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Talk outline

* Information geometry from the pure viewpoint of geometry:
=> Geometry of dual structures

* Dual multivariate quasi-arithmetic averages:
=> Information geometry yielding a generalization of quasi-arithmetic means

* Chernoff information and its purely geometric counterpart:
=> Geometry likelihood ratio exponential families

* Duo Bregman pseudo-divergences:
=> Application to KLD between truncated densities of an exponential family



Information geometry:

A short introduction to the geometry of dual structures

Geometry defines the architecture of spaces



Information geometry (IG): Rationale and scope

* |G field originally born by investigating geometric structures of
statistical/probability models (e.g, space of Gaussians, space of multinomials)

e Statistical models: parametric vs nonparametric models, regular vs singular
(ML) models, hierarchical (ML) or simple models, ...

* Define statistical invariance, use language of geometry (e.g., ball, projection,
bisector) to design algorithms in statistics, information theory, statistical
machine learning, etc.

* |G study interplays of statistical/parameter divergences with geometric
structures

* Relationships between many types of dualities in IG: dual connections,
reference duality (dual f-divergences), Legendre duality, duality of
representations/monotone embeddings, etc



Further extend broadly the original scope of information geometry by unravelling
connections of information geometry (1G) with other domains of geometry like:

» geometry of domains and cones (e.g., Siegel/Vinberg/Koszul)

» geometric mechanics for dynamic models (symplectic/contact geometry)
* thermodynamics/thermostatistics and deformed statistical models

» geometric statistics (eg, computational anatomy/medical imaging)

* shape space analysis and deformation (computer vision)

* algebraic statistics (manifolds versus algebraic surfaces/varieties)

* dynamics of learning (singularity, plateau)

* neurogeometry (neuroscience)

. otc. franknielsen.github.io/GSl/
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Information geometry:
Geometry of dual structures



Build your own information geometry in three steps

Choose

@1 manifold M

.......

Examples:
Gaussians
SPD cone

Probability simplex

oD .

Concepts:
local coordinates
locally Euclidean

- chart T
(C]

(@ metric tensor g

Examples:

Fisher information metric
metric g° from divergence
trace metric

Concepts:

vector length

vector orthogonality
Riemannian geodesic
Riemannian distance
Levi-Civita connection V8

(3 affine connection V

D v (pa),

Examples:

exponential connection
mixture connection
metric connection V&
divergence connection VP
a-connection

Concepts:

covariant derivative V
V-geodesic

V-parallel transport
curvature

Get dual IG
manifold
(Mlglle*)
V(D @) g
dual @ |
connection P
V* =2V’ -V

Concepts:
dual connections coupled to metric g
dual parallel transport preserve metric g



From dual information geometry to ta-geometry, c€R

Choose

@ manifold M (@ choose a

(@ metric tensor g Examples:

Amari-Chentsov cubic tensor  Tiju(0) = E[0;10;10,]
Cubic tensor from divergence  Tj;.(6) = 9;0,0,.F(0)

(3 affine connection V o J
by defining Christoffel symbols 1

Get dual IG manifold Get a family of dual connections/IG
(l\/l,g,V,V*) (M,g,Ve, V) V=T — %ka
tensor - ta-geometry
P 1 , )
] *\ ' (Jf g, V.V &)
(M’ 9> V, Vv ) Yv-o(P: q)

0-geometry
= Riemannian geometry
with geodesic distance




Information geometry from statistical models: (M,g",V-%,V?%)
* Consider a parametric statistical/probability model: P := {ps(2)}yco

* Define metric tensor g from = Fisher metric gf
g l(0;:2)  1(0;2) :=log L(0; ) = log po(x).

pI(0) = Ey[0,10;1),, = 0 Ojl:=
Sp — VQZ = (6313)3

* Model is regular if partial derivatives of I5(x) smooth and Fisher metric
is well-defined and positive-definite

» Amari-Chentsov cubic tensor: Ciji := Ep [9:10;10,!] B [{(P. 79,7V, »V**)} o,

Il+a_, 1—-a

* a-connections V'=—V +—V" a=1 exponential connection
PT (0) = By [aiajzak}jul_—“cﬁk(e), PV = Ep[(0:0;1)(0kl)],
= Fo K@iajl + 5 0ilo; l) (a’“l)] a=-1 mixture connection

Model Information Geometry (MIG)

* Fisher-Rao geometry when a=0, get geodesic distance called Rao distance

Dy(p.q) = { ||’Y’(f)||ﬂr{ﬂdt=fﬂ \/Qﬂt}(’i"(t)fl’(t))df [Hotelling 1930] [Rao 1945] [Amari Nagaoka 1982]



Rao distance on the Fisher-Rao manifold

DRaolposs po,| = pg(bh,62) = /\/gw(t) (t))dt, 7(0) = 01,7(1) = 65

! Here, y is the Riemannian geodesic
— dSe("}-’(t)) dt (or add a minimizer on all paths y)
0

. d . oseekkRRRRRRee
Length element Ou(t) = 0k (t) +" Draolpar» po,] = I3 dsg(y(£)) dt ==~
/, pe \\
{195 ZZ gij ) ,1 /. 2 \I
— = L e o dse(yt) YO
. (’PLQF,),*/

In practice: e

* Need to calculated geodesics which are curves locally minimizing the length linking two
endpoints (equivalently minimize the energy of squared length elements)

* Finding Fisher-Rao geodesics is a non-trivial tasks.
. closed-form geodesics with boundary conditions for MultiVariate Normals

Fisher-Rao and pullback Hilbert cone distances on the multivariate Gaussian manifold
with applications to simplification and auantization of mixtures. ICML ws TAGML 2023



Information geometry from divergences: (M,gP,Vb,Vvb)

A statistical divergence like the Kullback-Leibler divergence is a smooth non-
metric distance between probability measures

