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Outline of the talk

• Bregman divergences with some extensions

• Geometry of Bregman balls

• Two applications on Bregman manifolds:

• Jensen-Shannon centroid on a mixture family manifold

• Chernoff information/point on an exponential family manifold



Bregman divergences  (1960’s)

• F: Θ⊆ℝm→ℝ a strictly convex and smooth 

real-valued function on a finite dim. Hilbert space <.,.>

Bregman divergence BF: Θ x RelInt(Θ) →ℝ≥0
Lev M. Bregman

(1941 - 2023)
Photo: courtesy of 

Alexander Fradkov
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BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2) >

BD interpreted as remainder of a first order Taylor expression of F(θ1) around θ2:

F(θ1)=F(θ2)+< θ1 - θ2 ,∇F(θ2) >+ BF(θ1 : θ2)

Taylor remainder

Example of remainder: Lagrange remainder (smooth C2 generators): ∇2F SPD ⇒ BF(θ1 : θ2) ≥ 0 

BF(θ1 : θ2)= ½ (θ2- θ1)
T∇2F(θ) (θ2- θ1) ≥0 , θ ∈ [θ1 θ2]

Smooth measure of discrepancy, not a metric distance because it violates the triangle inequality, and is 
asymmetric when F is not quadratic function. Hence the delimiter notation “:” instead of BF(θ1 , θ2)



Originally motivated for finding an intersection point in 
a set of convex objects  using Bregman projections.
(ex. of convex objects: halfspaces, balls, etc.)

BDs unify: 
• squared Euclidean divergence F(θ)= ½ Σi <θ, θ >
• Kullback-Leibler divergence F(θ)= Σi θi log(θi) 

(relative Shannon entropy)
• Itakura-Saito divergence F(θ)= Σi -log(θi)  

(relative Burg entropy)

BDs: Versatile and popular in OR, ML, IT, signal processing 

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2) >

L22 (β=2), KLD (β→0), ISD (β=1), belong to a family of β-divergences, learn ad hoc β ≥ 0

x,y>0, β ≥ 0
Bregman
Generator:

convex feasibility of 
Bregman cyclic projections



Geometric interpretation as a vertical gap using the graph (θ,F(θ)):

= Tθ2(θ1) : Tangent of the function graph at θ2 evaluated at θ1

BF(θ1 : θ2)=F(θ1) - (F(θ2)+< θ1 - θ2 ,∇F(θ2) >)

Design novel divergences from graph of convex functions…
Example: Bregman chord divergence, application: zero-order optimization in ML

The chord gap divergence and a generalization of the Bhattacharyya distance, IEEE ICASSP 2018



Bregman divergences in machine learning…
• Kullback-Leibler divergence between two probability densities:

DKL[p(x):q(x)]= ∫ p(x) log (p(x)/q(x)) dμ(x)

is difficult to calculate in closed form because of the integral ∫  …

• But Kullback-Leibler divergence between two probability densities of a 
natural exponential family

amount to a reverse Bregman divergence BF
rev(θ1 : θ2):= BF(θ2 : θ1)

DKL[p(x|θ1) : p(x|θ2) ] = BF
rev(θ1 : θ2) = BF(θ2 : θ1)

                                                         ⇒ Easy calculations of KLDs

Azoury, Katy S., and Manfred K. Warmuth. "Relative loss bounds for on-line density estimation with the exponential 
family of distributions." Machine learning 43 (2001)

with densities p(x| θ) ∝ exp(<x, θ >)
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Bypass the ∫, ∇F in BD  easy to calculate!



Representational Bregman divergences (2009)
• Use a representation function R :

BF,R(λ 1 : λ 2):= BF(R(λ 1 ):R(λ 2))

=  F(R(λ 1))-F(R(λ 2))-< R(λ 1)–R(λ 2 ),∇F(R(λ 2) ) >

Note that F∘R may not be a Bregman generator, i.e., not be strictly convex.

For example, consider the KLD between two densities of a generic exponential 
family (natural parameter from representation function) 

θ(λ ): natural parameter corresponding to λ,  representation function R(.)=θ(. ) 

DKL[p(x| λ 1) : p(x| λ 2) ] = BF
rev(θ (λ 1): θ (λ 2))=BF(θ (λ 2): θ (λ 1))

include normal, Gamma/Beta, Wishart, Poisson, etc.

