightlike Neuromanifolds, Occam’s Razor and Deep Learning,arXiv:1905.11027
Li & Zhao, Wasserstein information matrix." arXiv preprint arXiv:1910.11248, 2019



Bhattacharyya arc: Likelihood Ratio Exponential Family

* Bhattacharyya arc or Hellinger arc induced by two mutually absolutely
continuous arbitrary distributions p and q (same support X ):

1—A A
_ _ N (@)q () TR Y
E(p.q) = {p,\ () = 720 A€ (0, 1)} Z\ (p.q) = /xp (x)q" (x)dp(x)

e Strictly convex log-normalizer F(A) (i.e., Z is strictly log-convex)

e Bhattacharyya arc (geometric mixtures) = 1D exponential family:

py (@)p} (@) Log-likelihood sufficient statistics:
v t(x) :=log ( )
— pole) exp (A log (pl (“*)) 108 Z8(p, q)) | po)
pol) Base measure is py L (z) := log po(x)

DBy ) = —tog ([ p " )auto)

Generalizing the Geometric Annealing Path using Power Means, UAI 2021
Likelihood Ratio Exponential Families, NeurlPS Workshop on Deep Learning through Information Geometry 2020



Metric tensor using covariant/contravariant notations

SE2
2-covariant metric tensor in local coordinates: (er.69) = &7
2 AN
9i(0) = V-F(6) B

Dual metric tensor in local coordinates: Reciprocal basis
BTN KU\ XT2
g”(n) =g""(n) =VF(n)

Crouzeix’s identity: x of Hessians of convex conjugates= Id:

V2F(0)V F*(n) =1

An elementary introduction to information geometry." Entropy 22.10 (2020)




Structured natural-gradient descent (Struct-NGD)
* Consider the general optimization problem: Le o

min £(T) = Eq(wh-) [f(W)] T ’YEq(wh-) [log Q(wh-)]

7€),

e Standard natural-gradientldescent (without structure):
Tir1 < Tt — B [FT(Tt)] V. L(T)

* Natural-gradient descent preserving structure using local parameterization:

At+1 < o, (1m0 — 5@5;?)
Tt4+1 < ¢(At+1)

* worked examples on matrix Lie groups and applications: generalizes NGD & xNES evolutionary
strategy, recovers Newton-like algorithms, obtained new structured second-order algorithms,
etc.

- Standard NGD

with &7 =F,(n0) " [V [t 0 b2, ()] VA L(T)]

Li et al., Tractable structured natural gradient descent using local parameterizations, ICML 2021



4-parameter identity of Bregman divergences

* Parallelogram identity

Bp (6, 0) + Bp(fy - 0) = By (91 0 ;92) + By (92 . “’9) + 9By (91;92 :9)

2

______________________ ‘e
0 02
BF(51:9)+BF(92 =Bg (91 —I—BF —|—QB
* In Euclidean geometry:
2 2 2 2
2B 2B = ACH BD 21017 + 21011 = 161 — 62> + 161 + 2]

On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 2021



Class of Bregman generators modulo affine terms
& KLD between exponential family densities expressed as log-ratio

* Bregman generators are strictly convex and differentiable convex functions
defined modulo affine terms: B =B iff. F(0)=G(0)+A06 +b

* Choose for any w in the support of the exponential family the Bregman
Benerator: Ful(6) := — log(py(w)) = F(8) — (87 t(w) + k(w))

-

~

affine term in @

Computing Statistical Divergences with Sigma Points. GSI 2021
Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family,
arXiv:2003.02469



Chordal slope lemma & Jensen/Bregman divergences

. slope(Tp,) < slope([P, P]) < slope([Py Ps]) < slope(| PP Jensen
F'(6y) o - Divergence (JD)
F'(0y) < =52 < O]
F(8) — F (61) F(62) — F (6y)

(62 —61) (62 —6y)

Y Py = (02, F(62))

Py = (01, F(6)) ®
' F(0) —F(6;) < a(F(62)—F(6)))

P=(0.F(8)" ;
0= (1-)8 +aby a(F (62) — F (8;)) — > 0
. . . -
{?1 f} HE
J&(61 : 02) := (1 — &) F(6y) + aF(6;) — F((1 — )8y + ab3) > 0.
Bregman
Divergences F(6,) — F(6;) _ ., F(62) — F(61) — (62 —61)F'(61) > 0,
@Ds): | =g <@ »Ftez)—F(el)—(ez—el)F’(ez) < o.

