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Abstract The Voronoi diagram of a finite set of objects is a fundamental geometric
structure that subdivides the embedding space into regions, each region consisting of
the points that are closer to a given object than to the others. We may define various
variants of Voronoi diagrams depending on the class of objects, the distance function
and the embedding space. In this paper, we investigate a framework for defining and
building Voronoi diagrams for a broad class of distance functions called Bregman di-
vergences. Bregman divergences include not only the traditional (squared) Euclidean
distance but also various divergence measures based on entropic functions. Accord-
ingly, Bregman Voronoi diagrams allow one to define information-theoretic Voronoi
diagrams in statistical parametric spaces based on the relative entropy of distributions.
We define several types of Bregman diagrams, establish correspondences between
those diagrams (using the Legendre transformation), and show how to compute them
efficiently. We also introduce extensions of these diagrams, e.g., k-order and k-bag
Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points
and their connection with Bregman Voronoi diagrams. We show that these triangula-
tions capture many of the properties of the celebrated Delaunay triangulation.

A preliminary version appeared in the 18th ACM-SIAM Symposium on Discrete Algorithms,
pp. 746-755, 2007. Related materials including demos and videos are available online at
http://www.csl.sony.co.jp/person/nielsen/Bregman Voronoi/.
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Fig. 1 Ordinary Euclidean
Voronoi diagram of a given set
S of nine sites
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1 Introduction and Prior Work

The Voronoi diagram vor(S) of a set of n points S = {py1,...,pn} of the d-
dimensional space R? is defined as the cell complex whose d-cells are the Voronoi
regions {vor(p;)}ie(1,...n} Where vor(p;) is the set of points of R closer to p: than to
any other point of S with respect to a distance function §:

vor(p) & {x € RY | 5(p;, x) < 8(pj. %) Vp; € S}.

Points {p;}; are called the Voronoi sites or Voronoi generators. Since its inception
in disguise by Descartes in the seventeenth century [20], the Voronoi diagram has
found a broad spectrum of applications in science. Computational geometers have
focused at first on Euclidean Voronoi diagrams [5] by considering the case where

8(x,y) is the Euclidean distance | x—y|| =4/ Zle (x; — yi)2. Voronoi diagrams have
been later on defined and studied for other distance functions, most notably the L
distance |x — y||; = Zflzl |x; — yi| (Manhattan distance) and the L, distance ||x —
Ylloo = max;eq1,....ay |%; — yil [5, 8]. Klein further presented an abstract framework for
describing and computing the fundamental structures of abstract Voronoi diagrams
[9, 24].

In Artificial Intelligence, Machine Learning techniques also rely on geometric
concepts for building classifiers in supervised problems (e.g., linear separators,
oblique decision trees, etc.) or clustering data in unsupervised settings (e.g., k-means,
support vector clustering [7], etc.). However, the considered data sets S and their un-
derlying spaces X are sometimes not metric spaces. The notion of distance between
two elements of X needs to be replaced by a pseudo-distance that is not necessar-
ily symmetric and may not satisfy the triangle inequality. Such a pseudo-distance is
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also referred to as a distortion, a (dis)similarity or a divergence in the literature. For
example, in parametric statistical spaces, a vector point represents a distribution and
its coordinates store the parameters of the associated distribution. A notion of “dis-
tance” between two such points is then needed to represent the divergence between
the corresponding distributions.

Very few works have tackled an in-depth study of Voronoi diagrams and their
applications for such a kind of statistical spaces. This is important even for ordi-
nary Voronoi diagrams as Euclidean point location of sites are usually observed in
noisy environments (e.g., imprecise point measures in computer vision experiments),
and “noise” is often modeled by means of normal distributions (so-called “Gaussian
noise”). To the best of our knowledge, statistical Voronoi diagrams have only been
considered in a 4-page short paper of Onishi and Imai [33] which relies on Kullback—
Leibler divergence of d-dimensional multivariate normal distributions to study com-
binatorics of their Voronoi diagrams, and subsequently in a 2-page video paper of
Sadakane et al. [37] which defines the divergence implied by a convex function and
its conjugate, and presents the Voronoi diagram via techniques of information geom-
etry [1] (see also [34] and related short communications [22, 23]). Our study of Breg-
man Voronoi diagrams generalizes and subsumes these preliminary studies using an
easier concept of divergence, namely the concept of Bregman divergences [6, 11] that
does not rely explicitly on convex conjugates. Bregman divergences encapsulate the
squared Euclidean distance and many widely used divergences, e.g., the Kullback—
Leibler divergence. It should be noticed, however, that other statistical metric dis-
tances (called Rao’s distances [2]) have been defined and studied in the context of
Riemannian geometry [1]. Sacrificing some generality, while not very restrictive in
practice, allows a much simpler treatment; in particular, our study of Bregman diver-
gences is elementary and does not rely on Riemannian geometry.

In this paper, we give a thorough treatment of Bregman Voronoi diagrams which
elegantly unifies the ordinary Euclidean Voronoi diagram and statistical Voronoi dia-
grams. Our contributions are summarized as follows:

e Since Bregman divergences are not symmetric, we define fwo types of Bregman
Voronoi diagrams. One is an affine diagram with convex polyhedral cells, while
the other one is curved. The cells of those two diagrams are in 1-1 correspondence
through the Legendre transformation.

e We present a simple way to compute the Bregman Voronoi diagram of a set
of points by lifting the points into a higher dimensional space. This mapping
leads also to combinatorial bounds on the size of these diagrams. We also define
weighted Bregman Voronoi diagrams and show that the class of these diagrams
is identical to the class of affine (or power) diagrams. Special cases of weighted
Bregman Voronoi diagrams are the k-order and k-bag Bregman Voronoi diagrams.

e We define the Bregman Delaunay triangulation of a set of points. This structure
captures some of the most important properties of the well-known Delaunay tri-
angulation. In particular, this triangulation is the geometric dual of the first-type
Bregman Voronoi diagram of its vertices.

The outline of the paper is as follows: In Sect. 2, we define Bregman divergences
and recall some of their basic properties. In Sect. 3, we study the geometry of Breg-
man spaces and characterize bisectors, balls and geodesics. Section 4 is devoted to
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Bregman Voronoi diagrams and Sect. 5 to Bregman triangulations. Finally, Sect. 6
concludes the paper and mention further ongoing investigations.

Notations In the whole paper, X denotes an open convex domain of R and
F : X — R a strictly convex and differentiable function. F denotes the graph of F,
i.e., the set of points (x,z) € X x R where z = F(x). We write X for the point
(x, F(x)) € F. VF, V2F and (VF)~! denote respectively the gradient, the Hessian
and the inverse gradient of F.

