Quasi-arithmetic centers, quasi-arithmetic mixtures, and the Jensen-Shannon ∇-divergences

Frank Nielsen

Sony Computer Science Laboratories Inc
GSI'23

Talk outline, and contributions

Goals:

I. Generalize scalar quasi-arithmetic means to multivariate cases
II. Show that the dually flat spaces of information geometry yields a natural framework for defining and studying this generalization

Outline of the talk:

1. Weighted quasi-arithmetic means
2. Quasi-arithmetic centers and their invariance and equivariance properties
3. Quasi-arithmetic mixtures
4. Jensen-Shannon ∇-divergences

Weighted quasi-arithmetic means (QAMs)

Standard (n-1)-dimensional simplex: $\quad \Delta_{n-1}=\left\{\left(w_{1}, \ldots, w_{n}\right): w_{i} \geq 0, \sum_{i} w_{i}=1\right\}$ Definition (Weighted quasi-arithmetic mean (1930's)). Let $f: I \subset$ $\mathbb{R} \rightarrow \mathbb{R}$ be a strictly monotone and differentiable real-valued function. The weighted quasi-arithmetic mean (QAM) $M_{f}\left(x_{1}, \ldots, x_{n} ; w\right)$ between n scalars $x_{1}, \ldots, x_{n} \in I \subset \mathbb{R}$ with respect to a normalized weight vector $w \in \Delta_{n-1}$, is defined by

$$
M_{f}\left(x_{1}, \ldots, x_{n} ; w\right):=f^{-1}\left(\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)\right) .
$$

QAMs enjoy the in-betweenness property:

$$
\min \left\{x_{1}, \ldots, x_{n}\right\} \leq M_{f}\left(x_{1}, \ldots, x_{n} ; w\right) \leq \max \left\{x_{1}, \ldots, x_{n}\right\}
$$

Quasi-arithmetic means (QAMs)

- Classes of generators $[f]=[g]$ with $f \equiv g$ yieldings the same QAM:

$$
M_{g}(x, y)=M_{f}(x, y) \text { if and only if } g(t)=\lambda f(t)+c \text { for } \lambda \in \mathbb{R} \backslash\{0\}
$$

- So let us fix wlog. strictly increasing and differentiable f since we can always either consider either f or -f (i.e., $\lambda=-1, c=0$).
- QAMs include p-power means for the smooth family of generators $f_{p}(t)$:

$$
M_{p}(x, y):=M_{f_{p}}(x, y) \quad f_{p}(t)=\left\{\begin{array}{l}
\frac{t^{p}-1}{p}, p \in \mathbb{R} \backslash\{0\}, \\
\log (t), p=0 .
\end{array}, \quad f_{p}^{-1}(t)= \begin{cases}(1+t p)^{\frac{1}{p}}, p \in \mathbb{R} \backslash\{0\}, \\
\exp (t), & p=0 .\end{cases}\right.
$$

- Pythagoras means: Harmonic ($p=-1$), Geometric ($p=0$), Arithmetic ($p=1$)
- Homogeneous QAMs $M_{f}(\lambda x, \lambda y)=\lambda M_{f}(x, y)$ for all $\lambda>0$ are exactly p-power means

A generalization of the law of large numbers (LLN) and the central limit theorem (CLT)

- Quasi-arithmetic means for a strictly monotone and smooth function $f(u)$:

$$
\left.M_{f}\left(x_{1}, \ldots, x_{n}\right)=f^{-1}\left(\sum_{i=1}^{n} f\left(x_{i}\right)\right)\right)
$$

- Quasi-arithmetic expected value of a random variable X:

$$
\mathbb{E}_{f}[X]=f^{-1}(\mathbb{E}[f(X)])
$$

- Law of large numbers for an iid random vector with variance $\mathrm{V}[\mathrm{X}]<\infty$:

$$
M_{f}\left(X_{1}, \ldots, X_{n}\right) \quad \xrightarrow{\text { a.s. }} \mathbb{E}_{f}[X]
$$

