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Rationale
• Need to define statistical dissimilarity measures D(p,q) between statistical 

models p and q in statistics and machine learning: for example, total variation 
distance, Kullback-Leibler divergence, Wasserstein, Maximum Mean Discrepancy, etc.

• Infer models from a statistical model P={pθ}: estimate θ and measure 
goodness-of-fit from data (empirical distribution)

• Statistical dissimilarity measure between parametric models P={pθ} 
amount to dissimilarity between parameters:

• In this talk, we investigate some relationships between statistical 
dissimilarities, statistical models, model parameter dissimilarities, and their 
underlying geometries.



Outline
• Kullback-Leibler divergence, exponential families, and Bregman 

divergences
• Dual information geometry of convex functions

• Two normalizations of exponential families: cumulant or partition
functions, and their relationships with parameter divergences:

1. well-known: Bhattacharyya distances/Rényi divergences and skewed 
Jensen divergences with respect to cumulant function 

2. New:α-divergences and skewed Jensen divergences with respect 
to partition function of exponential families

• Comparative convexity, quasi-arithmetic means, and convex 
deformations preserving convexity

• Some generalization of Bregman divergences yielding conformal 
Bregman divergences
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Kullback-Leibler divergence: relative entropy
• The Kullback-Leibler divergence (KLD) is a dissimilarity measure between 

probability distributions or measures P and Q :

• KLD fails symmetry and triangle inequality of metrics but is always non-negative, a 
property known as Gibbs’ inequality:

• KLD also called relative entropy because it is the difference between the cross-
entropy and Shannon entropy:

• Interpretation of KLD in information theory: expected difference of the number of 
bits required for Huffman encoding of P using a code optimized for Q rather than 
the Huffman code optimized for P.



Exponential families: Discrete/continuous/measures
• A parametric family of distributions {Pλ} all dominated by a measure μ is an 

exponential family iff the densities wrt μ can be expressed canonically as 

• θ is natural parameter

• t(x) is sufficient statistics, and k(x) or h(x) is an auxiliary carrier term 

• Inner product (e.g., scalar product for vectors, tr(AB) for symmetric matrices)

• Unnormalized density: 

• Subtractive normalization:

• Divisive normalization:

• F called cumulant function in statistics  

• F called free energy and Z called partition function in thermodynamics



Exponential families (EFs): Some examples
• Many common distributions in statistics are exponential families in 

disguise (common support)

• Many statistical models in machine learning are exponential families: 
undirected graphical models, energy-based models  including Markov 
random fields  and conditional random fields: 
➤ Normalizers F or Z are often computationally intractable  



KLD between two densities of an Exp. Fam.
• Bypass integral calculations of KLDs, and express the KLD 

as a divergence between parameters: Bregman divergences

• Dual expectation/moment parameterization:

• Many equivalent parameterizations of EFs:

Geometric interpretation of BDs:

N(μ,σ), N(μ,σ2), N(μ,logσ), etc



Exponential family of univariate normal distributions

Normal family N={pθ}:   

Auxiliary carrier term k(x)=0, h(x)=1 with respect to Lebesgue measure 
μ

Sufficient statistic: t(x)=(x,x2)

pμ,σ(x)

Usual parametrization λ = (μ,σ) or (μ,σ2) :

Density:

natural parameters unique up to affine transformations

KLD
Equivalent

BD

Mahalanobis2+Itakura-Saito

constant can be added/subtracted with k(x)





Convex duality: convex conjugate pairs (F,F*)

• Legendre-Fenchel transformation of a function:

as known as slope transform:

• Supremum reached for                    : defines the gradient map

• Moment parameter space:

• Restrict F to Legendre-type function so that

the convex conjugate is also of Legendre type:

• And we have:                      and               , reciprocal gradient:  

• Legendre transformation: 

only need to invert ∇F



• Bregman divergence can be expressed equivalently as 

a Fenchel-Young divergence using the convex pairs:

• Dual Bregman divergence:

• KLD between densities of an exponential family expressed equivalently as: 

