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Outline of the talk

• Bregman divergences and some usages

• Boolean geometry of Bregman balls

• Bregman divergences derived from comparative convexity 



Bregman divergences  (1960’s)

• F: Θ⊆ℝm→ℝ a strictly convex and smooth 

real-valued function on a finite dim. Hilbert space <.,.>

Bregman divergence BF: Θ x RelInt(Θ) →ℝ≥0
Lev M. Bregman

(1941 - 2023)
Photo: courtesy of 

Alexander Fradkov
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BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2) >

BD interpreted as remainder of a first order Taylor expression of F(θ1) around θ2:

F(θ1)=F(θ2)+< θ1 - θ2 ,∇F(θ2) >+ BF(θ1 : θ2)

Taylor remainder

Example of remainder: Lagrange remainder (smooth C2 generators): ∇2F SPD ⇒ BF(θ1 : θ2) ≥ 0 

BF(θ1 : θ2)= ½ (θ2- θ1)
T∇2F(θ) (θ2- θ1) ≥0 , θ ∈ [θ1 θ2]

Smooth measure of discrepancy, not a metric distance because it violates the triangle inequality, and is 
asymmetric when F is not quadratic function. Hence the delimiter notation “:” instead of BF(θ1 , θ2)



Geometric interpretation as a vertical gap using the graph (θ,F(θ)):

BF(θ1 : θ2)=F(θ1) - (F(θ2)+< θ1 - θ2 ,∇F(θ2) >)

= Tθ2(θ1) : Tangent of the function graph at θ2 evaluated at θ1



Originally motivated for finding an intersection point in 
a set of convex objects  using Bregman projections.
(ex. of convex objects: halfspaces, balls, etc.)

BDs unify: 
• squared Euclidean divergence F(θ)= ½ Σi <θ, θ >
• Kullback-Leibler divergence F(θ)= Σi θi log(θi) 

(relative Shannon entropy)
• Itakura-Saito divergence F(θ)= Σi -log(θi)  

(relative Burg entropy)

BDs: Versatile and popular in OR, ML, IT, signal processing 

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2) >

L22 (β=2), KLD (β→0), ISD (β=1), belong to a family of β-divergences, learn ad hoc β ≥ 0

x,y>0, β ≥ 0
Bregman
Generator:



Bregman divergences in machine learning…
• Kullback-Leibler divergence between two probability densities:

DKL[p(x):q(x)]= ∫ p(x) log (p(x)/q(x)) dμ(x)

is difficult to calculate in closed form because of the integral ∫  …

• But Kullback-Leibler divergence between two probability densities of a 
natural exponential family

amount to a reverse Bregman divergence BF
rev(θ1 : θ2):= BF(θ2 : θ1)

DKL[p(x|θ1) : p(x|θ2) ] = BF
rev(θ1 : θ2) = BF(θ2 : θ1)

                                                         ⇒ Easy calculations of KLDs

Azoury, Katy S., and Manfred K. Warmuth. "Relative loss bounds for on-line density estimation with the exponential 
family of distributions." Machine learning 43 (2001)

with densities p(x| θ) ∝ exp(<x, θ >)
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Bypass the ∫, ∇F in BD  easy to calculate!



Representational Bregman divergences (2009)
• Use a representation function R :

BF,R(λ 1 : λ 2):= BF(R(λ 1 ):R(λ 2))

=  F(R(λ 1))-F(R(λ 2))-< R(λ 1)–R(λ 2 ),∇F(R(λ 2) ) >

Note that F∘R may not be a Bregman generator, i.e., not be strictly convex.

For example, consider the KLD between two densities of a generic exponential 
family (natural parameter from representation function) 

θ(λ ): natural parameter corresponding to λ,  representation function R(.)=θ(. ) 

DKL[p(x| λ 1) : p(x| λ 2) ] = BF
rev(θ (λ 1): θ (λ 2))=BF(θ (λ 2): θ (λ 1))

include normal, Gamma/Beta, Wishart, Poisson, etc.

NEF density p(x| θ) ∝ exp(<x, θ >) DKL[p(x|θ1) : p(x|θ2) ] = BF
rev(θ1 : θ2) = BF(θ2 : θ1) 



Extendedα-divergences are representational BDs

α-divergences extended to m-dimensional positive measures 
are representational Bregman divergences:

Bregman generator:

Representation function: 

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2) >Bregman divergence:

"The dual Voronoi diagrams with respect to representational Bregman divergences." IEEE ISVD 2009  



Convex duality via Legendre-Fenchel transform
• Legendre-Fenchel transform of a convex function F: 

F*(η)=sup θ ∈ ϴ {< θ, η >-F(θ)}

• Problem: some tricky functions with gradient map ∇F domain not convex…

Example:                                                                on upper plane domain Ξ=(ξ1, ξ2)