KLlp:d) = [ pla)log 2 S au(a)

* A statistical divergence between two densities of a statistical model is a
parametric divergence (e.g., KLD between two normal distributions)

Dy (01 = 02) := Dxw[po, : Doy
* Construction of dual geometry from asymmetric parametric divergence D(6,:6,)

Divergence Information Geometry (DIG)

* Dual divergence is D*(0,:8,)=D(6,:0,), reverse divergence [Eguchi 1983]
Dual structure: )
' Cubic tensor:
Pg = —0,;D0:0))g—er =" g * Dy* — D'y
PP = —0,,D(0: ¢ Py =P Ty — Pl
ik T ij e D(0 2 6)|o=0r, Y 1] i |
DTk = —0hi;D(0:0)|g—. Orinf (2.y) = 5% 5w [ (2,y)

o

0. f(z,y) = 2= flz.y). d.jflz,y) = %f{ﬂ?, y), Oijif(z,y) = ﬁﬁrﬂﬂ\y)



Realizations of dual information geometry (stat mfd)

 Realize (M,g,V,V) as a divergence information geometry (M,gP, VP, VP%):
always exists a divergence D such that (M,g,V,V)=(M,gP, VP, VP~

Matumoto, "Any statistical manifold has a contrast function—On the C3-functions taking
the minimum at the diagonal of the product manifold." Hiroshima Math. J 23.2 (1993)

* Realize (M,g,V,V) as a model information geometry (M,gf,V-¢,V¢)
always exists a statistical model M such that (M,g,V,V)=(M,gf,,V-%,,V?)

L&, Hong Van. "Statistical manifolds are statistical models." Journal of Geometry 84 (2006):
83-93.



Equivalence: model a-IG <= divergence |G for f-divergences

* Let P={py} be a statistical model of probability distributions dominated by p

* Consider the f-divergence for a convex generator f(u) with f(1)=0, f'(1)=1,
f"(1)=1 & standard f-divergence (can always rescale g(u)=f(u)/f''(1))

;0 I:*[p(x:0) : p(x:0")] = I¢[p(x:0) : p(a:0)] = Lo [p(z:0) : p(a:0")]
/{;P{’Il 0)f (p( ! )) dp(z) ! P f p f I

Iflp(x;0) : p(a;0')] = p(z; 0)

1
Dual reverse f-divergence is a f-divergence for f°(u) := uf (H)

* The f-divergence between pg, and pg, is a parameter divergence D(6,:6,)
Dp(6h = 62) = It[po, : po,]
from which we can build the divergence information geometry (M,gP, VP, V%)
* Then model a-geometry for a=2 f'"'(1)+3 coincide with divergence IG:
(M,gP,VP,VP’) = (M,gf,V-2,Ve) for a=2 f"*'(1)+3

metric tensor gPand cubic tensor TP coincides with Fisher metric gf and Amari-Chentsov tensor T



Curvature is associated to affine connection V

* For Riemannian structure (M,g), use default Levi-Civita connection V=V&

* Riemannian manifolds of dim d can always be embedded into Euclidean
spaces EP of dim D=0(d?)

 Euclidean spaces have a natural affine connection V=Vt

(((

Cylinder is flat, O curvature:
Parallel transport along a loop of a
vector preserves the orientation

N

© CNRS

Sphere has positive constant curvature:
Parallel transport along a loop exhibits
an angle defect related to curvature



* Fundamental theorem of information geometry: If torsion-free affine
connection V is of constant curvature k, then curvature of dual torsion-free
affine connection V* is also constant «

* Corollary: if Vis flat (k=0) then V* is flat: Dually flat space (M,g,V,V*)

* A connection V is flat if there exists a local coordinate system 0 such that I'(6)=0

* In V-affine coordinate system 6(.), V-geodesics are visualized as line segments

E=1,....p. ) geodesics=line segments in 0



Canonical divergences of DFSs: Bregman divergences

e Dually flat structure (M,g,V,V*) can be realized by a Bregman divergence

(M?g,VﬁV*) “ (;U ng?vBF?va*)

* Let F(O) be a strictly convex and differentiable function defined on an open
convex domain 6

* Bregman divergence interpreted as the vertical gap between

point (8, F(6,)) and the linear approximation of F(0) at 6, evaluated at 6, :

Bp(6y:62) = F(61) — (F(62) + (62 — 61) 'VF(6,))

My .

Lpg,(01)

—  F(#h) — F(6y) — (0; — 05) "V F(6)

[Bregman 1967]

<=V

) 0,



Legendre-Fenchel transformation: Slope transformation

* Consider a Bregman generator of Legendre-type (proper, lower semi-
continuous). Then its convex conjugate obtained from the Legendre-Fenchel
transformation is a Bregman generator of Legendre type.

F*(n)

sup{f'n — F(0)}

feE

— nf{F(#) —0"n)

e

Z 4

3

concave programming:

0 Epigraph -
F*(n) = sup{fTn— F(0)} = sup{E(A)}
Dual coordinate systems: 00 e
P\, (wr)
Hp:yp=VF(z
e ) Hg:z=(z—120)'VF(p) + F(zq) VE(#)=n—-VIE({0) =0=n=VIEF(®)

Q /i Hpt

Hp:z= (z —zp)'VF(zp) + F(zp)

P i(z, F(z))

Slope

(0, F(zp) — 2LV F(zp) = —F*(yp))

* Analogy of the Halfspace/Vertex representation of the epigraph of F

* Fenchel-Moreau’s biconjugation theorem for F of Legendre-type: F = (I")"

[Touchette 2005] Legendre-Fenchel transforms in a nutshell
[2010] Legendre transformation and information geometry



Mixed coordinates and the Legendre-Fenchel divergence

* Dual Legendre-type functions ¢ = VF*(n) ﬁ n=VF(@)

