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Talk outline
• Information geometry from the pure viewpoint of geometry:

➔ Geometry of dual structures

• Dual multivariate quasi-arithmetic averages: 

➔ Information geometry yielding a generalization of quasi-arithmetic means

• Chernoff information and its purely geometric counterpart:

➔ Geometry likelihood ratio exponential families

• Duo Bregman pseudo-divergences:

➔ Application to KLD between truncated densities of an exponential family



Information geometry:

A short introduction to the  geometry of dual structures

Geometry defines the architecture of spaces



Information geometry (IG): Rationale and scope

• IG field originally born by investigating geometric structures of 
statistical/probability models (e.g, space of Gaussians, space of multinomials)

• Statistical models: parametric vs nonparametric models, regular vs singular 
(ML) models, hierarchical (ML) or simple models, ...

• Define statistical invariance, use language of geometry (e.g., ball, projection, 
bisector) to design algorithms in statistics, information theory, statistical 
machine learning, etc.

• IG study interplays of statistical/parameter divergences with geometric 
structures

• Relationships between many types of dualities in IG: dual connections, 
reference duality (dual f-divergences), Legendre duality, duality of 
representations/monotone embeddings, etc



Geometric science of information (GSI)

Further extend broadly the original scope of information geometry by unravelling 
connections of information geometry (IG) with other domains of geometry like:

• geometry of domains and cones   (e.g., Siegel/Vinberg/Koszul)

• geometric mechanics for dynamic models (symplectic/contact geometry)

• thermodynamics/thermostatistics and deformed statistical models

• geometric statistics (eg, computational anatomy/medical imaging)

• shape space analysis and deformation (computer vision)

• algebraic statistics (manifolds versus algebraic surfaces/varieties)

• dynamics of learning  (singularity, plateau)

• neurogeometry  (neuroscience)

• etc. franknielsen.github.io/GSI/

https://t.co/nBoxWEdXy2


GSI: Biannual conference since 2013

https://conference-gsi.org/
franknielsen.github.io/GSI/Include 500+ GSI video talks:

https://t.co/nBoxWEdXy2


Information geometry:
Geometry of dual structures



Build your own information geometry in three steps 

① manifold M ② metric tensor g ③ affine connection ∇
Get dual IG

manifold
(M,g,∇,∇*)

Choose

duExamples:
Gaussians
SPD cone
Probability simplex

Examples:
Fisher information metric
metric gD from divergence 
trace metric

Examples:
exponential connection
mixture connection
metric connection ∇g

divergence connection ∇D

α-connectionConcepts: 
vector length
vector orthogonality
Riemannian geodesic
Riemannian distance
Levi-Civita connection ∇g

Concepts:
covariant derivative ∇
∇-geodesic
∇-parallel transport
curvature

chart

dual
connection

Concepts:
dual connections coupled to metric g
dual parallel transport preserve metric g

Concepts:
local coordinates
locally Euclidean 



From dual information geometry to ±α-geometry, α∈ℝ

① manifold M

② metric tensor g

③ affine connection ∇
by defining Christoffel symbols

Get dual IG manifold
(M,g,∇,∇*)

Choose

Cubic
tensor ±α-geometry

Examples:
Amari-Chentsov cubic tensor 
Cubic tensor from divergence 

④ choose α

Get a family of dual connections/IG
(M,g,∇α,∇-α)

0-geometry
= Riemannian geometry
with geodesic distance



Information geometry from statistical models: (M,gF,∇-α,∇α)
• Consider a parametric statistical/probability model:

• Define metric tensor g from Fisher information = Fisher metric  gF

• Model is regular if partial derivatives of lθ(x) smooth and Fisher metric

is well-defined and positive-definite

• Amari-Chentsov cubic tensor: 

• α-connections

• Fisher-Rao geometry when α=0, get geodesic distance called Rao distance

α=1

α=-1

exponential connection

mixture connection

covariance of the score log-likelihood

[Amari Nagaoka 1982][Rao 1945][Hotelling 1930]
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Rao distance on the Fisher-Rao manifold

In practice:
• Need to calculated geodesics which are curves locally minimizing the length linking two 

endpoints (equivalently minimize the energy of squared length elements)

• Finding Fisher-Rao geodesics is a non-trivial tasks.
• Good news 2023:  closed-form geodesics with boundary conditions for  MultiVariate Normals 

Length element

Here, γ is the Riemannian geodesic  
(or add a minimizer on all paths γ) 