NEF density p(x| θ) ∝ exp(<x, θ >) DKL[p(x|θ1) : p(x|θ2) ] = BF
rev(θ1 : θ2) = BF(θ2 : θ1) 



Extendedα-divergences are representational BDs

α-divergences extended to m-dimensional positive measures 
are representational Bregman divergences:

Bregman generator:

Representation function: 

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2) >Bregman divergence:

"The dual Voronoi diagrams with respect to representational Bregman divergences." IEEE ISVD 2009  



Convex duality via Legendre-Fenchel transform
• Legendre-Fenchel transform of a convex function F: 

F*(η)=sup θ ∈ ϴ {< θ, η >-F(θ)}

• Problem: some tricky functions with gradient map ∇F domain not convex…

Example:                                                                on upper plane domain Ξ=(ξ1, ξ2)

• Thus, we consider “nice convex functions” = Legendre-type functions (ϴ,F(θ)) 

(i) ϴ open, and  (ii) lim θ→ ∂ϴ ‖ ∇F (θ) ‖=∞

Then we get:

❶  reciprocal gradient maps η= ∇F (θ) and θ=∇F* (η), ∇F*=(∇F)-1

❷  conjugation yields (H,F*(η))   of Legendre type 

❸  biconjugation is an involution:  (H,F*(η))*= (H*=ϴ,F**=F(θ)) 

• Convex conjugate: F*(η)= < ∇F-1 (η), η >-F(∇F-1(η)) since η= ∇F (θ)
9



Fenchel-Young divergences & convex duality
• Young inequality: F (θ1)+F* (η2)≥ < θ1 , η2> with equality when 

η2 = ∇F (θ1)

• Build the Fenchel-Young divergence from the inequality: lhs-rhs ≥0

YF, F*(θ1, η2)= F (θ1)+F* (η2)-< θ1 , η2>   ≥ 0

• Mixed parameterizations θ and η :   BF(θ1 : θ2)= YF, F*(θ1, η2)

• Duality: BF(θ1 : θ2)= YF, F*(θ1, η2) = YF*,F(η2 ,θ1)= BF*(η2 , η 1)

• Dual BDs + Dual FYs  from involution F**=F

• Note： BF(θ1 : θ2 )=0 ⇔ θ1 = θ2 ⇔ η1 =η 2  i.e., ∇F(θ1) = ∇F(θ2) 

10(FY initially called Legendre-Fenchel divergences…)



Bregman divergence vs Fenchel-Young divergence

• YF, F*(θ1, η2)= F (θ1)+F* (η2)-< θ1 , η2>   ≥ 0
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BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2)> YF, F*(θ1, η2)= F (θ1)+F* (η2)-< θ1 , η2>

Same parameterization BF(θ1 : θ2) = YF, F*(θ1, η2) mixed parameterization

F’ strictly increasingF strictly convex and differentiable



Kullback-Leibler divergence between 
non-normalized exponential family densities

• Kullback-Leibler divergence between two positive measures:

DKL
+[p1(x):p2(x)] = ∫  { p1(x) log (p1(x)/p2(x))+ p2(x)-p1(x) }  dμ(x)

• Exponential family density:
• Normalized: p(x| θ) = exp(<x, θ >-F(θ)) dμ(x)
• Non-normalized: q(x| θ) = exp(<x, θ >) dμ(x) 

• Hence, p(x| θ)= q(x| θ)/Z(θ) with partition function Z(θ)=exp(F(θ)) and  
cumulant function F(θ)=log Z(θ)

• When F is convex, Z=exp(F) is log-convex

• log-convex functions are convex functions: So both  F and Z are convex functions

• KLD between normalized densities = reverse Bregman wrt F:

DKL[pθ1(x):pθ2(x)] = BF
*[θ1: θ2] = BF[θ2: θ1]

• KLD between non-normalized densities = reverse Bregman wrt Z:

