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Information geometry (1G): Rationale and scope

* |G field originally born by investigating geometric structures of
statistical/probability models (e.g, space of Gaussians, space of multinomials)

e Statistical models: parametric vs nonparametric models, regular vs singular
(ML) models, hierarchical (ML) or simple models, ...

* Define statistical invariance, use language of geometry (e.g., ball, projection,
bisector) to design algorithms in statistics, information theory, statistical
machine learning, etc.

* |G study interplays of statistical/parameter divergences with geometric
structures

* Relationships between many types of dualities in IG: dual connections,
reference duality (dual f-divergences), Legendre duality, duality of
representations/monotone embeddings, etc

* Pure geometric dual structures which can be used in many different contexts



Build your own information geometry in three steps

Choose

@ manifold M

.......

Examples:
Gaussians
SPD cone

Probability simplex

oD .

Concepts:
local coordinates
locally Euclidean

- chart
C]

(@ metric tensor g

Examples:

Fisher information metric
metric g® from divergence
trace metric

Concepts:

vector length

vector orthogonality
Riemannian geodesic
Riemannian distance
Levi-Civita connection V8

(3 affine connection V

D v (pa),

Examples:

exponential connection
mixture connection
metric connection V&
divergence connection VP
a-connection

Concepts:

covariant derivative V
V-geodesic

V-parallel transport
curvature

Get dual IG
manifold
(Mlglle*)
V(D @) g
dual @ |
connection P
V* =2V’ -V

Concepts:
dual connections coupled to metric g
dual parallel transport preserve metric g



From dual information geometry to ta-geometry, c€R

Choose

@ manifold M

(@ metric tensor g

(3 affine connection V

by defining Christoffel symbols FE;E

Get dual IG manifold
(M,g,V,V7)

Yo (P, @) 2
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(@ choose a

Examples:
Amari-Chentsov cubic tensor T3 (0) = E[0;10;10l]

T
Cubic tensor from divergence  Tj;.(6) = 9;0,0,.F(0)

Get a family of dual connections/IG
(M,g,Vo,V-2): The ta-geometry v _ o — %Tﬁ

- a
q Vv :r-ijk+§ﬂjkf

ta-geometry

"yea(p,q) (M, g, V. V™)

0-geometry
= Riemannian geometry
with geodesic distance



Information geometry from statistical models: (M,g",V-%,V?%)
* Consider a parametric statistical/probability model: P := {ps(2)}y.0

* Define metric tensor g from = Fisher metric gf
g l(0;:2)  1(0;2) :=log L(0; ) = log po(x).

pI(0) = Ey[0,10;1),, = 0 Ojl:=
Sp — VQZ = (6313)3

* Model is regular if partial derivatives of I5(x) smooth and Fisher metric
is well-defined and positive-definite

» Amari-Chentsov cubic tensor: Ciji := Ep [9:10;10,!] B [{(P. 79,7V, »V**)} o,

Il+a_, 1—-a

* a-connections V'=—V +—V" a=1 & exponential connection (e)
pT9 0 (0) = Ey[0,0,10,) + 1_—‘“‘c;t,,-,;,-,k(ea), PV = Ep[(0:0;1)(dkl)],
= o K@iajl +—5—0ilo; l) (a’“l)] a=-1 & mixture connection (m)

Model Information Geometry (MIG)

* Fisher-Rao geometry when a=0, get geodesic distance called Rao distance

Dy(p.q) = { ||’Y’(f)||ﬂr{ﬂdt=fﬂ \/Qﬂt}(’i"(t)fl’(t))df [Hotelling 1930] [Rao 1945] [Amari Nagaoka 1982]



Rao distance on the Fisher-Rao manifold

DRaolposs po,| = pg(bh,62) = /\/gw(t) (t))dt, 7(0) = 01,7(1) = 65

! Here, y is the Riemannian geodesic
— dSe("}-’(t)) dt (or add a minimizer on all paths y)
0

square Length element ¢ = —Ou(t) " DraolPars Po,] = it dsg(y(t)) dt ™™=~
/, p92 >
{195 ZZQW ) ’ /. )
= o o dso(r() 70

M (Phgf‘:),*'

In practice:

* Need to calculate geodesics which are curves locally minimizing the length linking two
endpoints (or equivalently minimize the energy of squared length elements)

* Finding Fisher-Rao geodesics is a non-trivial tasks.