2 Bregman Divergences

In this section, we recall the definition of Bregman1 divergences and some of their
main properties (Sect. 2.1). We show that the notion of Bregman divergence encap-
sulates the squared Euclidean distance as well as several well-known information-
theoretic divergences. We also introduce the notion of dual divergences (Sect. 2.2).
Further results can be found in [6, 11, 18].

2.1 Definition and Basic Properties

Let X be an open convex subset of R?, and let F be a strictly convex and differen-
tiable real-valued function defined on X. For any two points p = (p1, ..., pg) and
q=1(q1,...,qq4) of X, the Bregman divergence Dr(- || -) of p to q associated to F'
(which is called the generator function of the divergence) is defined [11, 13] as

Drp: X x X+ [0, +00)
def
Dr(plla) = F(p) - F(@ —(p—q. VF(@), M
where VF = [% (,?TFI]T denotes the gradient operator, and (p, q) the inner (or
dot) product, Z?:l piqi. Informally speaking, Bregman divergence DF is the tail
of the Taylor expansion of F and has a nice geometric interpretation. Indeed, let
JF :z = F(x) be the graph of F and let Hy be the hyperplane tangent to F at point

q=(q, F(q)). Since Hq is given by z = Hq(x) = F(q) + (VF(q),x — q), we have
Dr(p |l q) = F(p) — Hq(p) (see Fig. 2).

Lemma 1 The Bregman divergence D (p || q) is geometrically measured as the ver-
tical distance between p and the hyperplane Hq tangent to F at point .

Observe that, for most functions F, the associated Bregman divergence is not
symmetric, i.e., Dr(p || q) # Dr(q || p) (the symbol || is put to emphasize this point,
as is standard in information theory).

We now recall some well-known properties of Bregman divergences.

TLev M. Bregman historically pioneered this notion in the seminal work [11] on minimization of a convex
objective function under linear constraints. See http://www.math.bgu.ac.il/serv/segel/bregman.html. The
seminal paper is available online at http://www.lix.polytechnique.fr/Labo/Frank.Nielsen/.
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Fig. 2 Visualizing the Bregman
divergence. Dp(- || q) is the

vertical distance between F and
the hyperplane tangent to F at q

Property 1 (Non-negativity) The strict convexity of generator function F implies
that, for any pand q in X, Drp(p || q) > 0, with Dp(p || @) =0 if and only if p=q.

Property 2 (Convexity) Function Dp(p || q) is convex in its first argument p but not
necessarily in its second argument (.

Because positive linear combinations of strictly convex and differentiable func-
tions are strictly convex and differentiable functions, new generator functions (and
corresponding Bregman divergences) can also be built as positive linear combina-
tions of elementary generator functions. The following property is important as it
allows to handle mixed data sets of heterogenous types in a unified framework.

Property 3 (Linearity) Bregman divergence is a linear operator, i.e., for any two
strictly convex and differentiable functions Fy and F; defined on X and for any A > O:

Drr(Plld) =Dr (pllg) + ADp (p |l @)

Property 4 (Invariance under linear transforms) G(x) = F(x) + (a,x) + b, with
acR? and b € R, is a strictly convex and differentiable function on X, and
D ll@)=Dr(p Il @.

Examples of Bregman divergences are the squared Euclidean distance (obtained
for F(x) = ||x||?) and the generalized quadratic pseudo distance function Dg(p ||
q =@ —q7Q(p — q) where Q is a positive definite symmetric matrix (obtained
for F(x) = x! Qx). When Q is taken to be the inverse of the variance—covariance
matrix of some data set, Dr is the Mahalanobis distance, extensively used in Com-
puter Vision and Data Mining. More importantly, the notion of Bregman divergence
encapsulates various information measures based on entropic functions such as the
Kullback-Leibler divergence based on the (unnormalized) Shannon entropy, or the
Itakura—Saito divergence based on Burg entropy (commonly used in sound process-
ing). Table 1 lists the main univariate Bregman divergences. Finally, we would like to
point out that Banerjee et al. [6] have shown that there is a bijection between the reg-
ular exponential families in statistics [29] and a subset of the Bregman divergences
called regular Bregman divergences.
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Table 1 Some common univariate Bregman divergences D

Dom. X Function F Gradient Inv. grad. Divergence D (p |l q)
R Squared function Squared loss (norm)
x2 2x 3 (r—9)?
RT Unnorm. Shannon entropy Kullback-Leibler div. (I-div.)
xlogx —x logx expx plogg—p-i-q
R Exponential Exponential loss
expx expx log x expp—(p—qg+1)expg
Rt Burg entropy Itakura—Saito divergence
1 1 4 P
—lOgX - X X a—lOga—l
[0, 1] Bit entropy Logistic loss
X expx )4 I—-p
xlogx + (1 —x)log(l —x) log 2+ TFexpx p10g5+(17p)logq
R Dual bit entropy Dua% logistic loss
expx +exp p expq
log(1 +expx) T+expx log ﬁ log T+expq -9 T+expq
[—1,1] Hellinger-like Hellinger-like
_J1-x2 x x l=pg _ 1_,2
1—x2 14x2 V1-¢2 P

2.2 Legendre Duality

We now turn to an essential notion of convex analysis, the Legendre transform.
Legendre transform allows one to associate to any Bregman divergence a dual Breg-
man divergence.

Let F be a strictly convex and differentiable real-valued function on X’. The
Legendre transformation associates to F a convex conjugate function F* : R? - R
given by [36]

F*(x') = sup{(x.x) — F(x)}.
xeX
x' is called the dual variable. The supremum is reached at the unique point where the
gradient of G(x) = (x/, X) — F(x) vanishes or, equivalently, when x' = V F (x).

In the sequel, we will denote V F(x) by x’, omitting the F in the notation as it
should be clear from the context. Writing X” for the gradient space {V F (x)|x € X},
the convex conjugate F* of F is the real-valued function defined on X’ ¢ R?

F*(x') = (x,x) = F(x). 2)

Figure 3 gives a geometric interpretation of the Legendre transformation. Consider
the hyperplane Hy tangent to F at X. This hyperplane intersects the z axis at the point
(0, — F*(x)). Indeed, the equation of Hy is z(y) = (x,y —x) + F(x) = (xX,y) —
F*(x). Hence, the z-intercept of Hy is equal to —F*(x’). Any hyperplane passing
through another point of F and parallel to Hy necessarily intersects the z-axis above
—F*(x).