DKL
+[qθ1(x):qθ2(x)] = BZ

*[θ1: θ2]  = BZ[θ2: θ1] 12

2312.12849



Duo Bregman divergences: 
Generalize BDs with a pair of generators

F1(θ) ≥  F2(θ)

• Recover Bregman divergence when  F1(θ) =  F2(θ) = F(θ)

• Only pseudo-divergence because BF1,F2(θ’’: θ’’) positive, not zero
13

One generator majorizes the other one:

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2)>

Then

≥ BF2(θ: θ’)

θ’’

BF1,F2(θ’’:θ’’)



KLD between nested exponential families 
amount to duo Bregman pseudo-divergences

• Consider an exponential family on support X1:

p(x| θ) = exp(<x, θ >-F1(θ)) dμ(x)

with cumulant function F1(θ)=log ∫X1 exp(<x, θ >) dμ(x) 

• Another exponential family with nested supports:  X1 ⊆ X2  

q(x| θ) = exp(<x, θ >-F2(θ)) dμ(x)

is an exponential family with F2(θ)=log ∫X2 exp(<x, θ >) dμ(x) ≥ F1(θ)

• Then KLD amounts to a reverse duo Bregman pseudo-divergence:

DKL[p(x| θ1) : q(x| θ2) ]= BF2,F1
rev(θ1: θ2)=BF2,F1(θ2: θ1)

"Statistical divergences between densities of truncated exponential families with nested supports: Duo Bregman and duo 
Jensen divergences." Entropy 24.3 (2022)

X1

X2

p(x| θ) 

q(x| θ) 

0 log(0/0)=0

DKL[p(x):q(x)]= ∫ p(x) log (p(x)/q(x)) dμ(x)

q(x| θ)» p(x| θ) 
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Curved Bregman divergences
Consider a domain U which maps to a subset of Θ by  θ =c(u)

with dim(U)<dim(Θ):

BF,u(u1 : u2):= BF(c(u1 ):c( u2)) is not Bregman when {c(u) | u ∈ U} not convex

usually not a Bregman divergence unless c(.) is affine

Example: Symmetrized Bregman divergences (Jeffreys-Bregman div.) 
are curved Bregman divergences: SF(θ1 ,θ2)=< θ1 -θ2 ,η1 -η 2 >

m-dimensional submanifold in 2m-dimensional space



Theorem:

Curved Bregman centroid is the Bregman 
projection of the full Bregman centroid

) [Bregman projection]

"What is... an information projection?" Notices of the AMS 65.3 (2018): 321-324.



Space of Bregman balls

Right-sided Bregman ball:

Left-sided Bregman ball:

Example:
Itakura-Saito right and left spheres

Application: Boolean algebra of unions & intersections of Bregman balls

≤
≤



Lifting to potential Bregman generator graph

↓ means vertical projection

Sc: complement of set S

To any sphere, associate an hyperplane:

Reciprocally, to an hyperplane cutting the
function graph, associate a sphere

Center:

Radius:

Right Bregman ball and its complement



Intersection of two right Bregman balls



Union of two right Bregman balls

Set Morgan’s law: (A ∪ B)c = Ac ∩ Bc Complement of halfspace (H+)c=H-



Example: Euclidean spheres 
potential function: Paraboloid, L22

Top view displays the union of disks

BF(θ1 : θ2)=F(θ1)-F(θ2)-< θ1 - θ2 ,∇F(θ2)>



Bregman manifolds:
Geometry of convex conjugates

Dual Hessian geometry

[Koszul’64, Shima’70’s, Amari&Nagaoka’80’s]

On geodesic triangles with right angles in a dually flat space, 
Progress in Information Geometry: Theory and Applications, Springer 2021



Dual geometry of Bregman manifolds: 
Convex conjugates (F, F*) yield dual flat connections

• A connection ∇ is flat 
if there exists a 
coordinate systemθ
such that all 
Christoffel symbols 
vanish: Γ (θ) =0.