- Central limit theorem: $\sqrt{n}\left(M_{f}\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}_{f}[X]\right) \xrightarrow{d} N\left(0, \frac{\mathbb{V}[f(X)]}{\left(f^{\prime}\left(\mathbb{E}_{f}[X]\right)\right)^{2}}\right)$

Quasi-Arithmetic Centers (QACs) = Multivariate QAMs:

Univariate QAMs: $\quad M_{f}\left(x_{1}, \ldots, x_{n} ; w\right):=f^{-1}\left(\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)\right)$
Two problems we face when going from univariate to multivariate cases:

1. Define the proper notion of "multivariate increasing" function F and its equivalent class of functions
2. In general, the implicit function theorem only proves locally and inverse function F^{-1} of $\mathrm{F}: \mathrm{R}^{\mathrm{d}} \rightarrow \mathrm{R}^{\mathrm{d}}$ provided its Jacobian matrix is not singular

Information geometry provides the right framework to generalize QAMs to quasi-arithmetic centers (QACs) and study their properties.
Consider the dually flat spaces of information geometry

Legendre-type functions

$\Gamma_{0}(E)$: Cone of lower semi-continuous (lsc) convex functions from E into $\mathbb{R} \cup\{+\infty\}$
Legendre-Fenchel transformation of a convex function: $\quad F^{*}(\eta):=\sup _{\theta \in \Theta}\left\{\theta^{\top} \eta-F(\theta)\right\}$
Problem: Domain H of η may not be convex...

$$
F^{*} \in \Gamma_{0}(E) \quad F^{* *}=F
$$ counterexample with $h\left(\xi_{1}, \xi_{2}\right)=\left[\left(\xi_{1}{ }^{2} / \xi_{2}\right)+\xi_{1}{ }^{2}+\xi_{2}{ }^{2}\right] / 4$

To by pass this problem:
Definition Legendre type function $\quad(\Theta, F)$ is of Legendre type if the function $F: \Theta \subset \mathbb{X} \rightarrow \mathbb{R}$ is strictly convex and differentiable with $\Theta \neq \emptyset$ an open convex set and

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \frac{d}{\mathrm{~d} \lambda} F(\lambda \theta+(1-\lambda) \bar{\theta})=-\infty, \quad \forall \theta \in \Theta, \forall \bar{\theta} \in \partial \Theta \tag{1}
\end{equation*}
$$

Convex conjugate of a Legendre-type function $(\theta, F(\theta))$ is of Legendre-type:
Given by the Legendre function: $\quad F^{*}(\eta)=\left\langle\nabla F^{-1}(\eta), \eta\right\rangle-F\left(\nabla F^{-1}(\eta)\right)$
Gradient map ∇F is globally invertible: ∇F^{-1}

Comonotone functions in inner product spaces

- Comonotone functions: $\forall \theta_{1}, \theta_{2} \in \mathbb{X}, \theta_{1} \neq \theta_{2}, \quad\left\langle\theta_{1}-\theta_{2}, G\left(\theta_{1}\right)-G\left(\theta_{2}\right)\right\rangle>0$ (i.e., comonotone $=$ monotone with respect to the identity function)

Proposition (Gradient co-monotonicity). The gradient functions $\nabla F(\theta)$ and $\nabla F^{*}(\eta)$ of the Legendre-type convex conjugates F and F^{*} in \mathcal{F} are strictly increasing co-monotone functions.

Proof using symmetrization of Bregman divergences = Jeffreys-Bregman divergence:

$$
\begin{aligned}
B_{F}\left(\theta_{1}: \theta_{2}\right)+B_{F}\left(\theta_{2}: \theta_{1}\right) & =\left\langle\theta_{2}-\theta_{1}, \nabla F\left(\theta_{2}\right)-\nabla F\left(\theta_{1}\right)\right\rangle>0, \quad \forall \theta_{1} \neq \theta_{2} \\
B_{F^{*}}\left(\eta_{1}: \eta_{2}\right)+B_{F^{*}}\left(\eta_{2}: \eta_{1}\right) & =\left\langle\eta_{2}-\eta_{1}, \nabla F^{*}\left(\eta_{2}\right)-\nabla F^{*}\left(\eta_{1}\right)\right\rangle>0, \quad \forall \eta_{1} \neq \eta_{2}
\end{aligned}
$$