• Thus, we consider “nice convex functions” = Legendre-type functions (ϴ,F(θ)) 

(i) ϴ open, and  (ii) lim θ→ ∂ϴ ‖ ∇F (θ) ‖=∞

Then we get:

❶  reciprocal gradient maps η= ∇F (θ) and θ=∇F* (η), ∇F*=(∇F)-1

❷  conjugation yields (H,F*(η))   of Legendre type 

❸  biconjugation is an involution:  (H,F*(η))*= (H*=ϴ,F**=F(θ)) 

• Convex conjugate: F*(η)= < ∇F-1 (η), η >-F(∇F-1(η)) since η= ∇F (θ)
9



Fenchel-Young divergences & convex duality
• Young inequality: F (θ1)+F* (η2)≥ < θ1 , η2> with equality when 

η2 = ∇F (θ1)

• Build the Fenchel-Young divergence from the inequality: lhs-rhs ≥0

YF, F*(θ1, η2)= F (θ1)+F* (η2)-< θ1 , η2>   ≥ 0

• Mixed parameterizations θ and η :   BF(θ1 : θ2)= YF, F*(θ1, η2)

• Duality: BF(θ1 : θ2)= YF, F*(θ1, η2) = YF*,F(η2 ,θ1)= BF*(η2 , η 1)

• Dual BDs + Dual FYs  from involution F**=F

• Note： BF(θ1 : θ2 )=0 ⇔ θ1 = θ2 ⇔ η1 =η 2  i.e., ∇F(θ1) = ∇F(θ2) 

10(FY initially called Legendre-Fenchel divergences…)



Bregman divergence vs Fenchel-Young divergence

• YF, F*(θ1, η2)= F (θ1)+F* (η2)-< θ1 , η2>   ≥ 0

11
BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2)> YF, F*(θ1, η2)= F (θ1)+F* (η2)-< θ1 , η2>

Same parameterization BF(θ1 : θ2) = YF, F*(θ1, η2) mixed parameterization

F’ strictly increasingF strictly convex and differentiable



Kullback-Leibler divergence between 
non-normalized exponential family densities

• Kullback-Leibler divergence between two positive measures:

DKL
+[p1(x):p2(x)] = ∫  { p1(x) log (p1(x)/p2(x))+ p2(x)-p1(x) }  dμ(x)

• Exponential family density:
• Normalized: p(x| θ) = exp(<x, θ >-F(θ)) dμ(x)
• Non-normalized: q(x| θ) = exp(<x, θ >) dμ(x) 

• Hence, p(x| θ)= q(x| θ)/Z(θ) with partition function Z(θ)=exp(F(θ)) and  
cumulant function F(θ)=log Z(θ)

• When F is convex, Z=exp(F) is log-convex

• log-convex functions are convex functions: So both  F and Z are convex functions

• KLD between normalized densities = reverse Bregman wrt F:

DKL[pθ1(x):pθ2(x)] = BF
*[θ1: θ2] = BF[θ2: θ1]

• KLD between non-normalized densities = reverse Bregman wrt Z:

DKL
+[qθ1(x):qθ2(x)] = BZ

*[θ1: θ2]  = BZ[θ2: θ1] 12

2312.12849



Duo Bregman divergences: 
Generalize BDs with a pair of generators

F1(θ) ≥  F2(θ)

• Recover Bregman divergence when  F1(θ) =  F2(θ) = F(θ)

• Only pseudo-divergence because BF1,F2(θ’’: θ’’) positive, not zero
13

One generator majorizes the other one:

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2)>

Then

≥ BF2(θ: θ’)

θ’’

BF1,F2(θ’’:θ’’)



KLD between nested exponential families 
amount to duo Bregman pseudo-divergences

• Consider an exponential family on support X1:

p(x| θ) = exp(<x, θ >-F1(θ)) dμ(x)

with cumulant function F1(θ)=log ∫X1 exp(<x, θ >) dμ(x) 

• Another exponential family with nested supports:  X1 ⊆ X2  

q(x| θ) = exp(<x, θ >-F2(θ)) dμ(x)

is an exponential family with F2(θ)=log ∫X2 exp(<x, θ >) dμ(x) ≥ F1(θ)

• Then KLD amounts to a reverse duo Bregman pseudo-divergence:

DKL[p(x| θ1) : q(x| θ2) ]= BF2,F1
rev(θ1: θ2)=BF2,F1(θ2: θ1)

"Statistical divergences between densities of truncated exponential families with nested supports: Duo Bregman and duo 
Jensen divergences." Entropy 24.3 (2022)

X1

X2

p(x| θ) 

q(x| θ) 