Since F is a strictly convex and differentiable real-valued function on X, its
gradient VF is well defined as well as its inverse (VF)~!, and VF o (VF)~! =
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Fig. 3 The z-intercept z
(0, — F*(x)) of the tangent

hyperplane Hy of F at X defines

the value of the Legendre

transform F* for the dual

coordinate X' = V F(x)

(VF)~! o VF is the identity map. Taking the derivative of (2), we get
(VF*(X’), dx/> = (x, dx’) + <x’, dx) — (VF(X), dx> = (x, dx’) = <(VF)_1 (x/), dx’),

from which we deduce that VF* = (VF)~ L.
The above discussion shows that Dp= is a Bregman divergence, which we call the
Legendre dual divergence of Dr. We have

Lemma2 Drp(pllq) =F(p)+ F*(q)— (p.q") =Dp+(q" || P).

Proof By (1), Dr(p |l q) = F(p)— F(q) — (p — q, q'), and, according to (2), we have
F(p)=(p'.p)— F*(p") and F(q) = (q'.q) — F*(q'). Hence, Dr(p || @) = (p. p) —
F*(p')— (p.q) + F*(q) = Dp+(q' || p') sincep=VF'VF(p) = VF*@p)). O

Observe that, when D is symmetric, Dp+ is also symmetric.

The Legendre transform of the quadratic form F(x) = %xT Qx, where Q is a sym-
metric invertible matrix, is F*(x') = %x’ TQ~'x'. Observe that the corresponding di-
vergences Dr and Dp+ are both generalized quadratic distances.

To compute F*, we use the fact that VF* = (VF)~! and obtain F* as F* =
J(VF )~!. For example, the Hellinger-like measure is obtained by setting F (x) =

—+/1 — x2 (see Table 1). The inverse gradient is \/% and the dual convex conju-
+x

gate is [ \/"37 = +/1 + x2. Integrating functions symbolically may be difficult or

even not possible, and, in some cases, it will be required to approximate numerically
the inverse gradient (V F)~!(x).
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Let us consider the univariate generator functions defining the divergences of Ta-
ble 1. Both the squared function F(x) = %x2 and Burg entropy F(x) = —logx are
self-dual, i.e., F = F*. This is easily seen by noticing that the gradient and inverse
gradient are identical.

For the exponential function F(x) = expx, we have F*(y) = ylogy — y (the
unnormalized Shannon entropy) and for the dual bit entropy F(x) =log(1 4 expx),
we have F*(y) = ylog li—y + log(1 — y), the bit entropy. Note that the bit entropy
function is a particular Bregman generator satisfying F(x) = F (1 — x).

3 Elements of Bregman Geometry

In this section, we discuss several basic geometric properties that will be useful when
studying Bregman Voronoi diagrams. Since Bregman divergences are not symmetric,
we describe two types of Bregman bisectors in Sect. 3.1. We subsequently character-
ize Bregman balls by using a lifting transform that extends a construction well-known
in the Euclidean case (Sect. 3.2). Finally, we show an orthogonality property between
bisectors and geodesics in Sect. 3.3.

3.1 Bregman Bisectors

Since Bregman divergences are not symmetric, we can define two types of bisectors.
The Bregman bisector of the first type is defined as

BBr(p.q) = {x€ X | Dr(x | p) = Dr(xI q)}.
Similarly, we define the Bregman bisector of the second type as
BB (p.q) ={xe X | Dr(pllx)=Dr(q x)}.

These bisectors are identical when the divergence is symmetric. However, in general,
they are distinct. As Lemma 3 below shows, the bisectors of the first type are hyper-
planes while the bisectors of the second type are potentially curved (but always linear
in the gradient space, hence the notation).

Lemma 3 The Bregman bisector of the first type BBr(p, q) is the hyperplane of
equation

BBr(p,q.x) =0 where BBr(p.q.x) = (x,p’' — q')+ F(p) — (p. p')
— F(q) +({q.q)

The Bregman bisector of the second type BB, (p, q) is the hypersurface of equation
BB (p,q.x) =0 where BB (p.q,x)(x',q—p)+ F(p) — F(@) =0

(a hyperplane in the gradient space X').
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(b) p/ °

(c)

Fig. 4 Bregman bisectors. The first-type linear bisector and second-type curved bisector are displayed
for pairs of primal/dual Bregman divergences: (a) exponential loss/Kullback-Leibler divergence, (b) lo-
gistic loss/dual logistic loss, and (c) self-dual Itakura—Saito divergence. (The scalings in X and X’ do not
correspond in order to improve readability.)

It should be noted that p and q lie necessarily on different sides of BBF (p, q) since

BBr(p.q.p) =Dr(pllq) >0and BBr(p,q,9) = —Dr(q | p) <O.
From Lemma 2, we know that Dp(x || y) = Dp=+(y’ || X') where F* is the convex
conjugate of F'. We therefore have

BBr(p,q) = (VF) '(BBy.(q.p)).  BBy(p.q)=(VF) ' (BBr(q.p)).
3)
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Fig. 5 Bregman balls for the Itakura—Saito divergence. The (convex) ball (a) of the first type Br(c, r),
(b) the ball of the second type B}, (c, r) with the same center and radius, (c) superposition of the two
corresponding bounding spheres; (d) shows 3D Bregman balls printed by a lithographic process (from left
to right: Kullback-Leibler, Itakura—Saito and logistic balls)

Figure 4 depicts several first-type and second-type bisectors for various pairs of
primal/dual Bregman divergences.

3.2 Bregman Spheres and the Lifting Map

We define the Bregman balls of, respectively, the first and the second types according
to whether the center is taken as the first or the second argument of the Bregman
divergence Dp:

Bp(e,r)={xeX|Dp(xll¢)<r} and Bp(c,r)={xeX|Dp(c|x)=r}.

The Bregman balls of the first type are convex, while this is not necessarily true
for the balls of the second type as shown in Fig. 5 for the Itakura—Saito divergence
(defined in Table 1). The associated bounding Bregman spheres2 (i.e., 0Bp(c,r) or
dB/(c, r)) are obtained by replacing the inequalities by equalities.

2For convenience, we simply say spheres instead of hyperspheres when there is no ambiguity.
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From Lemma 2, we deduce that
Bi(c,r) = (VF) ' (Bp+(c,7)). @

Let us now examine a few properties of Bregman spheres using a lifting transfor-
mation that generalizes a similar construct for Euclidean spheres (see [8, 38]).

Let us embed the domain X in X = X x R C RI*! using an extra dimension
denoted by the Z-axis. For a point x € X, recall that X = (x, F(x)) denotes the
point obtained by lifting x onto the graph F of F (see Fig. 2). In addition, write
Proj y (x, z) = x for the projection of a point of X onto X.