Dual Bregman divergence/Fenchel-Young divergence

④

① ② 

③



Information geometry: Dually structures

• Riemannian metric g is smooth inner product on a manifold which allows to 
measure vector lengths and angles between vectors in tangent spaces

• Affine connection ∇ defines how to connect vectors between infinitesimally 
close tangent spaces. Affine connection defines ∇-geodesic as autoparallel 
curves

• Information geometry considers dual structures: A manifold M equipped with 
a Riemannian metric tensor g and dual torsion-free affine connections ∇ 
and ∇* coupled to the metric so that the Levi-Civita connection wrt g is 
(∇+∇* )/2:  Structure (M,g, ∇,∇*)

• Information geometry induced by ① statistical models {pθ}, ② information 
geometry induced by divergences, ③ information geometry induced by  
convex functions, ④ information geometry induced by  regular cones, etc.
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• An affine connection ∇ is flat if there exists a 
coordinate system θ called ∇-affine coordinate 
system such that the Christoffel symbols Γ vanish

• ∇-geodesics are straight lines in θ-chart

• Hessian metric tensor g expressed in θ-chart as 
∇2F(θ)

• Legendre duality yields dual expression of Hessian 
metric ∇2F*(η) and dual affine flat connection 
∇* with ∇*-geodesics  straight inη-chart

• Dually flat space DFS(F(θ), ϴ)=(M,g,∇,∇*)

Information geometry of convex functions: 
Dually flat spaces, global Hessian manifolds



Canonical divergences of dually flat spaces:
Dually flat divergences

• Given a dually flat space (M,g,∇,∇*), we can reconstruct locally two 
potential functions F(θ) and F*(η) related by Legendre-Fenchel
transformation

• The dually flat divergence D∇, ∇* (P:Q) can be expressed using the 
mixed coordinate system θ and η as a Fenchel-Young divergence or 
equivalently using dual Bregman divergences either in the θ- or η-
charts



Canonical divergence of cumulant functions 
amount to statistical reverse KLD:

① ②

③

Usually, in Statistics/ML, we prove ⇒:
where D* is dual divergence:

Let us prove ⇐ from information geometry of canonical divergence of DFS(F(θ), ϴ)



Canonical divergence of cumulant functions 
amount to statistical reverse KLD:

We reconstruct Kullback-Leibler divergence by relaxing to arbitrary densities

Interpretations:

⇒KLD



Natural parameter space  ϴ of Exp Fam is convex



When we proved that natural parameter space is convex, we had

Partition function Z(θ)=exp(F(θ)) is strictly log-convex
Cumulant function F(θ)=log Z(θ) is strictly convex

That is for short:

Take the logarithm on both sides:

F is strictly convex since Eq. iff θ1= θ2

Definition: A function Z is stricty log-convex is log Z is strictly convex

⇒ Z(θ)=exp(F(θ)) is strictly convex because F(θ) strictly convex:

(Z=partition function)



Property: A log-convex function is also convex 
(but not necessarily the converse)

★

★



Bregman divergences BF=log Z and BZ=exp F

And furthermore, we can define skewed Jensen divergences from the 
convex generators:

Including the symmetric Jensen divergence when 𝛼=1/2: 



Bhattacharyya distances and Rényi divergences

• Question: If KLD between EF densities = BF*, to what statistical 
divergences correspond JF and J𝛼,F?

• Define scaled skewed Bhattacharyya distances:

which are scaled Rényi divergences:

Scaling by (1/𝛼(1-𝛼)) allows to unify KLD with Bhattacharyya distances:



Bhattacharyya distances and Rényi divergences
between densities of an exponential family

Proof: consider the α-skewed Bhattacharyya similarity coefficient:

Cumulant  function F



Overview of classical statistical/Jensen divergences



Extended Kullback-Leibler divergences between 
unnormalized densities: Bregman divergence BZ

Extend KLD to unnormalized densities:

Reverse extended KLD: 



KLD between arbitrary positive densities

Above formula when specialized to densities p and q of exponential family:

Consider arbitrary densities (not necessarily exp fams): 