• θ is called ∇ –affine 
coordinate system 

• ∇-geodesic solves as 
line segments

(M,F →g(θ)= ∇2F(θ), F → ∇ , F* → ∇*)

"The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.
23

D(P1,P2) = BF(θ1 : θ2)= YF, F*(θ1, η2) = YF*,F(η2 ,θ1)= BF*(η2 , η 1)



Dual geometry of smooth Legendre-type functions

flatflat



Example: Bregman manifold of multivariate Gaussians

Bregman divergence = reverse  Kullback-Leibler divergence

with respect to natural parameters:

Cumulant function is convex:
(M,g, ∇ , ∇*) 
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e-geodesic

m-geodesic beware not mixture of Gaussians!

Fisher-Rao geodesic
…but not convex wrt (μΣ) parameters



Curved exponential families: Submanifolds

k-MLE: A fast algorithm for learning statistical mixture models, IEEE ICASSP 2012

Example: Fisher circle model

Bijection between regular exponential families
and regular Bregman divergences:

Curved BD centroid  MLE of curved exp. fam.

Note: submanifold topology can be non-trivial

Parameter spaceConstraint space



Bregman divergences: limits of scaled Jensen gaps

Rescale:



Example 1 of Bregman manifolds:

Mixture family manifolds
(F=-S is Shannon negentropy)



Jensen-Shannon centroid for mixture families

• Jensen-Shannon divergence between two mixtures amounts to a 
Jensen divergence:

• Task: Given a set of discrete distributions (categorical distributions, 
normalized histograms), calculate its Jensen-Shannon centroid:

Need to minimize a difference of convex functions
DCA or ConCave Convex algorithm or DCA!

29

F is Shannon negentropy 
(convex)

Jensen-Shannon divergence
Bounded symmetrization of KLD
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Jensen–Shannon centroid

Jeffreys/SKL centroid

Jensen–Shannon centroid
do not require same support



Example 2 of Bregman manifolds:

Exponential family manifolds
(F is cumulant function aka log-partition function)



p(x| θ) ∝ exp(<x, θ >)

32

Example:
Gaussian manifold

Generalized
to
exponential family
manifold

Exponential arc

Exponential arc

Bisector

Bisector



Chernoff point & information-geometry

Unique intersection point of 
the exponential geodesic 

with
the dual mixture bisector

Here 2D probability simplex of the family of categorical distributions with 3 choices



Fisher-Rao manifolds

Riemannian geometry

[Hotelling 1930, Rao 1945]

Photo 1956

In the beginning of IG…

``Killer’’
application1854 1915, GR

Length element
ds



Tractability of Fisher-Rao distance: 
Yet the open case of the multivariate normal family!

Non-constant sectional curvatures which can also be positive!
(geodesics are always unique when negative sectional curvatures)

Geodesic ODE:

Bivariate normal
(represented by ellipsoids)  

[BV: Kobayashi 2023][IV: Eriksen 1987]

Solve ODE with 
initial values (IV) or

boundary values (BV)

Fisher length:



Fisher-Rao geodesics with boundary  

Red ellipsoids are the boundary conditions:
That is bivariate normal distributions 
(μ0,Σ0) and (μ1,Σ1)

[BV: Kobayashi 2023]

Technically, MVN Fisher-Rao geodesic:
Riemannian submersion of a horizontal geodesic 
of a Riemannian symmetric space in 2d+1 dimension
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pyBregMan
A Python library for geometric computing on Bregman Manifolds

Joint work of Frank Nielsen and Alexander Soen

Chernoff point

Bregman/Jensen centroids

Jensen-Shannon centroid

Inductive AHM mean
Geometric matrix mean

https://franknielsen.github.io/pyBregMan/



Thank you!                        Some references

• NF and Richard Nock. "The dual Voronoi diagrams with respect to representational 
Bregman divergences." Sixth International Symposium on Voronoi Diagrams. IEEE, 2009.

• Boissonnat, Jean-Daniel, FN, and Richard Nock. "Bregman Voronoi diagrams." Discrete 
& Computational Geometry 44 (2010): 281-307.

• NF. "Statistical divergences between densities of truncated exponential families with 
nested supports: Duo Bregman and duo Jensen divergences." Entropy 24.3 (2022

• NF and Richard Nock. "Generalizing skew Jensen divergences and Bregman 
divergences with comparative convexity." IEEE Signal Processing Letters 24.8 (2017)

• NF. "Curved representational Bregman divergences and their applications." arXiv
preprint arXiv:2504.05654
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