Let p € X and H, be the hyperplane tangent to F at point p of equation

z=Hp(x)=(x—p,p')+ F(p), ®)

and let HpT denote the halfspace above H), consisting of the points X = [x )7 e x
such that z > Hp(x). Let o (¢, r) denote either the first-type or second-type Bregman
sphere centered at ¢ with radius r.

The lifted image & of a Bregman sphere o is 6 = {(x, F (X)), X € o }. We associate
to a Bregman sphere o = o (¢, r) of X the hyperplane

Hg:z=<x—c,c’>+F(c)+r, (6)

parallel to H, and at vertical distance r from H, (see Fig. 6). Observe that H, coin-
cides with H, when r =0, i.e., when sphere o is reduced to a single point.

Lemma 4 & is the intersection of F with H,. Conversely, the intersection of any
hyperplane H with F projects onto X as a Bregman sphere. More precisely, if the
equation of H is z = (X, a) + b, the sphere of first type is centered at ¢ = (VF) ! (a)
and its radius is {(a, c¢) — F(c) + b.

Proof The first part of the lemma is a direct consequence of the fact that Dr(x || y)
is measured by the vertical distance from X to Hy (see Lemma 1). For the second
part, we consider the hyperplane H! parallel to H and tangent to F. From (5), we
deduce a = ¢’. The equation of H! is thus z = (x — (VF)~"!(a),a) + F(VF)" ' (a)).
It follows that the divergence from any point of o to ¢, which is equal to the vertical
distance between H and H!, is (VF) 1(a),a) — F(VF)"'(a)) + b = (a,¢) —
F(c)+b. O

We have only considered so far Bregman spheres of codimension 1 of R?, i.e., hy-
perspheres. More generally, we can define the Bregman spheres of codimension & + 1
of RY as the Bregman (hyper)spheres of some affine space Z C R of codimension k.
The next lemma shows that Bregman spheres are stable under intersection.

Lemma 5 The intersection of k Bregman spheres o1, ..., or of the same type is a
Bregman sphere o of that type. If the o; pairwise intersect transversally, o = ﬂ{;l o;

is a Bregman sphere of dimension k.
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(a) Squared Euclidean distance (b) Ttakura Saito divergence

Fig. 6 Two Bregman circles o and the associated 3D curves & obtained by lifting o onto F (the plot of
the function F is shown in grey). The closed curves ¢ are obtained as the intersection of the hyperplane
H, with the convex hypersurface F. 3D illustration with (a) the squared Euclidean distance, and (b) the
Itakura—Saito divergence

Proof Consider first the case of Bregman spheres of the first type. The k hyperplanes
Hy,,i=1,...,k,intersect along an affine space H of codimension k of RI+1 Write
G for the vertical projection of H onto R¢, and G¥ = G x R for the vertical flat of
codimension k — 1 that contains G (and H). Write further F = F N G¥. Observing
that Fg is the graph of the restriction of F to G and that H is a hyperplane of G¥,
we can apply Lemma 4 in G¥, which proves the lemma for Bregman spheres of the
first type.

The case of Bregman spheres of the second type follows from the duality of (4). U

Union and Intersection of Bregman Balls

Theorem 1 Both the union and the intersection of n Bregman balls have combinato-
rial complexity ©(n (%]) and can be computed in optimal time ® (nlogn +n %1 ).

Proof Consider the case of a finite union U of balls and assume, without loss of
generality, that the balls are in general position. To each ball, we can associate its
bounding Bregman sphere o; which, by Lemma 4, is the projection by Proj - of the
intersection of 7 with a hyperplane H,,. The points of F that are below H,, projects
onto points that are inside the Bregman ball bounded by o;. Hence, the union of balls
U is the projection by Proj y of the complement of 7 N H' where H' = N, HJI..
H" is a convex polytope defined as the intersection of n half-spaces in R*!. The
theorem follows from McMullen’s theorem that bounds the number of faces of a
polytope [27], and known optimal algorithms for computing convex hull/half-space
intersection algorithm [15, 17]. Indeed, the number of vertices of I/ is at most twice
the number of edges of H' by convexity, and each vertex is incident to a bounded
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number of faces of U/ by the general position assumption. The result for the balls
of the second type is deduced from the result for the balls of the first type and the
duality of (4). The case of an intersection of balls is very similar (just replace H(,Ti by
the complementary halfspace H(i. ). |

Note that output-sensitive algorithms may also be obtained following the guide-
lines in [14].

VC-dimension of Bregman Spheres

Theorem 2 The VC-dimension of the class of all Bregman balls By of R? (for any
given strictly convex and differentiable function F) is d + 1.

Proof The result is known for Euclidean balls. Lemma 4 allows to extend the proof
in [26] (Lemma 10.3.1) in a straightforward way to Bregman balls of the first type.
The case of Bregman spheres of the second type follows from the duality of (4). O

Range spaces of finite VC-dimensions have found numerous applications in Com-
binatorial and Computational Geometry. We refer to Chazelle’s book for an intro-
duction to the subject and references wherein [16]. In particular, Bronnimann and
Goodrich [12] have proposed an almost optimal solution to the disk cover algorithm,
i.e., to finding a minimum number of disks in a given family that cover a given set
of points. Theorem 2 allows one to extend this result to arbitrary Bregman ball cover
(see also [21]).

Circumscribing Bregman Spheres There exists, in general, a unique Bregman
sphere passing through d + 1 points of R?. This is easily shown using the lifting map
since, in general, there exists a unique hyperplane of RY*! passing through d + 1
points. The claim then follows from Lemma 4.

Deciding whether a point x falls inside, on, or outside a Bregman sphere o € R?
passing through d + 1 points of po, ..., pg will be crucial for computing Bregman
Voronoi diagrams and associated triangulations. The lifting map immediately im-
plies that such a decision task reduces to determining the orientation of the simplex
(o, ..., Pa, %) of R4t1 which in turn reduces to evaluating the sign of the determi-
nant of the (d + 2) x (d 4+ 2) matrix (see [28])

1 e 1 1
InSphere(X;po,.--.Pd) =| Po . Pa X
F(po) -+ F(pa) FX)
If one assumes that the determinant | plo ! | is positive, InSphere(X; po, - - -, Pd)

is negative, null or positive depending on whether x lies inside, on, or outside o,
respectively.