* Convex conjugate of F is F*(n) =n'VF*(n) — F(VF*(n)) VF* = (VF)!
* Fenchel-Young inequality : F(0,) + F* (1) > 91TT?2 Grgdient
are jnverse

of each other

with equality holding if and only if 72 = VI'(th)

* Fenchel-Young divergence make use of the mixed coordinate systems 0O et
n to express a Bregman divergence as Bp(0y :02) = Ypp-(01 : 12)




Generalized Pythagoras theorem in dually flat spaces

In general, Identity of Bregman divergence with three parameters = law of cosines
Br(6y : 03) = Bp(6y : 63) 4+ Bp(03 : 62) — (61 — 63) " (VF(62) — VF(63)) > 0

Generalized Pythagoras’ theorem Pythagoras’ theorem in
P

orthogonality condition:

(n(p) = 1(q)) " (0(r) — 6(q)) = 0 Frua(0) = %@Te IFue = 1

1
BFEu.::I(Q1 : 92) — §p]23ucl(913 82)

° b
Ypg Lg Vgr

*— o a

W) 7 L atemmen

. ]
Dp(Vpq(t) : Ygr(t')) = Dp(vpq(t) : q) + Dr(q : T;r(t]’))& vt t' € (0,1). ! —

(P-Q)-(Q-R)=0

IP-Ql*+ Q- R|* =||P - R|I”



Triples of points (p,q,r) with dual Pythagorean’\ |
theorems holding simultaneously at g "

-

Yra La Yor. €BY (0(p) —0(q))" (n(r) —n(q)) = 0 @ Dr(p: q) + Dp(q: ) = Dp(p: 7)
Voq La Var 0("7(?) —1(9))T(0(r) — 6(q)) = 0€@PDE(r : q) + Dr(q: p) = Dp(r : p)

\ ltakura-Saito

Manifold

(solve quadratic system)

Two blue-red geodesic pairs orthogonal at g  https://arxiv.org/abs/1910.03935




Dually flat space from a smooth strictly convex function F(6)

* A smooth strictly convex function F(6) define a Bregman divergence
and hence a dually flat space via Eguchi's divergence-based IG

(C—)F(H)) — (J[ gBFthFrvBF*) — (J[ gFtthvF*

Domain dual Bregman divergences

 Examples of DFSs induced by convex functions:

Exponential family (C—)ﬁ F (9))
F': cumulant function
strictly convex and > Dua%ly flat space
Humugunuml:? convex cone | —" differentiable C3 function (Hessian htructurc)
F': characteristic function (M,g,V, V")

Mixture family i T

Shannon negentropy :
S 5 b} Bregman divergence




Dual geometry of information geometry:
Information geometry as a tool to geometrize duality

A pair of (torsion-free) affine connections (V,V*) with (V*)*=V

Examples: %\

Geometrize
Objects: divergences D

duality = reverse divergence D*

(D¥)*=D
(V°,vP7)

Geometric terminology:

dual contrast functions

Geometrize
Objects: Legendre type functions F

duality = convex conjugate F*

(F*)*=F
(VF,VF)

dual potential functions

Geometrize
Type: strictly monotone functions

duality f* = reciprocal f

(F¥)*=f
(VLV©)

dual f-representations
(+a-representations)



Quasi-arithmetic centers,
quasi-arithmetic mixtures, and the
Jensen-Shannon V-divergences

arXiv:2301.10980



Goals:

|.  Generalize scalar quasi-arithmetic means to multivariate cases

Il. Show that the dually flat spaces of information geometry yields a natural
framework for defining and studying this generalization



Weighted quasi-arithmetic means (QAMSs)

Standard (n-1)-dimensional simplex: A, = {(wy,...,w,) : w; > 0,3 w; = 1}

Definition (Weighted quasi-arithmetic mean (1930’s)). Let f : I C
R — R be a strictly monotone and differentiable real-valued function. The
weighted quasi-arithmetic mean (QAM) M (xy, ...,z w) between n scalars

r1,....orn € 1 C R with respect to a normalized weight vector w € A, _q, is
defined by

.nf

M¢(zy,....¢pw) := ! Z‘w-if(ilfz‘)

1=1

QAMs enjoy the

min{z, ..., x,} < Me(xq,...,2p;w) < max{zy,...,o,}

[Kolmogorov 1930] [Nagumo 1930] [De Finetti 1931]



Quasi-arithmetic means (QAMs)

* Classes of generators [f]=[g] with f = g yieldings the same QAM:

My(z,y) = M¢(x,y)if and only if‘g(t) = )\f(t)Jrc‘for A € R\{0}

* So let us fix wlog. strictly increasing and differentiable f since we can always
either consider either f or -f (i.e., A=-1, c=0).

* QAMs include p-power means for the smooth family of generators f (t):

- tP—1 | IR O
) = ine) 0=z PEON o= (b e

* Pythagoras means: Harmonic (p=-1), Geometric (p=0), Arithmetic (p=1)
* Homogeneous QAMs M (Az, \y) = A My(x,y) for all A > 0 are exactly p-power means



Univariate QAMs: M (xy, ... 2y w) = f (Z H*.;f(rg))

1=1

we face when going from univariate to multivariate cases:

Define the proper notion of "multivariate increasing” function F and its
equivalent class of functions

In general, the implicit function theorem only proves locally and inverse
function F1 of F: R = RY provided its Jacobian matrix is not singular

Information geometry provides the right framework to generalize QAMs to

quasi-arithmetic centers (QACs) and study their properties.
Consider the dually flat spaces of information geometry



Legendre-type functions

[o(E): Cone of lower semi-continuous (Isc) convex functions from £ into R U {400}

Legendre-Fenchel transformation of a convex function: F*(n) :=sup{0'n— F(0)}
cO

Problem: Domain H of n may not be convex... [*elo(E) " =F

Counterexample with h(£, &2) = [(8%/82) + &2 + £.°]/4 [Rockafeller 1967]
To by pass this problem:

Definition Legendre type function . (O, F) is of Legendre type if
the function F : © C X — R is strictly convex and differentiable with © # () an
open convex set and
d ; -
lim —F (AN + (1 —AN)f) = —oc0, VO €O,V ecdb. (1)

A—0 dA

Convex conjugate of a Legendre-type function (6,F(0)) is of Legendre-type:

Given by the Legendre function: F™(n) (VF n).1 > F(VF(n))
Gradient map VF is globally invertible: VF?