because Bregman divergences(and sums thereof) are always non-negative

$$
\begin{aligned}
B_{F}\left(\theta_{1}: \theta_{2}\right) & =F\left(\theta_{1}\right)-F\left(\theta_{2}\right)-\left\langle\theta_{1}-\theta_{2}, \nabla F\left(\theta_{2}\right)\right\rangle \geq 0, \\
B_{F^{*}}\left(\eta_{1}: \eta_{2}\right) & =F^{*}\left(\eta_{1}\right)-F^{*}\left(\eta_{2}\right)-\left\langle\eta_{1}-\eta_{2}, \nabla F^{*}\left(\eta_{2}\right)\right\rangle \geq 0 .
\end{aligned}
$$

Remark: Generalization of monotonicity because when $d=1, f(x)$ is strictly monotone iff $f\left(x_{1}\right)-f\left(x_{2}\right)$ is of same sign of $x_{1}-x_{2}$ that is, $\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\left(x_{1}-x_{2}\right)>0$

Quasi-arithmetic centers: Definition generalizing QAMs

Definition (Quasi-arithmetic centers, QACs)). Let $F: \Theta \rightarrow \mathbb{R}$ be a strictly convex and smooth real-valued function of Legendre-type in \mathcal{F}. The weighted quasi-arithmetic average of $\theta_{1}, \ldots, \theta_{n}$ and $w \in \Delta_{n-1}$ is defined by the gradient map ∇F as follows:

$$
\begin{aligned}
M_{\nabla F}\left(\theta_{1}, \ldots, \theta_{n} ; w\right) & :=\nabla F^{-1}\left(\sum_{i} w_{i} \nabla F\left(\theta_{i}\right)\right), \\
& =\nabla F^{*}\left(\sum_{i} w_{i} \nabla F\left(\theta_{i}\right)\right),
\end{aligned}
$$

where $\nabla F^{*}=(\nabla F)^{-1}$ is the gradient map of the Legendre transform F^{*} of F.
This definition generalizes univariate quasi-arithmetic means : $\quad M_{f}\left(x_{1}, \ldots, x_{n} ; w\right):=f^{-1}\left(\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)\right)$

$$
\text { Let } F(t)=\int_{a}^{t} f(u) \mathrm{d} u
$$

$$
\text { Then we have } \quad M_{f}=M_{F^{\prime}}
$$

An illustrating example: The matrix harmonic mean

- Consider the real-value minus logdet function $\quad F(\theta)=-\log \operatorname{det}(\theta)$
- Domain $\mathrm{F}: \quad \operatorname{Sym}_{++}(d) \rightarrow \mathbb{R}$ the cone of symmetric positive-definite matrices
- Inner product: $\langle A, B\rangle:=\operatorname{tr}\left(A B^{\top}\right)$
- We have:

$$
\begin{aligned}
F(\theta) & =-\log \operatorname{det}(\theta), \\
\nabla F(\theta) & =-\theta^{-1}=: \eta(\theta), \\
\nabla F^{-1}(\eta) & =-\eta^{-1}=: \theta(\eta)
\end{aligned}
$$

$$
\leftarrow \text { Legendre-type function }
$$

$$
F^{*}(\eta)=\langle\theta(\eta), \eta\rangle-F(\theta(\eta))=-d-\log \operatorname{det}(-\eta) \quad \leftarrow \text { Legendre-type function }
$$

The quasi-arithmetic center with respect to $\mathrm{F}: \quad M_{\nabla F}\left(\theta_{1}, \theta_{2}\right)=2\left(\theta_{1}^{-1}+\theta_{2}^{-1}\right)^{-1}$ The quasi-arithmetic center with respect to $\mathbf{F}^{*}: \quad M_{\nabla F^{*}}\left(\eta_{1}, \eta_{2}\right)=2\left(\eta_{1}^{-1}+\eta_{2}^{-1}\right)^{-1}$ Generalize univariate harmonic mean with $\mathrm{F}(\mathrm{x})=\log \mathrm{x}, \mathrm{f}(\mathrm{x})=\mathrm{F}^{\prime}(\mathrm{x})=1 / \mathrm{x}: \quad H(a, b)=\frac{2 a b}{a+b}$ for $a, b>0$