1
BD as a limit of a scaled JD: Bp(f; : 03) = lim

as1- a1l — @) JF:CI(Hl X [EIG, Entropy 2020]



Bregman manifolds vs Hessian manifolds

* Hessian metric wrt. a flat connection V. function is O-form on M:
Riemannian Hessian metric when ¢ = VQFM

* Hessian operator: (V*Fy) (X.Y) := (Vxd) (Fy(Y)) = X(dFy (Y)) — dFy (VxY)
82FM I 8Fj'.,j 2 ‘ ‘ 82FM‘
— — [ VFﬂfj(()mi:dmj): ———
Ortoax’ Y Oxk D' dx)
* Bregman manifold: geometry on an open convex domain:

Here, V = gradient Here, V, V' = affine flat connections

g(0) = V*F(0) wmmmm) V : T,.(0) =0
g*(n) = V2 F*(n) ‘ V* o IR =0

N., On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications,
Springer, 2021

V2F) (0, 0,) =




Rao’s distance between 1D normal distributions

Fisher information metric becomes the Poincare upper plane metric
after scale change of variable

25

. Poincaré upper space
FIM of normal distributions ]
! !
1 U 15; . — ;E [.]
a5t — dyi® +22dai’-_ [
o
‘\.
dF{(plrgl)r(#ﬂr UE)) - ‘/f:)dH ((“—IUI) , (.H_QU:E)) =4 =3 = =IT n It im 4nm '
v V2 Pseudo-sphere
dist({ 1), { )) = hl1+ (xg — 3::1)2 + (y2 — :{,»'1)2 partlal .embeddmg
S L1,Y1/,\L2,1Y2 = arcos zylyz . R3

On Voronoi diagrams on the information-geometric Cauchy manifolds, Entropy 22.7 (2020)



F(8)

lllustrating the Legendre-Fenchel transformation

* Legendre-Fenchel transformation also called the slope transform

60 5
%e*(theta 1)+%e | F*(n) = sup{f'n— F(0)} 4 ! Ieta’*"'It:ht_:l;(etajl-elta
50 - ; %e” theta 9e© B eta-%e
40 ' 3
2
30 —
20 - . 1
Points Lines 0 e
10 3
0 : 2
-10 | | | | | _3
-2 -1 0 1 2 3 4 0 1 2 3 4 5
B F(0) = exp(h) n
n = F'(#) =exp(h)
§ = F' ') =logn = F*(n)

F*(n) = 6n—F()=nlogn—rn

(Here, F was chosen as the cumulant function of the Poisson distributions)



Approximating geodesics for MVNs: geodesic shooting

Bivariate normals interpolation

0.5

Algorithm 1 Shooting method for minimal geodesics on N (n)
Given: Initial point Py = (ug, Zp). final point P; = (1, X).
Output: Minimal geodesic P(r) = (u(t), (1)), t € [0, 1], such that P(1) = (i1, X). 0
Initialization: Choose initial velocities V (0) = (y1(0), >(0)) (e.g., zeroes), initial values for € (1075), error = 106.
while error > € do

Numerically integrate the geodesic equations (13), (14) for given initial conditions (. Zo. fto. o) fromr =0tor =1 %
Denote the solution by (u(1), X'(1)):
Set W(l) = (W, (1), Wg(1)) = (g — (1), 2y — Z(1)):

Calculate error = |W(1)|| p, = \/W#(I)T}:l_l W (1) + ez W (1)2);
Numerically integrate the parallel transport equations (18) and (19) for given trajectory (y(f), X' (r)) and final veloci
ties W (1), backward in time fromr=1tor=0;

Numerically calculate Jacobi field J(1) from (22), o5
J(l)= expp, (V(0)+aW(0))—expp, (V(0)) .
= o

Determine proper update size s:
_ (W.JM)pwy
T DI,

if ||W(l)||p(1) > 0.05 then
s =0.05/[W (Dl paysi;

else -05

=05 0 0.5 1 15 =05 0 05 1 15 2 25 3 35 4 45

§ =951, (v) (vi)
end if

VA0 ¥ £ 0 ODE with boundary value conditions

TN

=
MW

e e e N

o

05

. where « is sufficiently small value and we use ———~—
TWO)lr,

Minyeon Han - F.C. Park, DTl Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions, 2014
Calvo, Miquel, and Josep Maria Oller. "An explicit solution of information geodesic equations for the multivariate normal
model." Statistics & Risk Modeling 9.1-2 (1991): 119-138.



Symmetrized Bregman divergence: Geometric reading

n=VEF®) A

VE(0)=VF*1(0)

M

T2
o o >
62 _ 91 = *
2 6 — 65 J 0 = VF*(n)
BF(Hl :92) = , BF(91 292)—|—BF(92 191)
Br (61 :62) + Bp=(n1 : 12)
Bps(nz :01) = (61 — 62) " (m1 — m2)

[arXiv:2107.05901]
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Abstract: In this survey, we describe the fundamental differential-geometric structures of information
manifolds, state the fundamental theorem of information geometry, and illustrate some use cases of
these information manifolds in information sciences. The exposition is self-contained by concisely
introducing the necessary concepts of differential geometry. Proofs are omitted for brevity.

0 ) ! &
/) v / . . S
[ (& Tw=IEw — t
Dual parallel transport  Loop PT and curvature Bregman spheres
(&) C‘J\ C'_,' r.'.\)

D DD &2

& e D @©

o« n - -

Pythagoras theorem  Cramér—Rao lower bound ©/m-geodesic  chordal slope
(Dually flat space) Fisher efficiency e/m flat & Bregman divergence



