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Abstract. Finding a point which minimizes the maximal distortion
with respect to a dataset is an important estimation problem that has
recently received growing attentions in machine learning, with the advent
of one class classification. We propose two theoretically founded general-
izations to arbitrary Bregman divergences, of a recent popular smallest
enclosing ball approximation algorithm for Euclidean spaces coined by
Bădoiu and Clarkson in 2002.

1 Introduction

Consider the following problem: given a set of observed data S, compute some ac-
curate set of parameters, or simplified descriptions, that summarize (“fit well”) S
according to some criteria. This problem is well known in various fields of statistics
and computer science. In many cases, it admits two different formulations:

(1.) Find a point c∗ which minimizes an average distortion with respect to S.
(2.) Find a point c∗ which minimizes a maximal distortion with respect to S.

These two problems are cornerstones of different subfields of applied mathemat-
ics and computer science, such as (i) parametric estimation and the computation
of exhaustive statistics for broad classes of distributions in statistics, (ii) one class
classification and clustering in machine learning, (iii) the one center problem and
its generalizations in computational geometry, among others [1, 2, 5, 7]. The main
unknown in both problems is what we mean by distortion.

In fact, many examples of distortion measures found in domains concerned
by the problems above (computational geometry, machine learning, signal pro-
cessing, probabilities and statistics, among others) fall into a single family of
distortion measures known as Bregman divergences [3]. Informally, each of them
is the tail of the Taylor expansion of a strictly convex function. Using a neat
result in [2], it can be shown that the solution to problem (1.) above is always
the average member of S, regardless of the Bregman divergence. This means that
problem (1.) can be solved in optimal linear time / space in the size of S: since
S may be huge, this property is crucial. Unfortunately, the solution of (2.) does
not seem to be as affordable; tackling the problem with quadratic programming
buys an expensive time complexity cubic in the worst case, and the space com-
plexity is quadratic [8]. Notice also that it is mostly used with L2
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smallest enclosing L2
2 ball

center c∗ of the Itakura-Saito ball
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Fig. 1. An optimal Itakura-Saito ball and its smallest enclosing L2
2 ball, for d = 2.

Notice the poor quality of this optimal approximation: the center of the L2
2 ball does

not even lie inside the Itakura-Saito ball.

finding an exact solution, a recent approach due to [1] approximates the solu-
tion of the problem for L2

2: the user specifies some ε > 0, and the algorithm
returns, in time linear in the size of S (quadratic in 1/ε) and in space linear
in the size of S, the center c of a ball which is at L2

2 divergence no more than
ε2r∗ from c∗. Here, r∗ is the squared radius of the so-called smallest enclosing
ball of S, whose center c∗ is obviously the solution to problem (2.). Let us name
this algorithm the Bădoiu-Clarkson algorithm, and abbreviate it BC. The key
point of the algorithm is its simplicity, which deeply contrasts with quadratic
programming approaches: basically, after having initialized c to a random point
of S, we iterate through finding the farthest point away from the current center,
and then move along the line between these two points. The popularity of the
algorithm, initially focused in computational geometry, has begun to spread to
machine learning as well, with its adaptation to fast approximations of SVM
training [8].

The applications of BC have remained so far focused on L2
2, yet the fact

that the algorithm gives a clean and simple approach to problem (2.) for one
Bregman divergence naturally raises the question of whether it can be tailored
to approximating problem (2.) for any Bregman divergence as well. Figure 1
highlights the importance of this issue.

In this paper, we propose two theoretically founded generalizations of BC to
arbitrary Bregman divergences, along with a bijection property that has a flavor
similar to a Theorem of [2]: we show a bijection between the set of Bregman
divergences and the set of the most commonly used functional averages, which
yields that each element of the latter set encodes the minimax distortion solution
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for a Bregman divergence. This property is the cornerstone of our modifications
to BC. The next Section presents some definitions. Section 3 gives the theoretical
foundations and Section 4 the experiments regarding our generalization of BC.

2 Definitions

Our notations mostly follow those of [1, 2]. Bold faced variables such as x and
α, represent column vectors. Sets are represented by calligraphic upper-case
alphabets, e.g. S, and enumerated as {si : i ≥ 1} for vector sets, and {si : i ≥ 1}
otherwise. The jth component of vector s is noted sj , for j ≤ 1. Vectors are
supposed d-dimensional. We write x ≥ y as a shorthand for xi ≥ yi, ∀i. The
cardinal of a set S is written |S|, and 〈., .〉 defines the inner product for real valued
vectors, i.e. the dot product. Norms are L2 for a vector, and Frobenius for a
matrix. Bregman divergences are a parameterized family of distortion measures:
let F : X → IR be strictly convex and differentiable on the interior int(X ) of
some convex set X ⊆ IRd. Its corresponding Bregman divergence is:

DF (x’,x) = F (x’) − F (x) − 〈x’ − x, ∇F (x)〉 . (1)

Here, ∇F is the gradient operator of F . A Bregman divergence has the following
properties: it is convex in x’, always non negative, and zero iff x = x’. Whenever
F (x) =

∑d
i=1 x2

i = ‖x‖2
2, the corresponding divergence is the squared Euclidean

distance (L2
2): DF (x’,x) = ‖x − x’‖2

2, with which is associated the common
definition of a ball in an Euclidean metric space:

Bc,r = {x ∈ X : ‖x − c‖2
2 ≤ r} , (2)

with c ∈ S the center of the ball, and r ≥ 0 its (squared) radius. Eq. (2)
suggests a natural generalization to the definition of balls for arbitrary Bregman
divergences. However, since a Bregman divergence is usually not symmetric, any
c ∈ S and any r ≥ 0 define actually two dual Bregman balls :

Bc,r = {x ∈ X : DF (c,x) ≤ r} , (3)
B′
c,r = {x ∈ X : DF (x, c) ≤ r} . (4)

Remark that DF (c,x) is always convex in c while DF (x, c) is not always, but
the boundary ∂Bc,r is not always convex (it depends on x, given c), while ∂B′

c,r

is always convex. In this paper, we are mainly interested in Bc,r because of the
convexity of DF in c. The conclusion of the paper extends some results to build
B′
c,r as well. Let S ⊆ X be a set of m points that were sampled from X . A

smallest enclosing Bregman ball (SEBB) for S is a Bregman ball Bc∗,r∗ with r∗

the minimal real such that S ⊆ Bc∗,r∗ . With a slight abuse of language, we will
refer to r∗ as the radius of the ball. Our objective is to approximate as best as
possible the SEBB of S, which amounts to minimizing the radius of the enclosing
ball we build. As a simple matter of fact indeed, the SEBB is unique.

Lemma 1. The smallest enclosing Bregman ball Bc∗,r∗ of S is unique.

(proof omitted due to the lack of space) Algorithm 1 presents Bădoiu-Clarkson’s
algorithm for the SEBB approximation problem with the L2

2 divergence [1].
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Algorithm 1: BC(S, T)

Input: Data S = {s1, s2, ..., sm};
Output: Center c;
Choose at random c ∈ S ;
for t = 1, 2, ..., T − 1 do

s ← arg maxs′∈S ‖c − s′‖2
2;

c ← t
t+1c + 1

t+1s;

3 Extending BC

The primal SEBB problem is to find:

arg min
c∗,r∗

r∗ s.t. DF (c∗, si) ≤ r∗, ∀1 ≤ i ≤ m . (5)

Its Lagrangian is L(S, α) = r∗ −
∑m

i=1 αi(r∗ − DF (c∗, si)), with the additional
Karush-Kuhn-Tucker condition α ≥ 0. The solution to (5) is obtained by min-
imizing L(S, α) for the parameters c∗ and r∗, and then maximize the resulting
dual for the Lagrange multipliers. We obtain ∂L(S, α)/∂c∗ = ∇F (c∗)

∑m
i=1 αi−∑m

i=1 αi∇F (si) and ∂L(S, α)/∂r∗ = 1−
∑m

i=1 αi. Setting ∂L(S, α)/∂c∗ = 0 and
∂L(S, α)/∂r∗ = 0 yields

∑m
i=1 αi = 1 and:

c∗ = ∇−1
F

(
m∑

i=1

αi∇F (si)

)

. (6)

Table 1. Some common Bregman divergences and their associated functional averages.
The second row depicts the general I (information) divergence, also known as Kullbach-
Leibler (KL) divergence on the d-dimensional probability simplex. On the fourth row,
A is the inverse of the covariance matrix [2].

domain F (s) DF (c, s) cj (1 ≤ j ≤ d)
L2

2 norm arithmetic mean
IRd ∑d

j=1 s2
j

∑d
j=1 (cj − sj)2

∑m
i=1 αisi,j

(IR+,∗)d (I/KL)-divergence geometric mean
/ d-simplex

∑d
j=1 sj log sj − sj

∑d
j=1 cj log(cj/sj) − cj + sj

∏m
i=1 sαi

i,j

Itakura-Saito distance harmonic mean
(IR+,∗)d −

∑d
j=1 log sj

∑d
j=1 (cj/sj) − log(cj/sj) − 1 1/

∑m
i=1 (αi/si,j)

Mahalanobis distance arithmetic mean
IRd sT As (c − s)T A(c − s)