A Legendre-type function F gives rise to a pair of dual quasi-arithmetic centers

 $\mathrm{M}_{\nabla \mathrm{F}}$ and $\mathrm{M}_{\nabla \mathrm{F}^{*}}$: dual operators
Dually flat structures of information geometry

- A Legendre-type Bregman generator F() induces a dually flat space structure:

$$
\left(\Theta, g(\theta)=\nabla_{\theta}^{2} F(\theta), \nabla, \nabla^{*}\right)
$$

- A point P can be either parameterized by θ-coordinate and dual η-coordinate

Quasi-arithmetic barycenters and dual geodesics

- The dual geodesics induced by the dual flat connections can be expressed using dual weighted quasi-arithmetic centers:
∇-geodesic $\gamma_{\nabla}(P, Q ; t)=(P Q)^{\nabla}(t)$

n-Variable Quasi-arithmetic centers as centroids in duallv flat spaces

Consider n points P_{1}, \ldots, P_{n} on the $\operatorname{DFS}\left(M, g, \nabla, \nabla^{*}\right) \quad$ (canonical divergence $=$ Bregman divergence)

Right-sided centroid:

$\bar{C}_{R}=\arg \min _{P \in M} \sum_{i=1}^{n} \frac{1}{n} D_{\nabla, \nabla^{*}}\left(P_{i}: P\right)$

$$
\bar{\theta}_{R}=\arg \min _{\theta} \frac{1}{n} \sum_{i=1}^{n} B_{F}\left(\theta_{i}: \theta\right)
$$

$\bar{\theta}_{R}=\theta\left(\bar{C}_{R}\right)=\frac{1}{n} \sum_{i=1}^{n} \theta_{i}=M_{\mathrm{id}}\left(\theta_{1}, \ldots, \theta_{n}\right)$
$\bar{\eta}_{R}=\nabla F\left(\bar{\theta}_{R}\right)=M_{\nabla F^{*}}\left(\eta_{1}, \ldots, \eta_{n}\right) . \leftarrow$ dual QAC
$P_{i}\binom{\theta_{i}}{\eta_{i}}$

$\left(M, g, \nabla, \nabla^{*}\right)$

D Left-sided centroid:

$\bar{C}_{L}=\arg \min _{P \in M} \sum_{i=1}^{n} \frac{1}{n} D_{\nabla, \nabla^{*}}\left(P: P_{i}\right)$

$$
\bar{\theta}_{L}=\arg \min _{\theta} \frac{1}{n} \sum_{i=1}^{n} B_{F}\left(\theta: \theta_{i}\right)
$$

$$
\begin{aligned}
\bar{\theta}_{L} & =M_{\nabla F}\left(\theta_{1}, \ldots, \theta_{n}\right), \quad \leftarrow \text { primal QAC } \\
\bar{\eta}_{L} & =\nabla F\left(\bar{\theta}_{L}\right)=M_{\mathrm{id}}\left(\eta_{1}, \ldots, \eta_{n}\right)
\end{aligned}
$$

Notice that when $\mathrm{n}=2$, weighted dual quasi-arithmetic barycenters define the dual geodesics

Invariance/equivariance of quasi-arithmetic centers

Information geometry is well-suited to study the properties of QACs:
A dually flat space (DFS) can be realized by a class of Bregman generators:

$$
\left(M, g, \nabla, \nabla^{*}\right) \leftarrow \operatorname{DFS}\left(\left[\theta, F(\theta) ; \eta, F^{*}(\eta)\right]\right)
$$

Affine Legendre invariance of dually flat spaces:

- By adding an affine term...

Same DFS with $\bar{F}(\theta)=F(\theta)+\langle c, \theta\rangle+d$.