Comonotone functions in inner product spaces

* Comonotone functions: V6,6, € X, 6, # 0, (01 — 62, G(01) — G(H2)) >0
(i.e., comonotone = monotone with respect to the identity function)

Proposition (Gradient co-monotonicity ). The gradient functions
VF (@) and VF*(n) of the Legendre-type convex conjugates F and F* in F are
strictly increasing co-monotone functions.

Proof using symmetrization of Bregman divergences = Jeffreys-Bregman divergence:
BF(Ql : 92) + Bp(lfﬂ’g X 91) = <92 — 04, VF(Q;) — VF(EH)) >0, V6, 7é 0o
Bp«(ny :m2) + Bp=(n2 :m1) = (2 — 91, VE*(2) = VFE*(n1)) >0, ¥y # 1o
because Bregman divergences(and sums thereof) are always non-negative
Bp(6y :02) = F(01) — F(02) — (61 — 02, VF(63)) > 0,
Bp«(m :n2) = F*(m) — £ (n2) = (m — 2, VE (12)) = 0
Remark: because when d=1, f(x) is strictly monotone iff
f(x,)-f(x,) is of same sign of x,-x, that is, (f(x,)-f(x,)) (x;-x,)>0



Quasi-arithmetic centers: Definition generalizing QAMs

Definition (Quasi-arithmetic centers, QACs)). Let FF : & — R be
a strictly convexr and smooth real-valued function of Legendre-type in F. The
weighted quasi-arithmetic average of 01,....0, and w € A,_1 is defined by the
gradient map VF as follows:

Myp(O1,....0p;w) = VE~! (Z TL-‘E'?F(HE:)) .,

1

= VF”~ (Z U*iVF(Hi)) ,

1

where VF* = (VF)~L is the gradient map of the Legendre transform F* of F.

This definition generalizes univariate quasi-arithmetic means :  My(z1.... .2 w) == [~ (Z “Taf(irz'))
i=1
Let F(t) = [ f(u)du
Then we have My = Mp:



An illustrating example: The matrix harmonic mean

* Consider the real-value minus F(0) = —logdet(#)
* Domain F:  Sym,.(d) - R the cone of symmetric positive-definite matrices
* Inner product: (A.B) :=tr(AB")

* We have: F() = —log det(), ¢«Legendre-type function
VE(#)=—-6"1 = n(8).
VE () =—n~" =6(n)
F*(n)=(0(n),n) — F(0(n)) = —d — logdet(—n) <Legendre-type function

The quasi-arithmetic center with respectto F: My r(61.62) =2(07 + 65171
The quasi-arithmetic center with respectto F*: Mgp.-(n1,1m2) =2 (' + ngl)_l
Generalize univariate harmonic mean with F(x)=log x, f(x)=F'(x)=1/x:  H(a.b) = 29 for a,b > 0
A Legendre-type function F gives rise to a pair of dual quasi-arithmetic centers
My, and My, : dual operators



Dually flat structures of information geometry

* A Legendre-type Bregman generator F() induces a dually flat space structure:
(©,9(0) = V5F(0),V,V")

* A point P can be either parameterized by 6-coordinate and dual n-coordinate

manifold P

V-affine coordinate system 6 V*-affine coordinate system 7

et -vr

o = ()

0
ﬁﬂn 6 =VF(n) —
m T 1(F)

Potential function F'(#) Dual pnteﬁtial function F*(n)

Legendre-Fenchel transform [AMS 2022]




Quasi-arithmetic barycenters and dual geodesics

* The dual geodesics induced by the dual flat connections can be expressed
using dual weighted quasi-arithmetic centers:

V-geodesic v (P, Q;1) = (PQ)Y (¥)

_ [ Ma(P(P),0(Q);1—1t.1)
PO = ( Alpr i1ty ) €

L

V*-geodesic yy- (P, Q;t) = (PQ)T‘ ()

(M, g, V, V") Mia(n(P).n(Q); 1 —t,t)




n-Variable Quasi-arithmetic centers as centroids

in duallv flat spaces

Consider n points P, ..., P, on the DFS (M, g,V,V*)

Right-sided centroid:

>
Cr = argminpey .y = Dy g~ (PEP) %
fr = arg ming — = S Br(f;:0) %
Or = 6(Cr) = %z:ﬁi:ﬂfid(ﬁl,...,ﬂn) g
ik = VF(Or)=Myr(m.....10m). & E"
n () x
©on( b )

e 0. = Mgp(f.....0,)
E\ L = VF(OL) = Mia(n1. ..., 1n)

(canonical divergence = Bregman divergence)

Left-sided centroid:

Cr = argminpeyy S, - Dv v+(P : F;)
f; = arg ming - - S o, Br(6:6;)

g, —
ML

Myrp(01,....0,), &
VF(QL) = ﬂfld(nla ce

Notice that when n=2, weighted dual
qguasi-arithmetic barycenters
define the dual geodesics



Invariance/equivariance of quasi-arithmetic centers

Information geometry is well-suited to study the
A dually flat space (DFS) can be realized by a class of Bregman generators:

(M, g,V,V*) < DFS((0, F(0):n, F*(n)])