3.3 Projection and Orthogonality

We start with an easy property of Bregman divergences.
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Fig. 7 The projection pyy) of
point p to a convex subset

W C X and Bregman
Pythagorean inequality

Property 5 (Three-point property) For any triple p, q and r of points of X, we have
Dr(pll@+Dr(@llr)=Dr(lr)+(p—q.r—4q).

The following lemma characterizes the Bregman projection of a point onto a
closed convex set WW C X.

Lemma 6 (Bregman projection) For any p in X, there exists a unique point X € VW
that minimizes D (X || p). We call this point the Bregman projection of p onto W and

denote it pyy (i.e., pyy = argminge)y D (X || p))-

Proof Assume for a contradiction that there exists two points x and y of WV that min-
imize the divergence to p, and let Dp(x | p) = Dr(y || p) =[. Since W is convex,
(x+Yy)/2 €W and, since Dr is strictly convex in its first argument (see Property 2
of Sect. 2.1), Dp((x+y)/2 | p) < Dr(x | p)/2+ Dr(y || p)/2 =1, yielding a con-
tradiction. O

We recall the following property already mentioned in [6] (see Fig. 7).

Property 6 (Bregman Pythagorean inequality) Let pyy denote the Bregman projec-
tion of point p to a convex subset VW C X. For any w € W, we have Dp(w || p) >
Dr(w || pw) + Dr(pw || P), with equality for and only for affine sets VV.

Proof By the Three-point property, we have

Dr(wl pw) + Dr(pw || p) = Dr (Wl p) + (W — pw. P’ — Piy)-

From pyy = argmingc)y Dr (X || p), we deduce that the inner product in the equality
above is non positive, and zero if W is an affine set. O

We now introduce the notion of Bregman orthogonality. We say that the (ordered)
triplet (p, q,r) is Bregman orthogonal iff Dp(p || Q) + Dr(q || ¥) = Dr(p || 1),
or equivalently (by the three-point property), iff (p —q,r’ — q’) = 0. Observe the
analogy with Pythagorean theorem in Euclidean space. It should be noted though
that Bregman orthogonality depends on the order of the three points.

Notice that orthogonality is preserved (with reverse order) in the gradient space.
Indeed, since (p —q,r —q') = (' — ¢/, p — q), (p, q, r) is Bregman orthogonal iff
(r', ¢/, p’) is Bregman orthogonal.

More generally, we say that I C X is Bregman orthogonalto J C X (I N J # ()
iff for any p € I and r € J, there exists a q € I N J such that (p, q, r) is Bregman
orthogonal.
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Fig. 8 Bregman bisectors BB (p, q) (thin dashed line segments) and BB gx (p, q) (bold solid arcs), and
their relationships with respect to A(p, q) (thin solid line segments) and I' g (p, q) (bold dashed arcs), for
the Itakura—Saito divergence (left) and Kullback—Leibler-divergence (right)

Let I'r(p, q) be the image by (VF)~! of the line segment p'q/, i.e.,
re(p,@ ={xeX:xX'=(1-1p +1q,1€[0,1]}.

We call I'r(p, q) the geodesic arc joining p to q. By analogy, we rename the line
segment pq as

A, @) ={xeX:x=(-1p+2rq,2re[0,1]}.

In the Euclidean case (F(x) = %HX”Z), I'r(p,q) = A(p, q) is orthogonal to the
bisector BBr (p, q). For general Bregman divergences, we have similar properties as
shown next.

Lemma 7 The Bregman bisector BBr(p, q) is Bregman orthogonal to I'r(p,q)
while A(p, q) is Bregman orthogonal to BBr+(p, q).

Proof Since p and q lie on different sides of BBr(p,q), I'r(p,q) must inter-
sect BBr(p,q). Fix any distinct x € I'r(p,q) and y € BBr(p,q), and let t €
I'r(p,q) N BBF(p, q). To prove the first part of the lemma, we need to show that
y—t,x' —t')=0.

Since t and x both belong to I'r(p, q), we have t' — x' = A(p’ — '), for some
A € R, and, since y and t belong to BBFr(p, q), we deduce from the equation of
BBr(p,q) that (y —t,p’ —q’) = 0. We conclude that (y —t,x’ —t’) = 0, which
proves that BBr(p, q) is indeed Bregman orthogonal to I'r(p, q).

The second part of the lemma is easily proved by using the fact that orthogonality
is preserved in the gradient space as noted above. O

Figure 8 shows Bregman bisectors and their relationships with respect to A(p, q)
and I'r (p, Q).
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4 Bregman Voronoi Diagrams

Let S = {p1,...,pn} be a finite point set in X c R?. To each point p; a d-variate
continuous function D; defined over X" is attached. We define the lower envelope
of the functions as the graph of min;<;<, D; and their minimization diagram as the
subdivision of X" into cells such that, in each cell, arg min; D; is fixed.

The Euclidean Voronoi diagram is the minimization diagram for D;(x) = ||x —
p: ||I%. In this section, we introduce Bregman Voronoi diagrams as minimization dia-
grams of Bregman divergences (see Fig. 10).

We define two types of Bregman Voronoi diagrams in Sect. 4.1. We establish a
correspondence between Bregman Voronoi diagrams, polytopes and power diagrams
in Sect. 4.2. This correspondence leads to tight combinatorial bounds and efficient
algorithms. Finally, in Sect. 4.3, we generalize Bregman Voronoi diagrams to k-order
and k-bag diagrams.

LetS'={VF(p;),i =1,...,n} denote the gradient point set associated to S.

4.1 Two Types of Diagrams

Because Bregman divergences are not necessarily symmetric, we associate to each
site p; two types of distance functions, namely D;(x) = Dr(x || p;) and le x) =
D (p; || X). The minimization diagram of the D;,i =1, ..., n, is called the first-type
Bregman Voronoi diagram of S, which we denote by vorp(S). The d-dimensional
cells of this diagram are in /-I correspondence with the sites p; and the d-
dimensional cell of p; is defined as

vorr(p) & {x € X | Dr (x| pi) < Dr(x |l p;) Vp; €S}

Since the Bregman bisectors of the first-type are hyperplanes, the cells of any
diagram of the first-type are convex polyhedra. Therefore, first-type Bregman Voronoi
diagrams are affine diagrams [4, 5].

Similarly, the minimization diagram of the D{, i=1,...,n,is called the second-
type Bregman Voronoi diagram of S, which we denote by vor; (S). A cell in vor, (S)
is associated to each site p; and is defined as above with permuted divergence argu-
ments:

VOY/F(Pi)dZef{XE X | Dp(pi IIx) < Dr(p; |l X) Vp; € S}.

In contrast with the diagrams of the first-type, the diagrams of the second type
have, in general, curved faces.