Invariance of quasi-arithmetic center:

$$
M_{\nabla \bar{F}}\left(\theta_{1}, \ldots ; \theta_{n} ; w\right)=M_{\nabla F}\left(\theta_{1}, \ldots ; \theta_{n} ; w\right)
$$

- By an affine change of coordinate... Same DFS with $\quad \bar{\theta}=A \theta+b$ such that $\bar{F}(\bar{\theta})=F(\theta)$

$$
\begin{aligned}
& \nabla \bar{F}(x)=\left(A^{-1}\right)^{\top} \nabla F\left(A^{-1}(x-b)\right) \square M_{\nabla \bar{F}}\left(\bar{\theta}_{1}, \ldots, \bar{\theta}_{n} ; w\right)=A M_{\nabla F}\left(\theta_{1}, \ldots, \theta_{n} ; w\right)+b \\
& B_{\bar{F}\left(\overline{\theta_{1}}: \overline{\theta_{2}}\right)}=B_{F}\left(\theta_{1}: \theta_{2}\right) \quad \begin{array}{l}
\text { Same canonical divergence of the DFS } \\
\text { (= constrast function on the diagonal of the product manifold) }
\end{array}
\end{aligned}
$$

Canonical divergence versus Legendre-Fenchel/Bregman divergences

- Canonical divergence induced by dual flat connections is between points
- dual Bregman divergences B_{F} and B_{F} between dual coordinates
- Legendre-Fenchel divergence Y_{F} between mixed coordinates

$$
\begin{gathered}
F(\theta)+F^{*}(\eta)-\langle\theta, \eta\rangle=0 \quad \eta=\nabla F(\theta) \\
B_{F}\left(\theta_{1}: \theta_{2}\right):=F\left(\theta_{1}\right)-\underbrace{F\left(\theta_{2}\right)}_{=\left\langle\theta_{2}, \eta_{2}\right\rangle-F^{*}\left(\eta_{2}\right)}-\left\langle\theta_{1}-\theta_{2}, \nabla F\left(\eta_{2}\right)\right\rangle \\
=F\left(\theta_{1}\right)+F^{*}\left(\eta_{2}\right)-\left\langle\theta_{1}, \eta_{2}\right\rangle=: Y_{F}\left(\theta_{1}: \eta_{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
\left(M, g, \nabla, \nabla^{*}\right) & \leftarrow \operatorname{DFS}\left(\left[\Theta, F(\theta), H, F^{*}(\eta)\right]\right) \\
& \leftarrow \operatorname{DFS}\left(\left[\bar{\Theta}, \bar{F}(\bar{\theta}), \bar{H}, \bar{F}^{*}(\bar{\eta})\right]\right) \\
>D_{\nabla, \nabla^{*}}\left(P_{1}: P_{2}\right) & =B_{F}\left(\theta_{1}: \theta_{2}\right)=B_{F^{*}}\left(\eta_{1}, \eta_{2}\right)=Y_{F}\left(\theta_{1}: \eta_{2}\right)=Y_{F^{*}}\left(\eta_{2}: \theta_{1}\right) \\
& =B_{\bar{F}}\left(\overline{\theta_{1}}: \overline{\theta_{2}}\right)=B_{\bar{F}^{*}}\left(\overline{\eta_{1}}, \overline{\eta_{2}}\right)=Y_{F}\left(\overline{\theta_{1}}: \overline{\eta_{2}}\right)=Y_{F^{*}}\left(\overline{\eta_{2}}: \overline{\theta_{1}}\right)
\end{aligned}
$$

Affine Legendre invariance of dually flat spaces plus setting the unit scale of divergences

- Affine Legendre invariance:

$$
\begin{aligned}
& \bar{F}(\bar{\theta})=F(A \theta+b)+\langle c, \theta\rangle+d \\
& \bar{F}^{*}(\bar{\eta})=F^{*}\left(A^{*} \eta+\dot{b}^{*}\right)+\left\langle c^{*}, \eta\right\rangle+\dot{d}^{*}
\end{aligned}
$$

- Set the unit scale of canonical divergence (DFS differ here, rescaled): (does not change the quasi-arithmetic center) $\quad D_{\lambda, \nabla, \nabla^{*}}:=\lambda D_{\nabla, \nabla^{*}}$ amount to scale the potential function $\lambda F(\theta)$ vs $F(\theta)$