Affine Legendre invariance of dually flat spaces:
* By adding an affine term...
Same DFS with F'(0) = F'(0) + (c,0) + d. » Mgp(by,...;00w) = Mgp(fy,...;0,;w)

* By an affine change of coordinate...
Same DFSwith # = AH + b such that F(Q)

VE@) = (A TVF(A (- b)) »Mw Or, o Opiw) = AMop(01, .. On:w) + b

BF(E_ ) = Br (6'1 92) Same canonical d!vergence of'the DFS |
172 (= constrast function on the diagonal of the product manifold)




Canonical divergence versus
Legendre-Fenchel/Bregman divergences

e Canonical divergence induced by dual flat connections is between points
* dual Bregman divergences B; and B.. between dual coordinates
* Legendre-Fenchel divergence Y. between mixed coordinates

F(O)+ F*(n)—(#.n) =0 n=VEF(@®)
Bp(61:0s) = F(8;) — f_&@ — (th — 62, VE(12))
- F(91)+}(9?:Z>)_f*((;2) 12) = Yr(01: 1)
(M.qg,V, V") « DFS(|©,F(0),H, F*(n)])
« DFS([6. F(0). H. F*(i)])

D?F*(Pl . Pg) B BF(91 . 92) — BF*('T]L'T]Q) — Yp(f)l . '?’]2) — YF* ('?72 . 91)

L,




Affine Legendre invariance of dually flat spaces

plus setting the unit scale of divergences
 Affine Legendre invariance: F(0) = F(A) +b) + (c,0) + d
F(7) = F*(A™n +b%) + (") + d
 Set the unit scale of canonical divergence (DFS differ here, rescaled):
(does not change the quasi-arithmetic center) Dy v v+ = ADy v+

amount to scale the potential function AF(8) vs F(0)

Proposition (Invariance and equivariance of QACGCs). Let I'(0) be a
function of Legendre type. Then F(0) = AN(F(AQ+Db)+(c,0)+d) for A € GL(d),
b,c € R, d € R? and A € Rwg is a Legendre-type function, and we have

Moy = AMgp +b.




lllustrating example: Mahalanobis divergence

* Mahalanobis divergence = squared Mahalanobis metric distance

fails triangle inequality

1
Az(ela 92) — BFQ (91 . 92) — 5(92 — 91)T Q (92 — 91) of metric distances
Primal potential function:  Fp(f) = %QTQQ 1o + K

% 1 —
Dual potential function: F*(n) = §'T7TQ = Fo-1(n),

e The dual QACs induced by the dual Mahalanobis generators F and F*
coincide to weighted arithmetic mean M,;:

?\'IVFQ (9 ..... 9 " ) Q_l (Z u;iQei) — Z u"iei — ﬂfid (913 e 9?1; ’IU)’

1=1

Mvrg(m, .-, mmyw) =Q (Z w; Q7! ) = Mia(n1, -y s w).

1=1



Quasi-arithmetic mixtures (QAMixs), and a-mixtures

Definition . The M ;-mizture of n densities py,....p, weighted by w € A is
defined by

J\'If(}';'l(*}j)ﬂ ﬂpﬂ(I ) )
(plv .o ﬁpﬂ;u;)ﬂff(:r) = ,
J My(pi(x), ... palx);w)du(r)

Centroid of n densities with respect to the a-divergences yields a QAMix:

yMe = arg mln E w; Do (pis p

(P1, - P w
D, [m(s) : I(s)]
[ m(s)ds — ft's}ds—}—fms}lcrg,”ds a=-1
= { [I(s)ds — [m(s)ds + [I(s)log j“ds—kf.-f{s]log {{}d.‘}u'—l
o [m(s)ds + 1% [1(s)ds — =5 [m(s) )T 1(s) ds, a # +1.

D, denotes the a-divergences:

a-families of probability distributions [Amari 2007] [arXiv:2209.07481]



k=2 QAMixs and the V-Jensen-Shannon divergence

* Jensen-Shannon divergence is bounded symmetrization of KL divergence:

1 + +
Dys(p.4) = 5 (DKL (p 5 Q) + Dy (q = Q)) < log(2)

* Interpret arithmetic mixture as the midpoint of a mixture geodesic (wrt to
the flat non-parametric mixture connection V™ in information geometry).

* Generalize Jensen-Shannon divergence with arbitrary V-connections:

Definition (Affine connection-based V-Jensen-Shannon divergence).

Let V be an affine connection on the space of densities P, and ~v(p,q;t) the

geodesic linking density p = yv(p,q:0) to density g = yv(p,q:1). Then the V-
Jensen-Shannon divergence is defined by:

. 1 1 1
D (p.q) = 5 (DKL (p 2ok (paq; 2)) + Dx1, (q LYV (paq; 2))) :




Inductive Means: Geodesics/quasi-arithmetic centers

* Gauss and Lagrange independently studied the following convergence of pairs

of iterations:
a; + by

a1 = : and proves quadratic convergence to AGM (g, by) = T ag+ by
the arithmetic-geometric mean AGM 00 4 7o (ﬂ-ﬂ—bﬂ)
bt_|_1 — (1t bt ap—+bg

where K is complete elliptic integral of the first kind
AGM also used to approximate ellipse perimeter and

* In general, choosing two strict means M and M' with interness property will
converge but difficult to analytically express the common limits of iterations

* When M=Arithmetic and M'=Harmonic, the arithmetic-harmonic mean AHM
yields the geometric mean:

at4+1 = A(a't*- h’t) AHl\I(I y) = lim a; = 11111 hy = \/ry = G’(:Iay)

h’t—l—l — H(C{-t, h’t) t—oo




Inductive matrix arithmetic-harmonic mean

e Consider the cone of symmetric positive-definite matrices (SPD cone), and
extend the AHM to SPD matrices:

A+ H
At = t_g t = A(A;, Hy) <
Hiy = 2(A7 " +H ) ' =H(ALH,) <

* Then the sequences converge quadratically to the matrix geometric mean:
AHM(X,Y)= lim A, = lim H,.

t— 400 t— 400

AHM(X,Y) = X3 (X3 Y X %)% X3 = G(X,Y) |
which is also the Riemannian center of mass with respect to the trace metric:

1 1

G(X,Y)=arg ﬂfllel]%pl(ld) —p?(X. M) + 2P (Y, M). p(Pr, ) = dzlog Ai (P Py Py 1) Riemannian distance

gp(Vi, Vo) = tr (PT'VLPTV) [Nakamura 2001, Atteia-Raissouli 2001 ]



Geometric interpretation of the AHM matrix mean

1

A+ H P = 7 (Pﬁ i —)
At—|—1 _ t‘g t :A(Atht) t+1 t Qt 9
) 1

Hiw = 2(A7'+H )" =H(A, Hy) Qer1 = 7 (Pt’Qt | 5)

(SPD, g€, VA, V1) is a dually flat space, V€is Levi-Civita connection
Go(P,Q) = P (Pé QP%)Q pi
Dually flat space (SPD, g€, V4, V")
0 in information geometry defines
quasi-arithmetic centers as geodesic midpoints

V-geodesic

Al(P.Q) = (1 — )P+ aQ

O V*-geodesic

Hy(P.Q)= ((1-a)P' +a@Q )™

Primal geodesic midpoint is the arithmetic center wrt Euclidean metric gp(X.Y) = (XY

Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric gp (X,Y) = tr(P > X P7?Y)

Levi-Civita geodesic midpoint is geometric Karcher mean (not QAC)  ¢%(X.Y) =tr(P'XP7Y)
gp(V1,V2) = tr (P~'V1P71V5) A balanced metric [Nakamura 2001, Thanwerdas & Pennec 2019]



Revisiting Chernoff information
with
Likelihood Ratio Exponential Families

Entropy 2022
[2207.03745]



Chernoff information: Definition & Background

A symmetric statistical divergence

* Originally introduced by Chernoff (1952) to upper bound the
probability of error (Bayes' error) in statistical hypothesis testing.

Definition:

pulP: Qf:= fﬁ’&”?]_“dﬂ = p1-4[Q: P] 0 < pafP:Q] <1

(via Holder inequality) Herman Chernoff

 skewed Bhattacharyya coefficient p_ (similarity coefficient) (1923-)

 Synonyms: Chernoff divergence, Chernoff information number, Chernoff index...
* Found later many applications in information fusion, radar target detection,
generative adversarial networks (GANs), etc. due to its empirical robustness




Chernoff information =
Maximally skewed Bhattacharyya distance

* skewed Bhattacharyya distance (a Ali-Silvey f-divergence):

DHﬁ[F’ L q] = —k*an:[P Q= DEJ—&[‘? :p).

* Chernoff information: Dc|p,q] = max Dg,[p: q].
ae(0,1)

* scaled skewed Bhattacharyya distance = Rényi divergence (extends KLD)

1 1
o — 1 1 —«

Dra|P: Q] = ng/Pﬁql_mdﬁ — Dpa[P : Q| x € [0, m]\{l}
e Optimal values of a is called ""Chernoff (error) exponent' (due to its

seminal use in statistical hypothesis testing)



Rationale for Cl: Statistical hypothesis testing

0.2

0.15

0.1

0.05

X classified as p1

4 6 8

X classified as p2

10 12 14

Statistical mixture:

m(x)=0.5*N(0,1)+0.5*N(5,2)

Hypothesis task:

Decides whether x emanates

from pl or p2?

Classification rule:

Maximum a posteriori (MAP)

if p1(x)>p2(x) classify as p1
else classify as p2

Error at x: min(p1(x),p2(x))

Histogram intersection similarity:




Rewriting and bounding the probability of error

* Use rewriting trick min(a,b)=(a+b)/2 + |b-a|/2 for a,b>0
express the probability of error using the total variation distance:

P, = /lllill{pl{f).;,:g(.r)]ldw

/(Pl(ir) — pa(r))dx

e Use a generic (weighted) mean which necessarily falls inbetween its
extrema (e.g., geometric mean):

min(a, b) < M(a,b) < max(a,b) = min(a,b) < M,(a.b) <max(a.b).Va € [0,1]
M, (a,b) = a®b'=®
—_—

geometric weighted mean

P, = f min(py (), pa(x))dz < min [ Ma(ps(), pa(x))de P. < pa(pr. p2)

ae(0.1]

"Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using
guasi-arithmetic means." Pattern Recognition Letters 42 (2014): 25-34.



Likelihood ratio exponential families (LREFs)

* Geometric mixture (Bhattacharyya /exponential arc) Length

Minimum
Description

between two densities p, g of Lebesgue Banach space L,(u)
(Pq)g (x) & p(x)*q(x)'—* tg ()18
N Epg = {(m)f(x) =P o
* Set of geometric mixtures: J

Zpg(®)

with normalization factor: Zpg(a) = fr p(x)%q(x) " du(x) = pu[p : q]

e geometric mixture interpreted as a 1D exponential family: LREF

— Sufficient statistics: log likelihood ratio

(p)e(x) = exp (ﬂf log f;((g — log qu(ft)) q(x),

. k(x)=log q(x)
—: exp(mté)gﬁ(ﬂ[}—ik(ﬂ?) : O@:={acR : Zy(a) < oo}
- VB« piq

Natural parameter space:



LREFs: EF cumulant function is always analytlc cw

' skew Bhattacharyya D_{B,a}{p:a] ——

* Cumulant function of EF is strictly convex ez ) — 1
(and smooth for regular EFs) /*’" i -
 Cumulant function is neg-Bhattacharyya :

distance:

{pai(a)=-
/ N
p i

“ )

= Bhattacharyya. distance is strictly concave™| . -

 Theorem: 0= N(O 1) N(l 2)
Chernoff exponent exists and is unique (pq)c(r) x p(x)* q(r)

DC[P; ‘?] — DB,&*(p:q)(p 1) = DB,a:*(q:p)(q p) = DC[‘?! P]
a*(q:p)=1—a*(p:q)



Geometric mixtures and LREFs: Regular EFs

* Natural parameter space: Opg ={a €R : pa(p:q) < +oo}

always contains (0,1) since 0<pa[P:Q] <1

* What happens at extremities and when extrapolating (depends on support):

i [ supp(p) Nsupp(g), a € Op\{0,1}
Supp((mh) = { supp(p), a=1
. supp(q), a = 0.