Figure 9 illustrates these Bregman Voronoi diagrams for the Kullback—Leibler and
the Itakura—Saito divergences. Note that the ordinary Euclidean Voronoi diagram is a
Bregman Voronoi diagram since vor(S) = vorg (S) = vor, (S) for F(x) = % l1x]|2.

From the Legendre duality between divergences, we deduce correspondences be-
tween the diagrams of the first and the second types. As usual, F* is the convex
conjugate of F.

Lemma 8 vor}.(S) = (VF) ™! (vorg«(S")) and vorp(S) = (VF) ™! (vor.(S")).
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Fig. 9 Three types of Bregman Voronoi diagrams for (a) the Kullback—Leibler and (b) the Itakura—Saito
divergences: the affine first-type Bregman Voronoi diagram, the associated curved second-type Bregman
Voronoi diagram and, in between, the symmetrized Bregman Voronoi diagram associated to the distance
functions D!/ (x) = 1(D; (%) + D] (x))

Proof By Lemma 2, we have Dp(x || y) = Dp+(y’ || X'), which gives vorg(p;) =
(X € X | Dp+(p} | X) < Dp=(p); || X') ¥p'; € §'} = (VF)~" (vor}.. (p))). This proves
the second part of the lemma. The proof of the first part follows the same path. [

Hence, constructing the second-type curved diagram vor/.(S) reduces to con-
structing an affine diagram in the gradient space X’ (and mapping the cells by V F~1).

4.2 Bregman Voronoi Diagrams, Polytopes and Power Diagrams

Let Hy;,, i =1,...,n, denote the hyperplanes of X defined in Sect. 3.2. For any
x € X, we deduce from Lemma 1

Dr(x|lp;) < Dr(xIlp;) <= Hp,(X) = Hp,;(x).

The first-type Bregman Voronoi diagram of S is therefore the maximization diagram
of the n affine functions Hp, (x) whose graphs are the hyperplanes Hp, (see Fig. 10).
Equivalently, the first-type Bregman Voronoi diagram vor g (S) is obtained by project-
ing with Proj y the faces of the (d + 1)-dimensional convex polyhedron H = N; HJ,,

of X onto X. 4
Since the intersection of n half-spaces of R? has complexity ©(n'2)) and can be

computed in optimal-time ® (nlogn + n L%J) for any fixed dimension d [15, 27] and
thanks to Lemma 8, we then deduce the following theorem.

Theorem 3 The Bregman Voronoi diagrams of the first and the second types of a set
d

of n d-dimensional points have complexity ® (n'21) and can be computed in optimal

time ®(nlogn + nr%h.
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Squared Euclidean distance

Kullback Leibler divergence (also known as relative entropy)

() (d)

Fig. 10 Voronoi diagrams as minimization diagrams. The first row shows minimization diagrams for
the Euclidean distance and the second row shows minimization diagrams for the Kullback-Leibler diver-
gence. In the first column, the functions are the non-linear functions D; (x) and, in the second column, the
functions are the linear functions Hp, (x), both leading to the same minimization diagrams. Isolines are
superimposed to the Voronoi diagrams

Since Bregman Voronoi diagrams of the first type are affine diagrams, Bregman
Voronoi diagrams are power diagrams [3, 8] in disguise. The following theorem
makes precise the correspondence between Bregman Voronoi diagrams and power
diagrams (see Fig. 11).

Theorem 4 The first-type Bregman Voronoi diagram of n sites is identical to the
power diagram of the n Euclidean spheres of equations

(x = pj.x—p{)=(p}. P/} +2(F(p1) — (pi-p})). i=1,....n.
Proof We easily have

Dp(x | pi) < Dr(x | pj)
& —F(p)—(x—pi.p;)<—F(pj) — (x—p;,p))
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‘ Affine Bregman Voronoi diagram ‘ Equivalent power diagram

(a) Squared Euclidean distance (F(x) = ||x][?)

(b) Kullback-Leibler divergence (F(x) =Y. x;log ;)

Fig. 11 Affine Bregman Voronoi diagrams (left column) can be computed as power diagrams (right col-
umn). Ilustrations for the squared Euclidean distance (a), Kullback-Leibler divergence (b)

= (x,x) —2(x,pj) — 2F (p:) +2(pi. p;)

< (x,x) = 2(x, p}) = 2F (p;) + 2(p;, P)

= [x-PLx—p) =7 < (x—pjx—p) -],

where 7 = (p}, p) +2(F (p:) — (pi, P})) and r§ = (p;, ;) +2(F (p;) — (p;, P))-
The last inequality means that the power of x with respect to the Euclidean (possi-
bly imaginary) sphere B(p;,r;) is no more than the power of x with respect to the
Euclidean (possibly imaginary) sphere B(p’j, ri). O

For F(x) = %||X||2, vorg (S) is the Euclidean Voronoi diagram of S. Accordingly,
the theorem says that the centers of the spheres are the p; and rl.2 =0 since p; =p;.
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Figure 11 displays affine Bregman Voronoi diagrams® and their equivalent power
diagrams for the squared Euclidean, Kullback—Leibler and exponential divergences.

Since power diagrams are well defined over R, this equivalence relationship pro-
vides a natural way to extend the scope of definition of Bregman Voronoi diagrams
from X C RY to the full space RY. (The same observation holds for hyperbolic
Voronoi diagrams [31] that are affine diagrams in disguise).

It is also to be observed that not all power diagrams are Bregman Voronoi dia-
grams. Indeed, in power diagrams, some spheres may have empty cells while each
site has necessarily a nonempty cell in a Bregman Voronoi diagram (see Fig. 11 and
Sect. 4.3 for a further discussion on this point).

4.3 Generalized Bregman Divergences and Their Voronoi Diagrams
Weighted Bregman Voronoi Diagrams

Let us associate to each site p; a weight w; € R. We define the weighted divergence

between two weighted points as WD g (p; || p;) def Dp(p; || pj) — w; +w;. We can
define bisectors and weighted Bregman Voronoi diagrams in very much the same
way as for non weighted divergences. The Bregman Voronoi region associated to the
weighted point (p;, w;) is defined as

vorg (pi, wi) = {x € X | D (x || pi) — wi < Dr(x || pj) —w; ¥p,; € S}.

