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Introduction

Embedding: from discrete graph to continuous space

e.g. Sarker (2012): embedding of trees in hyperbolic plane with low
distortion (not Euclidian plane)

— probability distribution on hyperbolic space.

Review:
@ hyperboloid distributions on the Minkowski space by Jensen (1981)
—— analogy to the von-Mises Fisher distributions on the sphere
@ Souriau-Gibbs distributions on by Barbaresco (2019)
in the Poincaré disk with its Fisher information metric = the
Poincaré hyperbolic Riemannian metric
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Poincaré distributions

Tojo and Yoshino (2020); hyperboloid distribution realized on the upper
half-plane H

@ Parameter space:
© :={(a,b,c) €R® :a>0,c>0, ac—b*> >0} ~ Sym™(2,R) by

(6, 8) = [ . ’C’]

@ 0] :=ac—b* >0 and tr(d) := a+ c for = (a,b,c).
o pdf:

(z,y) e H

0] exp(2+/]0 a(z® +y?) + 2bz+ ¢\ 1
o) = LIRS (oo 10 ) L.

m Y Y

3 ¢-deformed Poincaré distributions. (Tojo and Yoshino)
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f-divergence

The f-divergence induced by a convex generator f : (0,00) — R between two
pdfs p(x,y) and g(x,y) on H:

Dibpsd = [ oo £ (228 avay.

This measures dissimilarity between two distributions.

Theorem 1

Every f-divergence between two Poincaré distributions py and py: is a function
of (161,10, tr (6’67 "))

Proof components:
(1) Dy [po : per] is invariant wrt SL(2, R)-action:

Dy [po : per] = Dy I:pg—ng—l :pg—Tglg—l] , g € SL(2,R)

(2) Every action-invariant function g(6,6’) on H? is a function of
(161,10, tr (6’6~")) — maximal invariant of the action.
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Importance of the concept of maximal invariant

@ Assume that one has a problem for which a function f which is
wrt some group action f(gx) = f(«) but difficult to solve
explicitly f() from scratch

@ For the group action, one finds a maximal invariant m(): It is an
invariant and maximal, i.e.

m(z) =m(y) = Jg s.t. y =gz

@ Then, 3h s.t. f(x) = h(m(x)). Solving/finding h() may be simpler
than solving/finding the original f()

See the book by Eaton(1989)
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Proposition 1 (explicit formulae)

(i) (Kullback-Leibler) Let f(u) = —logu. Then,
Dy oo s o) = g log {ok -+ 2 (VT - VIFT) + (5 + VD) (ax067) -2

(ii) (squared Hellinger) Let f(u) = (v/u — 1)?/2. Then,

2|0|1/4|9/|1/4 exp (|0|1/2 + |9/|1/2)

D tpel =1—
f[po : por] |0+ 6'|'/2 exp (|0 + 0']1/2)

(i) (Neyman x?) Let f(u) := (u — 1)%. Assume that 20’ — 6 € ©. Then,

16| exp(4(6['/%)

=1,
61721207 = 6T/ excp (2([617 + 267 = 0'72))

Dy [po : por] =

|6 + 0’| and |20" — 6| can be expressed byl|d|, |¢|, and tr(6’67").
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2D hyperboloid distributions

Barndorff-Nielsen (1978); Jensen (1981)
Lobachevskii space:

L := {(:170,331,172) ER®:zo = \/1—|—x§—|—x§} ~ R?

Minkowski inner product:
(w0, 21, %2), (Yo, Y1, Y2)] := Toyo — T1y1 — T2y2.

@ Parameter space:

Op2 == {(90,01,92) e R3: 0o > \/9%4—0%}

@ pdf: For 6 € O,
_ Iolexp(16]) exp(—16,3)

polon®) = G e ix et el
where we let 7 := (\/1 + 2 + x%,xl,m) € 1.7 and |0] := [0, 6]"/2.

(1‘1, 332) € R?
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Theorem 2

Every f-divergence between pg and py: is a function of the triplet
(19,0],[6',6'],[0,60)), i.e., the pairwise Minkowski inner products of 6 and 6'.

Geometric interpretation: Dy [pg : pgr] +— A066’
Thm 2 <— side-angle-side theorem in Euclidean and hyperbolic gecometry

([6,6],16",6'],10,6') = (&€, €' €'], [,€)
= A090’ = A0EE" = Dy [po : por] = Dy [pe : per]

Proof strategy is similar to the one of Theorem 1.

¢
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Proposition 2 (explicit formulae)
(i) (Kullback-Leibler) Let f(u) = —logu. Then,

19| ) o)+ 01

_ [0,0']
Dype : por] = (Ié” [9’9]

-1
16|

+

(ii) (squared Hellinger) Let f(u) = (v/u — 1)?/2. Then,

2101"/%16"|""* exp (161/2 + 16')/2)

D : ’ :1—
#lpe : por] 0+ 0’| exp (|0 + 0']/2)

(iii) (Neyman x?) Let f(u) := (u — 1)?. Assume that 26’ —§ € ©;2. Then,

160" exp(2]6"])

D T o] = = 11,
slpo : por] 0]126" — 0] exp (0] + |20" — 6])

This corresponds to Proposition 1 for Poincaré distributions.
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Correspondence

Proposition 3 (Correspondence between the parameter spaces)

A bijection:
0 — O

0 := (a,b,c) — 6L := (a+c,a— c,2b)

By this map,
(i) For 6,0 € O,

6L” = [6u, 60 = 416], 161" = [6L,60] = 416, [6n,60] = 2/6Jtr(8'07).
(i) For every f and 0,60’ € H,
D% [ng :p%] = D]J}c]I [po : por] -

There is also a correspondence between the sample spaces, which is compatible
with the above one.
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