Proposition (Invariance and equivariance of QACs). Let $F(\theta)$ be a function of Legendre type. Then $\bar{F}(\bar{\theta}):=\lambda(F(A \theta+b)+\langle c, \theta\rangle+d)$ for $A \in \mathrm{GL}(d)$, $b, c \in \mathbb{R}^{d}, d \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}_{>0}$ is a Legendre-type function, and we have

$$
M_{\nabla \bar{F}}=A M_{\nabla F}+b .
$$

Illustrating example: Mahalanobis divergence

- Mahalanobis divergence = squared Mahalanobis metric distance

$$
\Delta^{2}\left(\theta_{1}, \theta_{2}\right)=B_{F_{Q}}\left(\theta_{1}: \theta_{2}\right)=\frac{1}{2}\left(\theta_{2}-\theta_{1}\right)^{\top} Q\left(\theta_{2}-\theta_{1}\right)
$$

fails triangle inequality
of metric distances

Primal potential function: $\quad F_{Q}(\theta)=\frac{1}{2} \theta^{\top} Q \theta+c \theta+\kappa$
Dual potential function: $\quad F^{*}(\eta)=\frac{1}{2} \eta^{\top} Q^{-1} \eta=F_{Q^{-1}}(\eta)$,

- The dual QACs induced by the dual Mahalanobis generators F and F^{*} coincide to weighted arithmetic mean M_{id} :

$$
\begin{aligned}
& M_{\nabla F_{Q}}\left(\theta_{1}, \ldots, \theta_{n} ; w\right)=Q^{-1}\left(\sum_{i=1}^{n} w_{i} Q \theta_{i}\right)=\sum_{i=1}^{n} w_{i} \theta_{i}=M_{\mathrm{id}}\left(\theta_{1}, \ldots, \theta_{n} ; w\right) \\
& M_{\nabla F_{Q}^{*}}\left(\eta_{1}, \ldots, \eta_{n} ; w\right)=Q\left(\sum_{i=1}^{n} w_{i} Q^{-1} \eta_{i}\right)=M_{\mathrm{id}}\left(\eta_{1}, \ldots, \eta_{n} ; w\right) .
\end{aligned}
$$

Quasi-arithmetic mixtures (OAMixs), and α-mixtures

Definition . The M_{f}-mixture of n densities p_{1}, \ldots, p_{n} weighted by $w \in \Delta_{n}^{\circ}$ is defined by

$$
\left(p_{1}, \ldots, p_{n} ; w\right)^{M_{f}}(x):=\frac{M_{f}\left(p_{1}(x), \ldots, p_{n}(x) ; w\right)}{\int M_{f}\left(p_{1}(x), \ldots, p_{n}(x) ; w\right) \mathrm{d} \mu(x)}
$$

Centroid of n densities with respect to the α-divergences yields a QAMix:

$$
\left(p_{1}, \ldots, p_{n} ; w\right)^{M_{\alpha}}=\arg \min _{p} \sum_{i} w_{i} D_{\alpha}\left(p_{i}, p\right)
$$

D_{α} denotes the α-divergences:

$$
\begin{aligned}
& D_{\alpha}[m(s): l(s)] \\
& = \begin{cases}\int m(s) d s-\int l(s) d s+\int m(s) \log \frac{m(s)}{l(s)} d s & \alpha=-1 \\
\int l(s) d s-\int m(s) d s+\int l(s) \log \frac{l(s)}{m(s)} d s+\int l(s) \log \frac{l(s)}{m(s)} d s & \alpha=1 \\
\frac{2}{1+\alpha} \int m(s) d s+\frac{2}{1-\alpha} \int l(s) d s-\frac{4}{1-\alpha^{2}} \int m(s)^{\frac{1-\alpha}{2}} l(s)^{\frac{1 m}{2}} d s, & \alpha \neq \pm 1 .\end{cases}
\end{aligned}
$$

$\mathrm{k}=2$ QAMixs and the ∇-Jensen-Shannon divergence

- Jensen-Shannon divergence is bounded symmetrization of KL divergence:

$$
D_{\mathrm{JS}}(p, q)=\frac{1}{2}\left(D_{\mathrm{KL}}\left(p: \frac{p+q}{2}\right)+D_{\mathrm{KL}}\left(q: \frac{p+q}{2}\right)\right) \leq \log (2)
$$