Fisher-Rao and pullback Hilbert cone distances on the multivariate Gaussian manifold 
with applications to simplification and quantization of mixtures, ICML ws TAGML 2023



Information geometry from divergences: (M,gD,∇D,∇D*)
• A statistical divergence like the Kullback-Leibler divergence is a smooth non-

metric distance between probability measures

• A statistical divergence between two densities of a statistical model is a 
parametric divergence (e.g., KLD between two normal distributions)

• Construction of dual geometry from asymmetric parametric divergence D(θ1:θ2)

• Dual divergence is D*(θ1:θ2)=D(θ2:θ1), reverse divergence

Cubic tensor:
Dual structure:

[Eguchi 1983]
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Realizations of dual information geometry (stat mfd)
• Realize  (M,g,∇,∇) as a divergence information geometry (M,gD,∇D,∇D*):  

always exists a divergence D such that (M,g,∇,∇)=(M,gD,∇D,∇D*)

Matumoto, "Any statistical manifold has a contrast function—On the C3-functions taking 
the minimum at the diagonal of the product manifold." Hiroshima Math. J 23.2 (1993) 

• Realize (M,g,∇,∇) as a model information geometry (M,gF,∇-α,∇α)

always exists a statistical model M such that (M,g,∇,∇)=(M,PgF,P∇
-α,P∇

α)

Lê, Hông Vân. "Statistical manifolds are statistical models." Journal of Geometry 84 (2006): 
83-93.



Equivalence: model α-IG ↔ divergence IG for f-divergences

• Let P={pθ} be a statistical model of probability distributions dominated by μ

• Consider the f-divergence for a convex generator f(u) with f(1)=0, f'(1)=1, 
f''(1)=1 ← standard f-divergence (can always rescale g(u)=f(u)/f''(1))

• The f-divergence between pθ1 and pθ2 is a parameter divergence D(θ1:θ2)

from which we can build the divergence information geometry (M,gD,∇D,∇D*)

• Then model  α-geometry for α=2 f'''(1)+3 coincide with divergence IG:

(M,gD,∇D,∇D*) = (M,gF,∇-α,∇α) for α=2 f'''(1)+3 
metric tensor  gD and cubic tensor TD coincides with Fisher metric gF and Amari-Chentsov tensor T

Dual reverse f-divergence is a f-divergence for 



Curvature is associated to affine connection ∇
• For Riemannian structure (M,g), use default Levi-Civita connection ∇=∇g

• Riemannian manifolds of dim d can always be embedded into Euclidean 
spaces ED of dim D=O(d2)

• Euclidean spaces have a natural affine connection ∇=∇E

Cylinder is flat, 0 curvature:
Parallel transport along a loop of a 
vector preserves the orientation

Sphere has positive constant curvature:
Parallel transport along a loop exhibits
an angle defect related to curvature

© CNRS



Dually flat spaces (M,g,∇,∇*)

• Fundamental theorem of information geometry: If torsion-free affine 
connection ∇ is of constant curvature κ, then curvature of dual torsion-free 
affine connection  ∇* is also constant  κ

• Corollary: if ∇ is flat  (κ=0) then ∇* is flat: Dually flat space (M,g,∇,∇*)

• A connection ∇ is flat if there exists a local coordinate system θ such that Γ(θ)=0

• In ∇-affine coordinate system θ(.), ∇-geodesics are visualized as line segments

Γ(θ)=0

geodesics=line segments in θ



Canonical divergences of DFSs: Bregman divergences 
• Dually flat structure (M,g,∇,∇*) can be realized by a Bregman divergence

• Let F(θ) be a strictly convex and differentiable function defined on an open 
convex domain ϴ

• Bregman divergence interpreted as the vertical gap between

point (θ1, F(θ1)) and the linear approximation of F(θ) at θ2 evaluated at θ1 :

[Bregman 1967]



Legendre-Fenchel transformation: Slope transformation

• Consider a Bregman generator of Legendre-type (proper, lower semi-
continuous). Then its convex conjugate obtained from the Legendre-Fenchel
transformation is a Bregman generator of Legendre type.

