On the f-divergences between hyperboloid and Poincaré distributions

Frank Nielsen (Sony CSL), Kazuki Okamura (Shizuoka Univ.)

GSI '23
$1 / 11$

Introduction

Embedding: from discrete graph to continuous space e.g. Sarker (2012): embedding of trees in hyperbolic plane with low distortion (not Euclidian plane)
\longrightarrow probability distribution on hyperbolic space.
Review:

- hyperboloid distributions on the Minkowski space by Jensen (1981) - analogy to the von-Mises Fisher distributions on the sphere
- Souriau-Gibbs distributions on by Barbaresco (2019) - in the Poincaré disk with its Fisher information metric $=$ the Poincaré hyperbolic Riemannian metric

Poincaré distributions

Tojo and Yoshino (2020); hyperboloid distribution realized on the upper half-plane \mathbb{H}

- Parameter space:

$$
\begin{aligned}
& \Theta:=\left\{(a, b, c) \in \mathbb{R}^{3}: a>0, c>0, a c-b^{2}>0\right\} \simeq \operatorname{Sym}^{+}(2, \mathbb{R}) \text { by } \\
& (a, b, c) \simeq\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
\end{aligned}
$$

- $|\theta|:=a c-b^{2}>0$ and $\operatorname{tr}(\theta):=a+c$ for $\theta=(a, b, c)$.
- pdf:

$$
p_{\theta}(x, y):=\frac{\sqrt{|\theta|} \exp (2 \sqrt{|\theta|})}{\pi} \exp \left(-\frac{a\left(x^{2}+y^{2}\right)+2 b x+c}{y}\right) \frac{1}{y^{2}},(x, y) \in \mathbb{H}
$$

$\exists q$-deformed Poincaré distributions. (Tojo and Yoshino)

f-divergence

The f-divergence induced by a convex generator $f:(0, \infty) \rightarrow \mathbb{R}$ between two pdfs $p(x, y)$ and $q(x, y)$ on \mathbb{H} :

$$
D_{f}[p: q]:=\int_{\mathbb{H}} p(x, y) f\left(\frac{q(x, y)}{p(x, y)}\right) \mathrm{d} x \mathrm{~d} y
$$

This measures dissimilarity between two distributions.

Theorem 1

Every f-divergence between two Poincaré distributions p_{θ} and $p_{\theta^{\prime}}$ is a function of $\left(|\theta|,\left|\theta^{\prime}\right|, \operatorname{tr}\left(\theta^{\prime} \theta^{-1}\right)\right)$

Proof components:
(1) $D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]$ is invariant wrt $\operatorname{SL}(2, \mathbb{R})$-action:

$$
D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=D_{f}\left[p_{g^{-\top}}^{\theta g^{-1}}: p_{g^{-\top}}^{\theta^{\prime} g^{-1}}\right], g \in \mathrm{SL}(2, \mathbb{R})
$$

(2) Every action-invariant function $g\left(\theta, \theta^{\prime}\right)$ on \mathbb{H}^{2} is a function of $\left(|\theta|,\left|\theta^{\prime}\right|, \operatorname{tr}\left(\theta^{\prime} \theta^{-1}\right)\right)$ - maximal invariant of the action.

Importance of the concept of maximal invariant

- Assume that one has a problem for which a function f which is invariant wrt some group action $f(g x)=f(x)$ but difficult to solve explicitly $f()$ from scratch
- For the group action, one finds a maximal invariant $m()$: It is an invariant and maximal, i.e.

$$
m(x)=m(y) \Longrightarrow \exists g \text { s.t. } y=g x
$$

- Then, $\exists h$ s.t. $f(x)=h(m(x))$. Solving/finding $h()$ may be simpler than solving/finding the original $f()$
See the book by Eaton(1989)

Proposition 1 (explicit formulae)