* Exponential family is said regular when the natural parameter space O is
open (e.g., normal family, Dirichlet family, Wishart family, etc.)

Definition: regular EF  {csssss) ©O = O°



When (0,1) is strictly included in regular LREFs

Proposition (Finite sided Kullback-Leibler divergences). When the LREF &g is a regular
exponential family with natural parameter space © 2 [0, 1], both the forward Kullback-Leibler
divergence Dy [p : q| and the reverse Kullback-Leibler divergence Dxy |q : p] are finite.

Dx[P: Q] = Dxi[p: q] = fX . 108(3) d.

q
* KLD between two densities of a regular EF = reverse Bregman divergence:
DKL[F?H] : pgz] — EPBI |:10g &] ’
Peo,

— F(0)— F(0y) — (6 0) By, [1())  SteeP D D= VIO

regular EF = steep EF




Venn diagram: Regular & steepness of (LR)EFs

* Steepness implies duality between natural @ and moment n parameters




Proposition (Finite sided Kullback-Leibler divergences). When the LREF &g is a regular
exponential family with natural parameter space © 2 [0, 1], both the forward Kullback-Leibler
divergence Dxy |p : q] and the reverse Kullback-Leibler divergence Dxy |q : p] are finite.

PROOF o

Remember KLD=Bregman divergence between densities of a regular (LR)EF

Dxr[p :q] = (Be)"(ap : ag) = Bg, (ag : ap) = Bg, (0: 1)
Scalar Bregman divergence Bp : © xri(®) — [0, o)

BE, (a1 : a2) = Fyg(ag) — Fpglaz) — (@1 — az)Fpp(az).

FP@'(G) — Pq(l) =0

= B, (0:1) = F),(1) < o
= B, (1:0) = —F},(0) < o

idem for




Chernoff information (for densities of a LREF)

* Proposition:

PROOF
First, skew Bhattacharyya distance = skew Jensen divergence

Dialp: q:= —logpa[P: Q) mummm Dsalps, : pe,) = JEal61:62) -~
Tra(f1:02) = aF(61) + (1 — a)F(62) — F(aby + (1 — a)6y). -
Thus we have: Dp.((pq)s, : (p9)5,) = Jrpa(tr : a2),
= aFpy(a1) + (1 — a)Fpg(az) — Fpg(aag + (1 — a)an)
At the optimal value a*, we have F, ( *) =0
@ Dk [(pq)% : p] = = Br,, (1: & @ DKL[ Pq = Bqu(U :a*) = —F(a¥)
@ Dclp : q] = —log p (P fi') = IFW"‘ (1:0) = _FP‘?( *)



Jensen-Chernoff divergence
Dclp : 9] = Dxv[(pg)g : p] = Dx[(pq)g- - ]

non-parametric arguments

D¢lp.q) = Bp,(l:a")=DBp (0:a")
— .]qu:a-*(o . 1)
scalar parametric arguments

In general, define Jensen-Chernoff divergence




Geometric interpretation for densities p, q on L,(p)

Proposition (Geometric characterization of the Chernoff information). On the vector space
LY (u), the Chernoff information distribution is the unique distribution

Left KL Voronoi bisector: Bi%f{t(p,q) = {r e Ll(y) : Dxp|r: p] = Dxp]r: q]}
Geodesic = exponential arc:  7%(p,q) := {(PQ)S . a €0, 1}}
2209.07481

bisector §

Fd
(pa)S. 4

Chernoff point: (pq)%




Special case of LREF: p,q are densities of a same EF!

EF includes Gaussians, Beta, Dirichlet, Wishart, etc.

e ={P s g1 = ) = ep(O) Tt ~ FOV), AeA]

pe, ()" pa,(x)' ™" exp({afy + (1 — a)6y, t(x)) —aF(61) — (1 — a)F(62)),
= Puaby+(1—a)8, (X) exp(F(aby + (1 —a)b2) —aF(01) — (1 —a)F(62)))
— pw91+(1—a;)92(x) exp(—Jra(01:62)),

» (Pﬁ'lpﬂg)g = Paby+(1—a)by Dxuv|pe, : pe,] = Brp(62:61)




Proposition  Let p), and p,, be two densities of a reqular exponential family £ with natural
parameter 6(A) and log-normalizer F(0). Then the Chernoff information is

where 61 = 6(Aq), 62 = 0(Ay), and the optimal skewing parameter a* is unique and satisfies the

following optimality condition:

- Bi‘"i*"-@’ht(p,gl :pg,) = {0 €O : Bp(61.6) = Bp(f.0)} \

V™ flat

Vg, pa, (OF) = Paroy+(1-a%)pp = (Pelpeg)f*
Chernoff point
Dby = g, 04, (0)

—— o (0) = Doty -t

= ({po}. gr = V?F(0), V™, V°)

where e« = VF(a* 01 4+ (1 —a™)6,) = Epa*a1+ L—a*)6, H(x)].

| Bregman manifold (= global Hessian manifold)