0 log(0/0)=0

DKL[p(x):q(x)]= ∫ p(x) log (p(x)/q(x)) dμ(x)

q(x| θ)» p(x| θ) 
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Curved Bregman divergences
Consider a domain U which maps to a subset of Θ by  θ =c(u)

with dim(U)<dim(Θ):

BF,u(u1 : u2):= BF(c(u1 ):c( u2)) is not Bregman when {c(u) | u ∈ U} not convex

usually not a Bregman divergence unless c(.) is affine

Example: Symmetrized Bregman divergences (Jeffreys-Bregman div.) 
are curved Bregman divergences: SF(θ1 ,θ2)=< θ1 -θ2 ,η1 -η 2 >

m-dimensional submanifold in 2m-dimensional space



Theorem:

Curved Bregman centroid is the Bregman 
projection of the full Bregman centroid

) [Bregman projection]

"What is... an information projection?" Notices of the AMS 65.3 (2018): 321-324.



Space of Bregman balls

Right-sided Bregman ball:

Left-sided Bregman ball:

Example:
Itakura-Saito right and left spheres

Application: Boolean algebra of unions & intersections of Bregman balls

≤
≤



Lifting to potential Bregman generator graph

↓ means vertical projection

Sc: complement of set S

To any sphere, associate an hyperplane:

Reciprocally, to an hyperplane cutting the
function graph, associate a sphere

Center:

Radius:

Right Bregman ball and its complement



Intersection of two right Bregman balls



Union of two right Bregman balls

Set Morgan’s law: (A ∪ B)c = Ac ∩ Bc Complement of halfspace (H+)c=H-



Example: Euclidean spheres 
potential function: Paraboloid, L22

Top view displays the union of disks

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2)>



Generalization of 
Bregman divergences

using comparative convexity



Comparative convexity: (M,N)-convexity

• Definition: A function Z is (M,N)-convex iff for  in α in [0,1]:

• Ordinary convexity = (A,A)-convexity wrt to arithmetic weighted mean

• Log-convexity: (A,G)-convexity wrt to A/Geometric weighted means:

Ordinary convexity of a function:
for all t in [0,1]

for all t in [0,1]

for all t in [0,1]

23

Since G ≤ A, (A,G)-functions are (A,A)-convex: Log-convex functions are convex



Comparative convexity wrt quasi-arithmetic means

• quasi-arithmetic mean for a strictly monotone generator 
h(u):

• Includes power means which are homogeneous means:

Include the geometric mean in the limit case p→0

24

Checking the comparative convexity wrt two quasi-arithmetic means via an ordinary convexity test:



Bregman divergences: limits of scaled Jensen gaps

Rescale:



Generalizing Bregman divergences with 
(M,N)-convexity: (M,N)-Bregman divergences
• First, define skew Jensen divergence from (M,N)-comp. convexity:

Non-negative for (M,N)-convex generators F, provided 

regular means M and N (e.g. all power means)

Definition:

This definition is by analogy to limit of scaled skewed Jensen divergences 
amount to forward/reverse Bregman divergences. 26



Generalizing Bregman divergences with 
quasi-arithmetic mean convexity

Amounts to a conformal representational Bregman divergence :

With convex generator:

Remark: Conformal Bregman divergences may yield robustness in applications
Conformal factor

Shape retrieval using hierarchical total Bregman soft clustering, IEEE Transactions on pattern analysis and machine intelligence   (2012) 
27



28

Summary map of this talk

Bregman divergence

Duo Bregman pseudo-divergence

Duo Fenchel-Young pseudo-divergence

(M,N)-Bregman divergence

(M,N)-Jensen  divergence

Conformal  rep. Bregman divergence

Curved Bregman divergence

Representational Bregman divergence

Fenchel-Young divergence
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Boolean algebra

alpha-divergences
Kullback-Leibler divergence 
between exp. fam. densities

Kullback-Leibler divergence 
between nested exp. fam. densities

Space of 
Bregman balls

Curved Bregman centroidJeffreys-Bregman divergence

cvx cumulant
log-cvx partition
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pyBregMan
A Python library for geometric computing on Bregman Manifolds

Joint work of Frank Nielsen and Alexander Soen

Chernoff point

Bregman/Jensen centroids

Jensen-Shannon centroid

Inductive AHM mean
Geometric matrix mean

https://franknielsen.github.io/pyBregMan/



Thank you! https://franknielsen.github.io/
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Many thanks to all my inspiring collaborators.
In particular, special thanks to Richard Nock, Ke Sun, Ehsan Amid, and Alexander Soen

The many faces of information geometry. Not. Am. Math. Soc, 69(1), pp.36-45.

+ invitation to the information geometry of BDs
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