(i) (Kullback-Leibler) Let $f(u)=-\log u$. Then,
$D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=\frac{1}{2} \log \frac{|\theta|}{\left|\theta^{\prime}\right|}+2\left(\sqrt{|\theta|}-\sqrt{\left|\theta^{\prime}\right|}\right)+\left(\frac{1}{2}+\sqrt{|\theta|}\right)\left(\operatorname{tr}\left(\theta^{\prime} \theta^{-1}\right)-2\right)$.
(ii) (squared Hellinger) Let $f(u)=(\sqrt{u}-1)^{2} / 2$. Then,

$$
D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=1-\frac{2|\theta|^{1 / 4}\left|\theta^{\prime}\right|^{1 / 4} \exp \left(|\theta|^{1 / 2}+\left|\theta^{\prime}\right|^{1 / 2}\right)}{\left|\theta+\theta^{\prime}\right|^{1 / 2} \exp \left(\left|\theta+\theta^{\prime}\right|^{1 / 2}\right)}
$$

(iii) (Neyman χ^{2}) Let $f(u):=(u-1)^{2}$. Assume that $2 \theta^{\prime}-\theta \in \Theta$. Then,

$$
D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=\frac{\left|\theta^{\prime}\right| \exp \left(4\left|\theta^{\prime}\right|^{1 / 2}\right)}{|\theta|^{1 / 2}\left|2 \theta^{\prime}-\theta\right|^{1 / 2} \exp \left(2\left(|\theta|^{1 / 2}+\left|2 \theta^{\prime}-\theta\right|^{1 / 2}\right)\right)}-1
$$

$\left|\theta+\theta^{\prime}\right|$ and $\left|2 \theta^{\prime}-\theta\right|$ can be expressed by $|\theta|,\left|\theta^{\prime}\right|$, and $\operatorname{tr}\left(\theta^{\prime} \theta^{-1}\right)$.

2D hyperboloid distributions

Barndorff-Nielsen (1978); Jensen (1981) Lobachevskii space:

$$
\mathbb{L}^{2}:=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}: x_{0}=\sqrt{1+x_{1}^{2}+x_{2}^{2}}\right\} \simeq \mathbb{R}^{2}
$$

Minkowski inner product:

$$
\left[\left(x_{0}, x_{1}, x_{2}\right),\left(y_{0}, y_{1}, y_{2}\right)\right]:=x_{0} y_{0}-x_{1} y_{1}-x_{2} y_{2}
$$

- Parameter space:

$$
\Theta_{\mathbb{L}^{2}}:=\left\{\left(\theta_{0}, \theta_{1}, \theta_{2}\right) \in \mathbb{R}^{3}: \theta_{0}>\sqrt{\theta_{1}^{2}+\theta_{2}^{2}}\right\}
$$

- pdf: For $\theta \in \Theta_{\mathbb{L}^{2}}$,

$$
p_{\theta}\left(x_{1}, x_{2}\right):=\frac{|\theta| \exp (|\theta|)}{2(2 \pi)^{1 / 2}} \frac{\exp (-[\theta, \widetilde{x}])}{\sqrt{1+x_{1}^{2}+x_{2}^{2}}},\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

where we let $\tilde{x}:=\left(\sqrt{1+x_{1}^{2}+x_{2}^{2}}, x_{1}, x_{2}\right) \in \mathbb{L}^{2}$ and $|\theta|:=[\theta, \theta]^{1 / 2}$.

Theorem 2

Every f-divergence between p_{θ} and $p_{\theta^{\prime}}$ is a function of the triplet $\left([\theta, \theta],\left[\theta^{\prime}, \theta^{\prime}\right],\left[\theta, \theta^{\prime}\right]\right)$, i.e., the pairwise Minkowski inner products of θ and θ^{\prime}.

Geometric interpretation: $D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right] \longleftrightarrow \triangle 0 \theta \theta^{\prime}$
Thm $2 \longleftrightarrow$ side-angle-side theorem in Euclidean and hyperbolic geometry

$$
\begin{aligned}
& \left([\theta, \theta],\left[\theta^{\prime}, \theta^{\prime}\right],\left[\theta, \theta^{\prime}\right]\right)=\left([\xi, \xi],\left[\xi^{\prime}, \xi^{\prime}\right],\left[\xi, \xi^{\prime}\right]\right) \\
\Longrightarrow & \triangle 0 \theta \theta^{\prime} \equiv \triangle 0 \xi \xi^{\prime} \Longrightarrow D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=D_{f}\left[p_{\xi}: p_{\xi^{\prime}}\right]
\end{aligned}
$$

Proof strategy is similar to the one of Theorem 1.