* Newin 2023: closed-form geodesics with boundary conditions for MultiVariate Normals

Fisher-Rao and pullback Hilbert cone distances on the multivariate Gaussian manifold
with applications to simplification and auantization of mixtures. ICML ws TAGML 2023
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Information geometry from divergences: (M,gP,V°,Vvb)

* A statistical divergence like the Kullback-Leibler divergence is a smooth non-
metric distance between probability measures

KLLP . (ﬂ — /p(:t:) log @dp(i‘) Hellinger divergence, chi-square divergence

f-divergence, a-divergence, etc.
q(z) 8 :

* A statistical divergence between two densities of a statistical model is a
parametric divergence (e.g., KLD between two normal distributions)

Dy (01 = 02) := Dxw[po, : Doy
* Construction of dual geometry from asymmetric parametric divergence D(6,:6,)

Divergence Information Geometry (DIG)

* Dual divergence is D*(0,:8,)=D(0,:0,), reverse divergence [Eguchi 1983]
Dual structure: * Cubic tensor Cor T:
Dg — —Bi,jD(Q : Qr)lgzgf =D q. ) DV* — D*V.
Dp.. .— _§.. g PCijk =" Tijr — PTiji
Fii-’f : BEJRD(Q . )I{;:gr, J J J ( )
Pk = —0kiyD(0:0")|g=p. Oujif (#:9) = g e ] (3:)

0. f(z,y) = 3= f(z.y). d.jflz,y) = %f(il?, Y), Oijif(x,y) = #;ﬂd—d:f(ﬂ"ay)

y



Realizations of dual information geometry

e Consider a statistical manifold structure (M,g,C) or equivalently (M,g,V,V)
 Realize (M,g,V,V) as a divergence information geometry (M,gP,VP,VP%):
always exists a divergence D such that (M,g,V,V)=(M,gP, VP, Vb~

Matumoto, "Any statistical manifold has a contrast function—On the C3-functions taking
the minimum at the diagonal of the product manifold." Hiroshima Math. J 23.2 (1993)

* Realize (M,g,V,V) as a model information geometry (M,g",V-¢,V¢)
always exists a statistical model M such that (M,g,V,V)=(M,gf,,V¢,,V?)

L&, Hong Van. "Statistical manifolds are statistical models." Journal of Geometry 84 (2006):
83-93.



Equivalence: model a-IG €= divergence IG for f-divergences

* Let P={py} be a statistical model of probability distributions dominated by p

* Consider the f-divergence for a convex generator f(u) with f(1)=0, f'(1)=1,
f"(1)=1 & standard f-divergence (can always rescale g(u)=f(u)/f''(1))

;0 I:*[p(x:0) : p(x:0")] = I¢[p(x:0) : p(a:0)] = Lo [p(z:0) : p(a:0")]
/{;P{’Il 0)f (p( ! )) dp(z) ! P f p f I

Iflp(x;0) : p(a;0')] = p(z; 0)

1
Dual reverse f-divergence is a f-divergence for f°(u) := uf (H)

* The f-divergence between py, and pg, is a parameter divergence D(6,:6,)
Dp(0y : 02) = I¢|po, : po,)

from which we can build the divergence information geometry (M,gP, VP, V%)

* Then model a-geometry for a=2 f'"'(1)+3 coincide with divergence IG:

(M,gP,VP,VP*) = (M,gf,V-+,V?) for a=2 f""'(1)+3

metric tensor gPand cubic tensor TP coincides with Fisher metric gF and Amari-Chentsov tensor T



Curvature is associated to affine connection V

* For Riemannian structure (M,g), use default Levi-Civita connection V=V&

* Riemannian manifolds of dim d can always be embedded into Euclidean
spaces EP of dim D=0(d?)

* Euclidean spaces have a natural affine connection V=Vt

N
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Cylinder is flat, 0 curvature: Sphere has positive constant curvature:
Parallel transport along a loop of Parallel transport along a loop exhibits

a vector preserves the orientation an angle defect related to curvature
(PT of flat connection is path independent) (PT is path dependent)



* Fundamental theorem of information geometry: If torsion-free affine
connection V is of constant curvature k, then curvature of dual torsion-free
affine connection V* is also constant «

* Corollary: if Vis flat (k=0) then V* is flat — Dually flat space (M,g,V,V*)

* A connection V is flat if there exists a local coordinate system 0 such that I'(8)=0

* In V-affine coordinate system 6(.), V-geodesics are visualized as line segments

E=1,....p. ) geodesics=line segments in 0



Canonical divergences of DFSs: Bregman divergences

e Dually flat structure (M,g,V,V*) can be realized by a Bregman divergence

(M, q,V,V*) «— (M, ¢®F, VEr VB

 Let F(B) be a strictly convex and differentiable function defined on an open
convex domain 6

* Bregman divergence interpreted as the vertical gap between

point (8, F(B,)) and the linear approximation of F(6) at 6, evaluated at 6, :

Bp(6y:62) = F(61) — (F(62) + (62 — 61) 'VF(6,))

My .