• Statistical α-divergences between positive measures:

• When considering unnormalized exponential family densities:

α-divergences between unnormalized densities 

Partition function Z



Overview of divergences between 
(un)normalized EF densities



KLD between normalized and unnormalized densities

where we generalized Bregman divergences to duo Bregman pseudo-divergences:

with

with



Comparative convexity: (M,N)-convexity

• Definition: A function Z is (M,N)-convex iff for  in α in [0,1]:

• Ordinary convexity: (A,A)-convexity wrt to arithmetic weighted mean

• Log-convexity: (A,G)-convexity wrt to A/geometric weighted means:



Comparative convexity wrt quasi-arithmetic means

• Kolmogorov-Nagumo-De Finitti quasi-arithmetic mean for a 
strictly monotone generator h(u):

• Includes power means which are homogeneous means:

Include the geometric mean when p→0



Deforming convex functions with comparative convexity

We consider deformations with two strictly monotone functions which preserve 
convexity and thus induces family of Bregman and Jensen divergences, 
and families of dually flat spaces:

Deform both (1) the function F (by 𝜏-1) and (2) the argument θ (by ρ)
by considering functions Z =𝜏-1(F(θ))



Generalizing Bregman divergences with 
(M,N)-convexity

• Skew Jensen comparative convexity divergence:

Non-negative for (M,N)-convex generators F provided regular 
means M and N (e.g. power means)

Definition:

Analogy to limit of skewed Jensen divergences amount to forward/reverse Bregman divergences.



Generalizing Bregman divergences with 
quasi-arithmetic mean convexity

Amounts to a conformal Bregman divergence:

with

Remark: Conformal Bregman divergences may yield robustness in applications

Conformal factor
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• Kullback-Leibler divergence: relative entropy

• Exponential families: Discrete, continuous, measures

• KLD between densities of an EF

• Information geometry of convex function: Dually flat space

• Information geometry of divergence

• Bhattacharyya distance and Rényi divergence

• Jensen divergence

• Overview of classical divergences

• Partition function is log-convex and hence convex

• Bregman divergence wrt Z: KLD between unnormalized EF densities

• Jensen divergence wrt Z: alpha divergences

• Overview of divergences between (un)normalized EF densities

• Comparative convexity

• Comparative convexity wrt quasi-arithmetic means

• Deforming convex functions wrt quasi-arithmetic generators

• (M,N)-Jensen divergence

• (M,N)-Bregman divergence

• Equivalence with a conformal Bregman divergence

• Power Bregman divergences

• Conclusion



Divergences and comparative convexity
by Frank Nielsen, Sony Computer Science Laboratories Inc , 
Japan
In this talk, we first recall the equivalence between the Kullback-Leibler divergence between densities of an 
exponential family and Bregman divergences,  and then highlight the connection with  dually flat spaces of 
information geometry.

Exponential families can be normalized either by  cumulant functions (free energies) or by partition functions, 
both functions being strictly convex and inducing Bregman and Jensen divergences.

It is well-known that skewed Bhattacharryya distances between probability densities of an exponential family 
amounts to skewed Jensen divergences induced by the cumulant function between their corresponding natural 
parameters, and in limit cases that the sided Kullback-Leibler divergences amount to reverse-sided Bregman 
divergences. 

We show that α-divergences between unnormalized densities of an exponential family amounts to scaled α-
skewed Jensen divergences induced by the partition function. 

Finally, we show how comparative convexity with respect to a pair of quasi-arithmetic means allows to deform 
both convex functions and their arguments, and thereby define dually flat spaces with corresponding divergences 
when ordinary convexity is preserved.

References:

• NF and Richard Nock. "Generalizing skew Jensen divergences and Bregman divergences with comparative convexity." IEEE Signal Processing Letters 24.8 (2017): 1123-
1127.

• NF. "Divergences induced by dual subtractive and divisive normalizations of exponential families and their convex deformations." arXiv preprint arXiv:2312.12849 (2023).





Weighted quasi-arithmetic means when 
α tends to zero:

M𝜏(p,q;1- α; α)=
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