Observe that the bisectors of the first-type diagrams are still hyperplanes and that the
diagram can be obtained as the projection of a convex polyhedron or as the power
diagram of a finite set of spheres. The only difference with respect to the construction
of Sect. 4.2 is the fact that now the hyperplanes Hp, are no longer tangent to F
since they are shifted by a z-displacement of length w;. Hence Theorem 3 extends to
weighted Bregman Voronoi diagrams.

k-order Bregman Voronoi Diagrams

We define the k-order Bregman Voronoi diagram of a finite point set S in X" as fol-
lows. Let 7 be a subset of k sites of C S. The cell of 7 in the k-order Bregman
Voronoi diagram of S is defined as

vorg(T) déf{xe)( | Dp(x | pi) < Dp(x | pj) Vpi € T andp; € S\ T}.

The k-order Bregman Voronoi diagram of S of the first-type is then defined as the
cell complex whose d-cells are the cells of all the subsets of k points of S.

We can define in a similar way the k-order Bregman Voronoi diagram of S of the
second-type.

Similarly to the case of higher-order Euclidean Voronoi diagrams, we have

3See Java™ applet at http://www.csl.sony.co.jp/person/nielsen/BVDapplet/.
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Theorem S5 The k-order Bregman Voronoi diagram of n d-dimensional points is a
weighted Bregman Voronoi diagram.

Proof Let S1, Sy, ... denote the subsets of k points of S and write

1
Dix) =+ Y Dr(xIp;)

p;eSi

1 1
=F® =7 3 Fo)—7 > (x—p;p))

p./ES,' ijS,'
=F(x) — F(¢;) — (x — ¢, ¢}) — wy
=WDp(x | ¢i),

where ¢; = (VF)~! (% preSi p’j) and the weight associated to ¢; is w; = —F(¢;) +
(€iv €)1 2 e (FO) = (0 P))) = =1 3, e, F* W) + F*(c)).

Hence, S; is the set of the k nearest neighbors of x iff D;(x) < D;(x) for all j, or
equivalently, iff x belongs to the cell of ¢; in the weighted Bregman Voronoi diagram
of the ¢;.

Constructing the k-order Bregman Voronoi diagram of S therefore reduces to con-
structing the power diagram of the weighted sites (¢;, w;). g

k-bag Bregman Voronoi Diagrams

Let Fi, ..., Fy be k strictly convex and differentiable functions, and &« = [« . . L]
€ Ri a vector of positive weights. Consider the d-variate function F, = Zle o Fy.
By virtue of the positive additivity property rule of Bregman generator functions
(Property 3), Dp, is a Bregman divergence.

Now consider a set S = {py, ..., pn} of n points of R4. To each site pi, we asso-
ciate a weight vector o; = [a(l) l.(k)]T inducing a Bregman divergence D, (X ||
p;) anchored at that site. Let us consider the first-type of k-bag Bregman Voronoi
diagram (k-bag BVD for short). The first-type bisector Kr(p;, p;) of two weighted
points (p;, e;) and (p;, & ;) is the locus of points x at equidivergence to p; and p;.
That is, Kr(p;,pj) ={x e &' | DFu,- x| pi)= DFuj (x || pj)}. The equation of the
bisector is simply obtained using the definition of Bregman divergences (1) as

Fo; (X) — Fo, (i) — (X — pi. V Fo; (pi))= Fa; (X) — Fo; (D)) — (X — . V Fo,, (D))).

This yields the equation of the first-type bisector K (p;, p;)

k
Z o _ (1) )F1(x) + (x, V Fy i (Pj) — V Fo,; (pi)) + ¢ =0, M
=1

where ¢ is a constant depending on the weighted sites (p;, ;) and (p;, et ;). Note
that the equation of the first-type k-bag BVD bisector is linear if and only if o; = ot
(i.e., the case of standard BVDs).
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Let us consider the linearization lifting X — X =[x F{(X) ... F} x)]7 that maps
a point x € R? to a point % in R¥**. Then (7) becomes linear, namely (X,a) 4+ ¢ =0
with

A [VFaj(pj) — VFa,»(Pi)] c RIHE
o —Otj

That is, first-type bisectors of a k-bag BVD are associated to hyperplanes of R4+,
It follows that the k-bag Voronoi diagram is obtained by

e Computing the power diagram of a set of n spheres of R?**,

e Computing the restriction of this diagram to the convex d-dimensional submani-
fold (R =[x F1(X) ... Fr(x)]T | x e R?}.

e Projecting this restricted diagram onto R¢.

The complexity of a k-bag Voronoi diagram is thus at most O (n L5 ).

Theorem 6 The k-bag Voronoi diagram (for k > 1) on a bag of d-variate Bregman
divergences of a set of n points of R¢ has combinatorial complexity O(nL#J) and
can be computed within the same time bound.

k-bag divergences and their Voronoi diagrams have been used implicitly in recent
works on Bregman hard k-means clustering [32]. k-bag Bregman Voronoi diagrams
are also related to the anisotropic Voronoi diagrams of Labelle and Shewchuk [25]
where to each point x € X a metric tensor My is associated, which tells how lengths
and angles should be measured from the local perspective of x.

5 Bregman Triangulations

Consider the Euclidean Voronoi diagram vor(S) of a finite set S of points of RY
(called sites). Let f be a face of vor(S), that is, the intersection of k d-cells of vor(S).
We associate to f a dual face f*, namely the convex hull of the sites associated to the
subset of cells. If no subsets of d + 2 sites lie on a same sphere, the set of dual faces
(of dimensions 0 to d) constitutes a triangulation embedded in R¢ whose vertices are
the sites. This triangulation is called the Delaunay triangulation of S, noted del(S).
The correspondence defined above between the faces of vor(S) and those of del(S)
is a bijection that satisfies f C g = g* C f*. We say that del(S) is the geometric
dual of vor(S). See Fig. 12.

A similar construct is known also for power diagrams. Consider the power di-
agram of a finite set of spheres of R?. In the same way as for Euclidean Voronoi
diagrams, we can associate a triangulation dual to the power diagram of the spheres.
This triangulation is called the regular triangulation of the spheres. The vertices of
this triangulation are the centers of the spheres whose cell is non empty.

We introduce Bregman Delaunay triangulations and show that they capture some
important properties of Delaunay triangulations.
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Fig. 12 Ordinary Voronoi
diagram (thin line) and
geometric dual Delaunay
triangulation (bold line)

5.1 Bregman Delaunay Triangulations

Let S be the lifted image of S and let 7 be the lower convex hull of S, i.e., the col-
lection of facets of the convex hull of S whose supporting hyperplanes are below S.
We assume in this section that S is in general position if there is no subset of d + 2
points lying on a same Bregman sphere. Equivalently (see Lemma 4), S is in general
position if no subsets of d + 2 points p; lie on the same hyperplane.