Lpg,(01)

—  F(#h) — F(6y) — (0; — 05) "V F(6)

[Bregman 1967]

<=V

) 0,



Legendre-Fenchel transformation: Slope transformation

» Consider a Bregman generator of Legendre-type (proper, lower semi-
continuous+condition). Then its convex conjugate obtained from the
Legendre-Fenchel transformation is a Bregman generator of Legendre type.

A

Concave programming:

F*(n) = sup{d'n— F(# o Epigraph
( ?) geg{ / ( | )} F*(n) =sup{0Tn— F(0)} =sup{E(0)}
Dual coordinate systems: 00 e
L . . T pP— Tp N N
N B ﬂllElé{F(H) N 6 n} et /P)Q Hq:z=(z — 2q)'VF(p) + F(zq) VE#)=n—-VF()=0=n=VF(#)
o Hp+
szF(TP) Hp:z = (z — zp)'VF(zp) + F(zp)
P i(z, F(z))
0 Tp ¥

Slope

“““““““““ A0, Far) - sV F(ar) = ~F(4r))

* Analogy of the Halfspace/Vertex representation of the epigraph of F
* Fenchel-Moreau’s biconjugation theorem for F of Legendre-type: I = (I'")

[Touchette 2005] Legendre-Fenchel transforms in a nutshell
[2010] Legendre transformation and information geometry



Mixed coordinates and the Legendre-Fenchel divergence
* Dual Legendre-type functions 0 =VF™(y) ﬁ n=VF()

* Convex conjugate of F is F*(n) =n"VEF*(n) — F(VF*(n)) VF* = (VF)!
* Fenchel-Young inequality : F(0,) + F*(n) > 917?}2 Gradient
are jnverse
with equality holding if and only if 72 = VI'(61) of each other

* Fenchel-Young divergence make use of the mixed coordinate systems 0 et
n to express a Bregman divergence as Bp(#, : 02) = Yep-(01 : 12)




Generalized Pythagoras theorem in dually flat spaces

In general, Identity of Bregman divergence with three parameters = law of cosines
Br(6y : 03) = Bp(6y : 63) 4+ Bp(03 : 62) — (61 — 63) " (VF(62) — VF(63)) > 0

Generalized Pythagoras’ theorem Pythagoras’ theorem in
P

orthogonality condition:

(n(p) = 1(q)) " (0(r) — 6(q)) = 0 Frua(0) = %@Te IFue = 1

1
BFEu.::I(Q1 : 92) — §p]23ucl(913 82)

° b
Ypg Lg Vgr

*— o a

W) 7 L atemmen

. ]
Dp(Vpq(t) : Ygr(t')) = Dp(vpq(t) : q) + Dr(q : T;r(t]’))& vt t' € (0,1). ! —

(P-Q)-(Q-R)=0

IP-Ql*+ Q- R|* =||P - R|I”



Triples of points (p,q,r) with dual Pythagorean’\ |
theorems holding simultaneously at g "

-

Yra La Yor. €BY (0(p) —0(q))" (n(r) —n(q)) = 0 @ Dr(p: q) + Dp(q: ) = Dp(p: 7)
Voq La Var 0("7(?) —1(9))T(0(r) — 6(q)) = 0€@PDE(r : q) + Dr(q: p) = Dp(r : p)

\ ltakura-Saito

Manifold

(solve quadratic system)

Two blue-red geodesic pairs orthogonal at g  https://arxiv.org/abs/1910.03935




Dually flat space from a smooth strictly convex function F(6)

* A smooth strictly convex function F(6) define a Bregman divergence
and hence a dually flat space via Eguchi's divergence-based IG

(C—)F(H)) — (J[ gBFthFrvBF*) — (J[ gFtthvF*

Domain

dual Bregman divergences

 Examples of DFSs induced by convex functions:

Exponential family
[ cumulant funection

(O, F(#))

Homogeneous convex cone
F': characteristic function

\ strictly convex and

H,,.—-F'

differentiable C'? function

Mixture family
Shannon negentropy

Dually flat space
(Hessian structure)

(M,g,V, V")

this directioni T (M, gBF, VBr 75"

not unique

Bregman divergence
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