• Analogy of the Halfspace/Vertex representation of the epigraph of F

• Fenchel-Moreau’s biconjugation theorem for F of Legendre-type:
[Touchette 2005] Legendre-Fenchel transforms in a nutshell
[2010] Legendre transformation and information geometry

Concave programming:
Epigraph

Slope



• Dual Legendre-type functions

• Convex conjugate of F  is 

• Fenchel-Young inequality :

with equality holding if and only if

• Fenchel-Young divergence  make use of the mixed coordinate systems  θ et 
η to express a Bregman  divergence as                                              : 

Mixed coordinates and the Legendre-Fenchel divergence

Gradient
are inverse

of each other



Generalized Pythagoras theorem in dually flat spaces

Generalized Pythagoras’ theorem Pythagoras’ theorem in 
the Euclidian geometry

(Self-dual)
orthogonality condition:

In general, Identity of Bregman divergence with three parameters = law of cosines





Dually flat space from a smooth strictly convex function F(θ)

• A smooth strictly convex function F(θ) define a Bregman divergence 
and hence a dually flat space via Eguchi's divergence-based IG

• Examples of DFSs induced by convex functions:

Domain dual Bregman divergences



Dual geometry of information geometry:
Information geometry as a tool to geometrize duality

Geometrize

Objects: divergences D

duality = reverse divergence D*

(D*)*=D

(∇D,∇D*)

Geometrize

Objects: Legendre type functions F

duality = convex conjugate F*

(F*)*=F

(∇F,∇F*)

Geometrize

Type: strictly monotone functions

duality f* = reciprocal f-1

(f*)*=f

(∇f,∇f*)

A pair of (torsion-free) affine connections (∇,∇*) with (∇*)*=∇

Examples:

dual contrast functions dual potential functions dual f-representations
(±α-representations)

Geometric terminology:



Quasi-arithmetic centers, 
quasi-arithmetic mixtures, and the 

Jensen-Shannon ∇-divergences

arXiv:2301.10980



Outline and contributions
Goals:

I. Generalize scalar quasi-arithmetic means to multivariate cases

II. Show that the dually flat spaces of information geometry yields a natural 
framework for defining and studying this generalization



Weighted quasi-arithmetic means (QAMs)

Standard (n-1)-dimensional simplex:

QAMs enjoy the in-betweenness property:

[Kolmogorov 1930] [Nagumo 1930] [De Finetti 1931]



Quasi-arithmetic means (QAMs)

• Classes of generators [f]=[g] with f ≡ g yieldings the same QAM:

• So let us fix wlog.  strictly increasing and differentiable f since  we can always 
either consider either f or -f (i.e., λ=-1, c=0). 

• QAMs include p-power means for the smooth family of generators fp(t):

• Pythagoras means: Harmonic (p=-1), Geometric (p=0), Arithmetic (p=1)

• Homogeneous QAMs     s are exactly p-power means 



Quasi-Arithmetic Centers (QACs) = Multivariate QAMs:

Two problems we face when going from univariate to multivariate cases:

1. Define the proper notion of "multivariate increasing" function F and its 
equivalent class of functions

2. In general, the implicit function theorem only proves locally and inverse 
function F-1 of F: Rd → Rd provided its Jacobian matrix is not singular

Univariate QAMs:

Information geometry provides the right framework to generalize QAMs to 
quasi-arithmetic centers (QACs) and study their properties.

Consider the dually flat spaces of information geometry



Legendre-type functions

Convex conjugate of a Legendre-type function (ϴ,F(θ)) is of Legendre-type:

Given by the Legendre function:

[Rockafeller 1967]

Legendre-Fenchel transformation of a  convex function:

Problem: Domain H of η may not be convex...
counterexample with

To by pass this problem:

Gradient map ∇F is globally invertible: ∇F-1



• Comonotone functions:

(i.e., comonotone = monotone with respect to the identity function)

Comonotone functions in inner product spaces

Proof using symmetrization of  Bregman divergences = Jeffreys-Bregman divergence:

because Bregman divergences(and sums thereof) are always non-negative

Remark: Generalization of monotonicity because when d=1,  f(x) is strictly monotone iff
f(x1)-f(x2) is of  same sign of x1-x2 that is,  (f(x1)-f(x2)) (x1-x2)>0



Quasi-arithmetic centers: Definition generalizing QAMs

This definition generalizes univariate quasi-arithmetic means : 

Then we have

Let



An illustrating example: The matrix harmonic mean
• Consider the real-value minus logdet function

• Domain F:                                the cone of symmetric  positive-definite matrices 

• Inner product: 

• We have:

The quasi-arithmetic center with respect to  F:  

Generalize univariate harmonic mean with F(x)= log x, f(x)=F'(x)=1/x:

←Legendre-type function

The quasi-arithmetic center with respect to  F*:  