Proposition 2 (explicit formulae)

(i) (Kullback-Leibler) Let $f(u)=-\log u$. Then,

$$
D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=\log \left(\frac{|\theta|}{\left|\theta^{\prime}\right|}\right)-\left|\theta^{\prime}\right|+\frac{\left[\theta, \theta^{\prime}\right]}{[\theta, \theta]}+\frac{\left[\theta, \theta^{\prime}\right]}{|\theta|}-1
$$

(ii) (squared Hellinger) Let $f(u)=(\sqrt{u}-1)^{2} / 2$. Then,

$$
D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=1-\frac{2|\theta|^{1 / 2}\left|\theta^{\prime}\right|^{1 / 2} \exp \left(|\theta| / 2+\left|\theta^{\prime}\right| / 2\right)}{\left|\theta+\theta^{\prime}\right| \exp \left(\left|\theta+\theta^{\prime}\right| / 2\right)}
$$

(iii) (Neyman χ^{2}) Let $f(u):=(u-1)^{2}$. Assume that $2 \theta^{\prime}-\theta \in \Theta_{\mathbb{L}^{2}}$. Then,

$$
D_{f}\left[p_{\theta}: p_{\theta^{\prime}}\right]=\frac{\left|\theta^{\prime}\right|^{2} \exp \left(2\left|\theta^{\prime}\right|\right)}{|\theta|\left|2 \theta^{\prime}-\theta\right| \exp \left(|\theta|+\left|2 \theta^{\prime}-\theta\right|\right)}-1
$$

This corresponds to Proposition 1 for Poincaré distributions.

Correspondence

Proposition 3 (Correspondence between the parameter spaces)

A bijection:

$$
\begin{gathered}
\Theta \longrightarrow \Theta_{\mathbb{L}} \\
\theta:=(a, b, c) \mapsto \theta_{\mathbb{L}}:=(a+c, a-c, 2 b)
\end{gathered}
$$

By this map,
(i) For $\theta, \theta^{\prime} \in \Theta_{\mathbb{H}}$,

$$
\left|\theta_{\mathbb{L}}\right|^{2}=\left[\theta_{\mathbb{L}}, \theta_{\mathbb{L}}\right]=4|\theta|,\left|\theta_{\mathbb{L}}^{\prime}\right|^{2}=\left[\theta_{\mathbb{L}}^{\prime}, \theta_{\mathbb{L}}^{\prime}\right]=4\left|\theta^{\prime}\right|, \quad\left[\theta_{\mathbb{L}}, \theta_{\mathbb{L}}^{\prime}\right]=2|\theta| \operatorname{tr}\left(\theta^{\prime} \theta^{-1}\right)
$$

(ii) For every f and $\theta, \theta^{\prime} \in \mathbb{H}$,

$$
D_{f}^{\mathbb{L}}\left[p_{\theta_{\mathrm{L}}}: p_{\theta_{\mathrm{L}}^{\prime}}\right]=D_{f}^{\mathbb{H}}\left[p_{\theta}: p_{\theta^{\prime}}\right] .
$$

There is also a correspondence between the sample spaces, which is compatible with the above one.

Some references

Barbaresco, F.: Lie group machine learning and Gibbs density on Poincaré unit disk from Souriau Lie groups thermodynamics and SU(1,1) coadjoint orbits. In: International Conference on GSI. pp. 157-170. Springer (2019)

Barndorff-Nielsen, O.: Hyperbolic distributions and distributions on hyperbolae. Scandinavian Journal of Statistics 5, 151-157 (1978)

Eaton, M.L.: Group invariance applications in statistics. Hayward, CA: Institute of Mathematical Statistics; Alexandria, VA: American Statistical Association (1989)

Jensen, J.L.: On the hyperboloid distribution. Scandinavian Journal of Statistics 8, pp. 193-206 (1981)

Sarkar, R.: Low distortion Delaunay embedding of trees in hyperbolic plane, Graph drawing, LNCS 7034, 355-366, (2012)

Tojo, K., Yoshino, T.: An exponential family on the upper half plane and its conjugate prior. In: Workshop on Joint Structures and Common Foundations of Statistical Physics, Information Geometry and Inference for Learning. pp. 84-95. Springer (2020)