∑m
i=1 αisi,j

p ∈ IN\{0, 1} weighted power mean

IRd/IR+d (1/p)
∑d

j=1 sp
j

∑d
j=1

c
p
j

p
+

(p−1)sp
j

p
− cjs

p−1
j

(∑m
i=1 αis

p−1
i,j

)1/(p−1)
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Because F is strictly convex, ∇F is bijective, and c∗ lies in the convex closure
of S. Finally, we are left with finding:

argmax
α

m∑

i=1

αiDF

⎛

⎝∇−1
F

⎛

⎝
m∑

j=1

αj∇F (sj)

⎞

⎠ , si

⎞

⎠ s.t. α ≥ 0,

m∑

i=1

αi = 1 . (7)

This problem generalizes the dual of support vector machines: whenever F (s) =
∑d

i=1 s2
i = 〈s, s〉 (Table 1), we return to their kernel-based formulation [4]. There

are essentially two categories of Lagrange multipliers in vector α. Those corre-
sponding to points of S lying on the interior of Bc∗,r∗ are zero, since these points
satisfy their respective constraints. The others, corresponding to the support
points of the ball, are strictly positive. Each αi > 0 represents the contribution
of its support point to the computation of the circumcenter of the ball. Eq. (6)
is thus some functional average of the support points of the ball, to compute c∗.

3.1 The Modified Bădoiu-Clarkson Algorithm, MBC

There is more on eq. (6). A Bregman divergence is not affected by linear terms:
DF+q = DF for any constant q [6]. Thus, the partial derivatives of F in ∇F (.) de-
termine entirely the Bregman divergence. The following Lemma is then
immediate.

Lemma 2. The set of functional averages (6) is in bijection with the set of
Bregman divergences (1).

The connection between the functional averages and divergences is much inter-
esting because the classical means commonly used in many domains, such as
convex analysis, parametric estimation, signal processing, are valid examples of
functional averages. A nontrivial consequence of Lemma 2 is that each of them
encodes the SEBB solution for an associated Bregman divergence. Apart from
the SEBB problem, this is interesting because means are popular statistics, and
we give a way to favor the choice of a mean against another one depending on
the domain of the data and its “natural” distortion measure. Table 1 presents
some Bregman divergences and their associated functional averages, for the most
commonly encountered.

Speaking of bijections, previous results showed the existence of a bijection
between Bregman divergences and the family of exponential distributions [2].
This has helped the authors to devise a generalization of the k-means algorithm.
In our case, Lemma 2 is also of some help to generalize BC. Clearly, the dual
problem in eq. (7) does not admit the convenient representation of SVMs, and
it seems somehow hard to use a kernel trick replacing the elements of S by local
transformations involving F prior to solving problem (7). However, the dual
suggests a very simple algorithm to approximate c∗, which consists in making the
parallel between ∇(c∗) =

∑m
i=1 αi∇F (si) (6) and the arithmetic mean in Table

1, and consider (6) as the solution to a minimum distortion problem involving
gradients into a L2

2 space. We can thus seek:

arg min
g∗,r′∗

r′∗ s.t. ‖g∗ − ∇F (si)‖2
2 ≤ r′∗, ∀1 ≤ i ≤ m . (8)
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Finally, approximating (5) amounts to running the so-called Modified Bădoiu-
Clarkson algorithm in the gradient space, MBC . Because ∇F is bijective, this is
guaranteed to yield a solution. The remaining question is whether ∇−1

F (g) = c
is close enough from the solution c∗ of (5). The following Lemma upperbounds
the sum of the two divergences between c and any point of S, as a function of
r′∗. It shows that the two centers can be very close to each other; in fact, they
can be much closer than with a naive application of Bădoiu-Clarkson directly in
S. The Lemma makes the hypothesis that the Hessian of F , HF , is non singular.
As a matter of fact, it is diagonal (without zero in the diagonal) for all classical
examples of Bregman divergences, see Table 1, so this is not a restriction either.
In the Lemma, we let f denote the minimal non zero value of the Hessian norm
inside the convex closure of S: f = minx∈co(S):‖HF (x)‖2>0 ‖HF (x)‖2.

Lemma 3. ∀s ∈ S, we have:

DF (s, ∇−1
F (g)) + DF (∇−1

F (g), s) ≤ (1 + ε)2r′∗/f , (9)

where g = BC({∇F (si) : si ∈ S}, T ), r′∗ is defined in eq. (8), and ε is the error
parameter of BC.

(proof omitted due to the lack of space) Remark that Lemma 3 is optimal, in the
sense that if we consider DF = L2

2, then each point si ∈ S becomes 2si in S′. The
optimal radii in (5) and (8) satisfy r′∗ = 4r∗, and we have f = 2. Plugging this
altogether in eq. (9) yields 2‖c−s‖2

2 ≤ (1+ε)2×4r∗/2, i.e. ‖c−s‖2 ≤ (1+ε)
√

r∗,
which is exactly Bădiou-Clarkson’s bound [1] (here, we have fixed c = ∇−1

F (g),
like in Lemma 3). Remark also that Lemma 3 upperbounds the sum of both
possible divergences, which is very convenient given the possible asymmetry
of DF .