- Interpret arithmetic mixture as the midpoint of a mixture geodesic (wrt to the flat non-parametric mixture connection ∇^{m} in information geometry).
- Generalize Jensen-Shannon divergence with arbitrary ∇-connections:

Definition (Affine connection-based ∇-Jensen-Shannon divergence). Let ∇ be an affine connection on the space of densities \mathcal{P}, and $\gamma_{\nabla}(p, q ; t)$ the geodesic linking density $p=\gamma_{\nabla}(p, q ; 0)$ to density $q=\gamma_{\nabla}(p, q ; 1)$. Then the ∇ -Jensen-Shannon divergence is defined by:

$$
D_{\nabla}^{\mathrm{JS}}(p, q):=\frac{1}{2}\left(D_{\mathrm{KL}}\left(p: \gamma_{\nabla}\left(p, q ; \frac{1}{2}\right)\right)+D_{\mathrm{KL}}\left(q: \gamma_{\nabla}\left(p, q ; \frac{1}{2}\right)\right)\right) .
$$

∇^{α}-connections and geodesics in the probability simplex, ∇^{α}-Jensen-Shannon divergence

$$
D_{\nabla^{\alpha}}^{\mathrm{JS}}(p, q)=\frac{1}{2}\left(D_{\mathrm{KL}}\left(p: \gamma_{\nabla^{\alpha}}\left(p, q ; \frac{1}{2}\right)\right)+D_{\mathrm{KL}}\left(q: \gamma_{\nabla^{\alpha}}\left(p, q ; \frac{1}{2}\right)\right)\right)
$$

α-geodesics coincide when they pass through a standard simplex vertex

degenerate
grateful for fruitful discussions with Fábio Meneghetti and Sueli Costa

Inductive Means: Geodesics/quasi-arithmetic centers

- Gauss and Lagrange independently studied the following convergence of pairs of iterations:

$$
\begin{aligned}
a_{t+1} & =\frac{a_{t}+b_{t}}{2} \\
b_{t+1} & =\sqrt{a_{t} b_{t}}
\end{aligned}
$$

$$
\operatorname{AGM}\left(a_{0}, b_{0}\right)=\frac{\pi}{4} \frac{a_{0}+b_{0}}{K\left(\frac{a_{0}-b_{0}}{a_{0}+b_{0}}\right)}
$$

where K is complete elliptic integral of the first kind AGM also used to approximate ellipse perimeter and π

- In general, choosing two strict means M and M^{\prime} with interness property will converge but difficult to analytically express the common limits of iterations
- When $M=A r i t h m e t i c ~ a n d ~ M '=H a r m o n i c, ~ t h e ~ a r i t h m e t i c-h a r m o n i c ~ m e a n ~ A H M ~$ yields the geometric mean:

$$
\begin{aligned}
a_{t+1} & =A\left(a_{t}, h_{t}\right) \\
h_{t+1} & =H\left(a_{t}, h_{t}\right)
\end{aligned}
$$

$$
\operatorname{AHM}(x, y)=\lim _{t \rightarrow \infty} a_{t}=\lim _{t \rightarrow \infty} h_{t}=\sqrt{x y}=G(x, y)
$$

Inductive matrix arithmetic-harmonic mean

- Consider the cone of symmetric positive-definite matrices (SPD cone), and extend the AHM to SPD matrices:

$$
\begin{array}{ll}
A_{t+1}=\frac{A_{t}+H_{t}}{2}=A\left(A_{t}, H_{t}\right) & \text { ↔arithmetic mean } \\
H_{t+1}=2\left(A_{t}^{-1}+H_{t}^{-1}\right)^{-1}=H\left(A_{t}, H_{t}\right) & \leftarrow \text { ↔harmonic mean }
\end{array}
$$

- Then the sequences converge quadratically to the matrix geometric mean:
$\operatorname{AHM}(X, Y)=\lim _{t \rightarrow+\infty} A_{t}=\lim _{t \rightarrow+\infty} H_{t}$.