Interpreting the uniqueness of Chernoff exponent
from pure information geometry point of view

* Since the Chernoff point is unique, we can also interpret more generally
this property in a general dually flat space (not necessarily an EF) as
known as a Bregman manifold

Proposition  Let (M, g, V, V™) be a dually flat space with corresponding canonical divergence
a Bregfﬂan divergence Br. Let '}f;q(ﬂc) and ’}’?q(ﬂ’l) be a e-gegdesir: and m-ge*odesfc* passing through
the points p and q of M, respectively. Let Bi" (p, q) and Bi(p, q) be the right-sided V™ -flat and
Jﬁff-ﬁ'fd{fﬁ? Veﬂat'Bregma?:'. b-sfsgcf?rs, r.ispectively. T}{{zﬂ. the inters'ecf-io? of 7??1:‘;‘(‘3‘3;:””}1 B?m(p, q)
and the intersection of 'ypq(w*) wztz Bi“(p, qil are uniqie. The point 7y}, (a) NBi"™ (p, q) is C{?Ihfd
the Chernoff point and the point <y, (a) N Bi®(p, q) is termed the reverse or dual Chernoff point.

"On geodesic triangles with right angles in a dually flat space.”
Progress in Information Geometry. Springer, 2021. 153-190.



Duo Bregman pseudo-divergences:
Applications to the KL divergence
between truncated densities



Legendre transformation reverses majorization order

Legendre-Fenchel transformation: F*(n) :=sup{n'0 — F(0)}
0co

F Legendre-type function, Moreau biconjugation theorem: (F™)* = F

proper+lower semi-continuous+convex ( ‘i’i\\ o /50

Legendre-Fenchel transform reverses ordering:

Vo e©, Fi(0)=F0) Ve H, Fi(n) <F0)

1

Hy(n)=n"0— Fi(n)

Proof: o =7 d e
08 |-
Fi(n) = SUP{UTG — Fy(0) 1, y 1 06 |-
SC) el 5 i 0.4
- 7’]T91 — F1<91> (VVith n = VFl(el) = I BEF
S 77T 91 . FZ (91 ) ’ “0 o0z 0.4theta 06 08 1 i 05 e;1a 15 2
S Sup{nTQ — FQ(Q)} — FZ*(T]) I Convex functions F;(6) > F»(0) Conjugate functions F;' (1) < F5 (1)

0eO



F1(0)

* ° > &

o . -
¢’ 6 0, aby + (1 - a)b; 02
Duo Bregman divergence Duo Jensen divergence

Br,,,(0:6') = Fy(6) — F2(6) — (6 - 6') ' VE(6')

_ Jr,Fpa (01 2 62) = aFy(87) + (1 — a)F2(02) — Fy(af; + (1 —a)6s).
Duo Fenchel-Young divergence

Ye 55 (0,7) :=F(0) +F5(n') -0y,

Relationship with truncated exponential families with nested supports:
Dxuw[Pe, : 90,] = Yr,,F; (02 : 111) = Br,,, (62 : 61) Dghata[p : 4] := —log. o p(x)*q(x)' " dp(x)

Dghata [Pe; : 96,] = JF,E,a(01: 62).



Kullback-Leibler divergence  pulp: Q= [ tog 35 4P = Epiog 35|
between exponential family densities
Br(61 : 6,) := F(61) — F(6,) — (61 — 6,) ' VF(6,) ' Br,p,(0:0') :=Yp : (6,7') = F1(8) — F2(8') — (6—0")"VE(¢)

Yr,p (01, 12) := F(61) + F*(112) — 61 112 Yr 5 (8,1') :=F(0) +F5 (') — 0"y

* Same exponential family: KLD = © orreverse
Fenchel-Young divergence

Dxv[Ps, : Ps,] = Yrp+(62:11) = Bp(02: 01) = Bp«(171 : 12) = Y+ r (171 : 172).
* Different exponential families (mutually absolutely contiTnuous):
Dxi[Ps: Qo] = Fo(6') —Fp(6) +6'Ep[tp(x)] — 6" Ep,[to(x)]-

* Same truncated exponential family: | or
reverse duo Fenchel-Young divergence (nested supports)

DxvL[pe, : 90,] = Y, b; (62:111) = Bp, 1 (02 : 61) = B k(11 : 112) = YE; 5, (171 : 62).



KL divergence between truncated normal densities
PDF of truncated normal on (a,b):  Phs(e) = o= (<I>ms(z) S 5] CXP( - :m) )

252
. 1 r—m
D s(z) = 1 +ert 735 , erf(a \/_ dt.

Truncated normal PDFs form an exponential famlly with log-normalizer :

2
1 | -
Fup(m.s) = o= + = log 27s? + 10g (B s(b) — Py s(a))
_.S’ Z ' '
Moment parameters and mean & variance: 8B — &) gyl oo (2
p(im, s:a,b) = m—s #iR) (‘*1’( _))

) d(ar)’ V2
m(m,s;a.b) = E.«'znb [] = gilen, 8. a, by, ®(8) — ®(a)

4 Bo(B) — ad(a MB) — dla 2
(M, s;a,6) = Epn s [2°] = 0% (m, s1a,b) + p*(m, 570, b). o*(m,s;0,b) = & (l B ;EJ'; —2>(i?) B (;)EO’; —:P((Ccll))) ) .'

Kullback-Leibler divergence between nested truncated normal distributions:

1 b me My Loy by (Mo, 52) Mo 7711
DK L . P e g 1 - - 7]1(77?1 S1,041, bl
Priissy * P2 2s? 252 ® Zay by (M1, s1) s st )

1 i g ’ " .
- (252 - .25,2) me(mi. si:ag,by)  if nested distributions (a1,b1) C (as, bs)
L Dywlptt : piate | = oo, (a,by) € (az,by) Otherwise
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