←Legendre-type function

A Legendre-type function F gives rise to a pair of dual quasi-arithmetic centers

M∇F and M∇F* : dual operators



Dually flat structures of information geometry
• A Legendre-type Bregman generator F() induces a dually flat space structure: 

• A point P can be either parameterized by θ-coordinate and dual η-coordinate

[AMS 2022]



Quasi-arithmetic barycenters and dual geodesics

• The dual geodesics induced by the dual flat connections can be expressed 
using dual weighted quasi-arithmetic centers:

←primal QAC M∇F

←dual QAC  M∇F*



n-Variable Quasi-arithmetic centers as centroids
in dually flat spaces

Right-sided centroid: Left-sided centroid:

Consider (canonical divergence = Bregman divergence)

←primal QAC

←dual QAC

Notice that when n=2, weighted dual 
quasi-arithmetic barycenters
define the dual geodesics
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• By adding an affine term...

• By an affine change of coordinate...

Invariance/equivariance of quasi-arithmetic centers
Information geometry is well-suited to study the properties of QACs:
A dually flat space (DFS) can be realized by a class of Bregman generators:

Affine Legendre invariance of dually flat spaces:
Invariance of quasi-arithmetic center:

Equivariance of quasi-arithmetic center:

Same DFS with 

Same DFS with such that 

Same canonical divergence of the DFS 
(= constrast function on the diagonal of the product manifold)



Canonical divergence versus 
Legendre-Fenchel/Bregman divergences

• Canonical divergence induced by dual flat connections is between points

• dual Bregman divergences BF and BF* between dual coordinates

• Legendre-Fenchel divergence YF between mixed coordinates



Affine Legendre invariance of dually flat spaces    
plus setting the unit scale of divergences

• Affine Legendre invariance: 

• Set the unit scale of canonical divergence (DFS differ here, rescaled):

(does not change the quasi-arithmetic center)  

amount to scale the potential function λF(θ) vs F(θ)



Illustrating example: Mahalanobis divergence
• Mahalanobis divergence = squared Mahalanobis metric distance

• The dual QACs induced by the dual Mahalanobis generators F and F* 
coincide to weighted arithmetic mean Mid: 

Primal potential function:

Dual potential function:

fails triangle inequality
of metric distances



Quasi-arithmetic mixtures (QAMixs), and α-mixtures

Dα denotes the α-divergences:

Centroid of n densities with respect to the α-divergences yields a QAMix: 

[Amari 2007]α-families of probability distributions [arXiv:2209.07481]



k=2 QAMixs  and the ∇-Jensen-Shannon divergence
• Jensen-Shannon divergence is bounded symmetrization of KL divergence:

• Interpret arithmetic mixture as the midpoint of a mixture geodesic (wrt to 
the flat non-parametric mixture connection ∇m in  information geometry).

• Generalize Jensen-Shannon divergence with arbitrary ∇-connections:

≤ log(2)



Inductive Means: Geodesics/quasi-arithmetic centers
• Gauss and Lagrange independently studied the following convergence of pairs 

of iterations:

• In general, choosing two strict means M and M' with interness property will 
converge but difficult to analytically express the common limits of iterations

• When M=Arithmetic and M'=Harmonic, the arithmetic-harmonic mean AHM 
yields the geometric mean:

and proves quadratic convergence to
the arithmetic-geometric mean AGM 

where K is complete elliptic integral of the first kind
AGM also used to approximate ellipse perimeter and 𝜋



• Consider the cone of symmetric positive-definite matrices (SPD cone), and 
extend the AHM to SPD matrices:

• Then the sequences converge quadratically to the matrix geometric mean:

Inductive matrix arithmetic-harmonic mean 

which is also the Riemannian center of mass with respect to the trace metric:

←arithmetic mean 

←harmonic mean 

Riemannian distance

[Nakamura 2001, Atteia-Raissouli 2001 ]



Geometric interpretation of the AHM matrix mean

Primal geodesic midpoint is the arithmetic center  wrt Euclidean metric
Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric
Levi-Civita geodesic midpoint is geometric Karcher mean (not QAC)  

Dually flat space (SPD, gG, ∇A, ∇H) 
in information geometry defines
quasi-arithmetic centers as geodesic midpoints

[Nakamura 2001, Thanwerdas & Pennec 2019]

(SPD, gG, ∇A, ∇H) is a dually flat space,  ∇G is Levi-Civita connection

A balanced metric 



Revisiting Chernoff information
with

Likelihood Ratio Exponential Families

Entropy 2022

[2207.03745]



Chernoff information: Definition & Background
A symmetric statistical divergence

• Originally introduced by Chernoff (1952) to upper bound the 
probability of error (Bayes' error) in statistical hypothesis testing.