Under the general position assumption, each vertex of H =); HpT,. is the inter-
section of exactly d 4+ 1 hyperplanes and the faces of 7 are all simplices. Moreover,
the vertical projection Proj, (7)) of 7 is a triangulation delr(S) of S embedded in
X C RY since the restriction of Proj y to 7 is bijective. Moreover, since F is convex,
delz(S) covers the convex hull of S, and the set of vertices of 7 consists of all the p;.
Consequently, the set of vertices of delr(S) is S. We call del g (S) the Bregman De-
launay triangulation of S (see Fig. 13). When F (x) = Ix||2, del(S) is the Delaunay
triangulation dual to the Euclidean Voronoi diagram. We will see (Theorem 11 below)
that this duality property holds for general Bregman divergences.

We say that a Bregman sphere o is empty if the open ball bounded by o does not
contain any point of . The following theorem extends a similar well-known property
for Delaunay triangulations whose proof (see, for example, [8]) can be extended in
a straightforward way to Bregman triangulations using the lifting map introduced in
Sect. 3.2.

Theorem 7 The first-type Bregman sphere circumscribing any simplex of delg (S) is
empty. If S is in general position, delp(S) is the only triangulation of S with this

property.

Several other properties of Delaunay triangulations extend to Bregman triangula-
tions. We list some of them.
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(a)

Fig. 13 Bregman Delaunay triangulation as the projection of the convex polyhedron 7 . (a) The 3D convex
polyhedron 7 of X is shown in thick lines (wrt. the potential function F displayed in grey) and empty
spheres are rasterized using thin lines. (b) The corresponding regular triangulation of X’

Theorem 8 (Empty ball) Let S = {p1, ..., Pn} be a set of n points in X in general
position. If v denotes a subset of at most d + 1 indices in {1, ..., n}, the convex hull
of the points p;, i € v, is a simplex of the Bregman triangulation of S iff there exists
an empty Bregman sphere o passing through the p;, i € v.

The next property exhibits a local characterization of Bregman triangulations. Let
T (S) be a triangulation of S. We say that a pair of adjacent facets f; = (f, p1) and
f2 = (f,p2) of T(S) is regular iff p; does not belong to the open Bregman ball
circumscribing f> and p; does not belong to the open Bregman ball circumscribing
/1 (the two statements are equivalent as is easily verified using the lifting map).

Theorem 9 (Locality) Any triangulation of a given set of points S (in general posi-
tion) whose pairs of facets are all regular is the Bregman triangulation of S.

Let S be a given finite set of points, del 7 (S) its Bregman triangulation, and 7 (S)
the set of all triangulations of S. We define the min-containment Bregman radius of a
d-simplex t as the radius, denoted r,,.(7), of the smallest Bregman ball containing 7.
We further define the maximal min-containment Bregman radius of a triangulation
T € T(S) as ryc(T) = max,er rye(t). The following result is an extension of a
result due to Rajan for Delaunay triangulations [35].

Theorem 10 (Max—min-containment) For a given finite set of points S, 1y, (delr (S))
=minye7(S) rme(T).

The proof mimics Rajan’s proof [35] for the case of Delaunay triangulations.

We will now show that del 7 (S) is the geometric dual of vorg(S). To this aim, we
first introduce another (curved) triangulation of S that we call the Bregman geodesic
triangulation of S.
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(a) Ordinary Delaunay (b) Exponential loss (c) Hellinger-like divergence

Fig. 14 An ordinary Delaunay triangulation (a) and two Bregman geodesic triangulations for the expo-
nential loss (b) and for the Hellinger-like divergence (¢). The Bregman balls circumscribing the simplices
are shown in light grey

We have seen in Sect. 4.2 that the Bregman Voronoi diagram of a set of points S
is the power diagram of a set of spheres B’ centered at the points of S’ (Theorem 4).
Write reg - (13') for the regular triangulation dual to this power diagram. This triangu-
lation* is embedded in X’ and has the points of S’ as its vertices. The image of this
triangulation by V™' F is a curved triangulation, denoted del’,(S), whose vertices
are the points of S. The edges of del’;(S) are curved arcs joining two sites. Since
these arcs are geodesic arcs (see Sect. 3.3), we call del’z(S) the Bregman geodesic
triangulation of S (see Fig. 14).

Theorem 11 (Duality) The Bregman Delaunay triangulation del g (S) is the geomet-
ric dual of the 1st-type Bregman Voronoi diagram of S.

Proof We have, denoting < the dual mapping, and using Theorem 4
vorp(S) = pow(B') & reg(B') = VF (delz(S)). 8)

It follows that del},- (S) is a (curved) triangulation dual to vorg(S).

We now show that del’,(S) is isomorphic to delr(S). Indeed, the two triangu-
lations are embedded in RY, have the same vertices, and their d-simplices are in
1-1 correspondence. The last claim comes from the fact that the d-simplices of
del’F (S) are in 1-1 correspondence with the vertices of vorg(S) by (8), and that
the d-simplices of delz(S) are in 1-1 correspondence with the centers of their cir-
cumscribing Bregman spheres, which are precisely the vertices of vorg(S). O

6 Conclusion

We have defined the notion of Bregman Voronoi diagrams and showed how these
geometric structures are a natural extension of ordinary Voronoi diagrams. Bregman

4Applet at http://www.csl.sony.co.jp/person/nielsen/BVDapplet/.
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Voronoi diagrams share with their Euclidean analogs surprisingly similar combina-
torial and geometric properties. In particular, we have shown how to define and build
Bregman Voronoi diagrams using power diagrams and Legendre duality.

We hope that our results will make Voronoi diagrams and their relatives applicable
in new application areas. In particular, Bregman Voronoi diagrams based on various
entropic divergences are expected to find applications in information retrieval (IR),
data mining, knowledge discovery in databases, image processing (e.g., see [22]). The
study of Bregman Voronoi diagrams raises the question of revisiting computational
geometry problems in this new light. This may also allow one to tackle uncertainty
(‘noise’) in computational geometry for fundamental problems such as surface recon-
struction or pattern matching. Bregman Voronoi diagrams can be extended using rep-
resentational functions [30]. This allows one to compute other information-theoretic
Voronoi diagrams for well-known divergences in information geometry: namely the
a-divergences and the B-divergences.

A limitation of Voronoi diagrams and, in particular, of Bregman Voronoi diagrams
is their combinatorial complexity that depends exponentially on the dimension (Mc-
Mullen’s upper bound theorem [27]). Since many applications are in high dimen-
sional spaces, one may consider instead related but easier to compute data structures
such as the witness complex [10, 19].
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