3.2 The Bregman-Bădoiu-Clarkson Algorithm, BBC

It is straightforward to check that at the end of BC (algorithm 1), the following
holds true:

{
c =

∑m
i=1 α̂isi ,

∑m
i=1 α̂i = 1 , α̂ ≥ 0 ,

∀1 ≤ i ≤ m, α̂i �= 0 iff si is chosen at least once in BC .

Since the furthest points chosen by BC ideally belong to ∂Bc∗,r∗ , and the final ex-
pression of c matches the arithmetic average of Table 1, it comes that BC directly
tackles an iterative approximation of eq. (6) for the L2

2 Bregman divergence. If
we replace L2

2 by an arbitrary Bregman divergence, then BC can be generalized
in a quite natural way to algorithm BBC (for Bregman-Bădoiu-Clarkson) below.
Again, it is straightforward to check that at the end of BBC, we have generalized
the iterative approximation of BC to eq. (6) for any Bregman divergence, as we
have:

{
c = ∇−1

F (
∑m

i=1 α̂i∇F (si)) ,
∑m

i=1 α̂i = 1 , α̂ ≥ 0 ,
∀1 ≤ i ≤ m, α̂i �= 0 iff si is chosen at least once in BC .
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Algorithm 2: BBC(S)
Input: Data S = {s1, s2, ..., sm};
Output: Center c;
Choose at random c ∈ S ;
for t = 1, 2, ..., T − 1 do

s ← arg maxs′∈S DF (c, s′);
c ← ∇−1

F

(
t

t+1∇F (c) + 1
t+1∇F (s)

)
;

The main point is whether α̂ is a good approximation to the true vector of
Lagrange multipliers α. From the theoretical standpoint, the proof of BC’s ap-
proximation ratio becomes tricky when lifted from L2

2 to an arbitrary Bregman
divergence, but it can be shown that many of the key properties of the initial
proof remain true in this more general setting. An experimental hint that speaks
for itself for the existence of such a good approximation ratio is given in the
next Section.

4 Experimental Results

Due to the lack of space, we only present results on BBC . To evaluate the quality
of the approximation of BBC for the SEBB, we have ran the algorithm for three
popular representative Bregman divergences. For each of them, averages over
a hundred runs were performed for T = 200 center updates (see algorithm 2).
In each run, a random Bregman ball is generated, and S is sampled uniformly
at random in the ball. Since we know the SEBB, we have a precise idea of
the quality of the approximation found by BBC on the SEBB. Figure 2 gives a
synthesis of the results for d = 2. [1]’s bound is plotted for each divergence,
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Fig. 2. Average approximation curves for 100 runs of BBC algorithm for three Bregman
divergences: Itakura-Saito, L2

2 and KL (d = 2, m = 1000, T = 200). The dashed curves
are Bădoiu-Clarkson’s error bound as a function of the iteration number t, and the
bottom, plain curves, depict (DF (c∗, c) + DF (c, c∗))/2 as a function of t for each
divergence, where c is the output of BBC and c∗ is the optimal center. The bottom
number depict the estimated error (%) ± standard deviation.
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Table 2. Estimated errors for the SEBB problem for data generated using a mixture
of u gaussians, for u = 1, 3, 5, 10, 20. Conventions and parameters follow Figure 2.

u Itakura-Saito L2
2 Kullbach-Leibler

1 0.37 ± 0.06 0.43 ± 0.09 0.39 ± 0.08
3 0.40 ± 0.04 0.41 ± 0.10 0.41 ± 0.06
5 0.41 ± 0.04 0.43 ± 0.10 0.41 ± 0.04
10 0.40 ± 0.02 0.44 ± 0.09 0.42 ± 0.05
20 0.41 ± 0.02 0.43 ± 0.08 0.41 ± 0.04

even when it holds formally only for L2
2. The other two curves give an indication

of the way this bound behaves with respect to the experimental results. It is easy
to see that for each divergence, there is a very fast convergence of the center
found, c, to the optimal center c∗. Furthermore, the experimental divergences
are always much smaller than [1]’s bound, for each divergence (very often by a
factor 100 or more). We have checked this phenomenon for higher dimensions, up
to d = 20. Following [7], the errors given are the ratio of the number of support
points over the whole number of points. A good method would typically select
a very small number of points, regardless of the domain. While this is clearly
displayed in Figure 2, Table 2 goes deeper in this phenomenon, as it displays the
errors when the points are drawn from random mixtures of Gaussians. Even in
this case, where the Gaussians may be very distant from each other, MBC with
the three Bregman divergences of Figure 2 still displays a very low error.
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