• skewed Bhattacharyya coefficient ρα (similarity coefficient)
Herman Chernoff 

(1923-)

• Synonyms: Chernoff divergence, Chernoff information number, Chernoff index...
• Found later many applications in information fusion, radar target detection, 
generative adversarial networks (GANs), etc.   due to its empirical robustness

(via Hölder inequality)

Definition:



Chernoff information = 
Maximally skewed Bhattacharyya distance

• skewed Bhattacharyya distance (a Ali-Silvey f-divergence):

• Chernoff information:

• scaled skewed Bhattacharyya distance = Rényi divergence (extends KLD)

• Optimal values of α is called ``Chernoff (error) exponent'' (due to its 
seminal  use in statistical hypothesis testing)



Rationale for CI: Statistical hypothesis testing
Statistical mixture:
m(x)=0.5*N(0,1)+0.5*N(5,2)
Hypothesis task:
Decides whether x emanates 
from p1 or p2?
Classification rule:
Maximum a posteriori (MAP)
if p1(x)>p2(x) classify as p1 

else classify as p2

Error at x: min(p1(x),p2(x))
Histogram intersection similarity:

x classified as p1
x classified as p2



Rewriting and bounding the probability of error

• Use rewriting trick min(a,b)=(a+b)/2 + |b-a|/2 for a,b>0

express the probability of error using the total variation distance:

• Use a generic (weighted) mean which necessarily falls inbetween its 
extrema (e.g., geometric mean):

"Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using 
quasi-arithmetic means." Pattern Recognition Letters 42 (2014): 25-34.

geometric weighted mean



k(x)=log q(x)

Likelihood ratio exponential families  (LREFs)
• Geometric mixture (Bhattacharyya /exponential arc )

between two densities p, q of Lebesgue Banach space L1(μ) 

• Set of geometric mixtures:

with normalization factor:  

• geometric mixture  interpreted as a 1D exponential family:         LREF

Natural parameter space:

-

Sufficient statistics: log likelihood ratio



LREFs: EF cumulant function is always analytic Cω

• Cumulant function of EF is strictly convex

(and smooth for regular EFs)

• Cumulant function is neg-Bhattacharyya 
distance:

⇒ Bhattacharyya. distance is strictly concave

• Theorem:

Chernoff exponent exists and is unique
p=N(0,1) q=N(1,2)



Geometric mixtures and LREFs: Regular EFs

• Natural parameter space:

always contains (0,1) since

• What happens at extremities and when extrapolating (depends on support):

• Exponential family is said regular when the natural parameter space Θ is 
open (e.g., normal family, Dirichlet family, Wishart family, etc.)

regular EFDefinition:



When (0,1) is strictly included in regular LREFs

• KLD between two densities of a regular EF = reverse Bregman divergence:

regular EF  ⇒ steep EF

steep⇒



Venn diagram: Regular & steepness of (LR)EFs

• Steepness implies duality between natural θ and moment 𝜂 parameters



Remember KLD=Bregman divergence between densities of a regular (LR)EF

PROOF

Scalar Bregman divergence

idem for 



Chernoff information (for densities of a LREF)

• Proposition:

PROOF
First, skew Bhattacharyya distance = skew Jensen divergence

Thus we have:

At the optimal value α*, we have 

① ②
③



Jensen-Chernoff divergence

In general, define Jensen-Chernoff divergence

non-parametric arguments

scalar parametric arguments



Geometric interpretation for densities p, q on L1(μ)

Left KL Voronoi bisector:

Geodesic = exponential  arc:

Chernoff point:

2209.07481



Special case of LREF: p,q are densities of a same EF!
EF includes Gaussians, Beta, Dirichlet, Wishart, etc.



Bregman manifold (= global Hessian manifold)



Interpreting the uniqueness of Chernoff exponent 
from pure information geometry point of view

• Since the Chernoff point is unique, we can also interpret more generally 
this property in a general dually flat space (not necessarily an EF) as 
known as a Bregman manifold

"On geodesic triangles with right angles in a dually flat space." 
Progress in Information Geometry. Springer, 2021. 153-190.



Duo Bregman pseudo-divergences:
Applications to the KL divergence 

between truncated densities
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