$$
\operatorname{AHM}(X, Y)=X^{\frac{1}{2}}\left(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}\right)^{\frac{1}{2}} X^{\frac{1}{2}}=G(X, Y)
$$

which is also the Riemannian center of mass with respect to the trace metric:

$$
G(X, Y)=\arg \min _{M \in \mathbb{P}(d)} \frac{1}{2} \rho^{2}(X, M)+\frac{1}{2} \rho^{2}(Y, M) . \quad \rho\left(P_{1}, P_{2}\right)=\sqrt{\sum_{i=1}^{d} \log ^{2} \lambda_{i}\left(P_{1}^{-\frac{1}{2}} P_{2} P_{1}^{-\frac{1}{2}}\right)} \quad \text { Riemannian distance }
$$

$$
g_{P}\left(V_{1}, V_{2}\right)=\operatorname{tr}\left(P^{-1} V_{1} P^{-1} V_{2}\right)
$$

Geometric interpretation of the AHM matrix mean

$$
\begin{aligned}
& A_{t+1}=\frac{A_{t}+H_{t}}{2}=A\left(A_{t}, H_{t}\right) \\
& H_{t+1}=2\left(A_{t}^{-1}+H_{t}^{-1}\right)^{-1}=H\left(A_{t}, H_{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{t+1}=\gamma\left(P_{t}, Q_{t}: \frac{1}{2}\right) \\
& Q_{t+1}=\gamma^{*}\left(P_{t}, Q_{t}: \frac{1}{2}\right)
\end{aligned}
$$

(SPD, $\mathrm{g}^{\mathrm{G}}, \nabla^{\mathrm{A}}, \nabla^{\mathrm{H}}$) is a dually flat space, ∇^{G} is Levi-Civita connection

$$
H_{\alpha}(P, Q)=\left((1-\alpha) P^{-1}+\alpha Q^{-1}\right)^{-1}
$$

$G_{\alpha}(P, Q)=P^{\frac{1}{2}}\left(P^{-\frac{1}{2}} Q P^{-\frac{1}{2}}\right)^{\alpha} P^{\frac{1}{2}}$
Dually flat space (SPD, $g^{G}, \nabla^{\mathrm{A}}, \nabla^{\mathrm{H}}$) in information geometry defines quasi-arithmetic centers as geodesic midpoints

Primal geodesic midpoint is the arithmetic center wrt Euclidean metric $g_{P}^{A}(X, Y)=\operatorname{tr}\left(X^{\top} Y\right)$ Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric $g_{P}^{H}(X, Y)=\operatorname{tr}\left(P^{-2} X P^{-2} Y\right)$ Levi-Civita geodesic midpoint is geometric Karcher mean (not QAC)

Summary: Beyond scalar quasi-arithmetic means

Information geometry of dually flat spaces yields a generalization of quasi-arithmetic means:

$$
M_{f}\left(x_{1}, \ldots, x_{n} ; w\right):=f^{-1}\left(\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)\right)
$$

- 1d monotone function generalize to gradient map of a Legendre-type multivatiate function (comonotone)

$$
M_{\nabla F}\left(\theta_{1}, \ldots, \theta_{n} ; w\right):=\nabla F^{-1}\left(\sum_{i} w_{i} \nabla F\left(\theta_{i}\right)\right) \quad \text { dual quasi-arithmetic centers }
$$

Applications of QACs:

$$
=\nabla F^{*}\left(\sum_{i} w_{i} \nabla F\left(\theta_{i}\right)\right)
$$

induced by a Legendre-type function

- dual centers of mass of $n \geq 2$ points expressed using weighted quasi-arithmetic centers
- dual geodesics expressed in coordinate systems as weighted quasi-arithmetic centers ($n=2$)
- invariance/equivariance analyzed from the viewpoint of information geometry

$$
\bar{F}(\bar{\theta}):=\lambda(F(A \theta+b)+\langle c, \theta\rangle+d) \Longleftrightarrow M_{\nabla \bar{F}}=A M_{\nabla F}+b .
$$

- define quasi-arithmetic mixtures which provides a way to integrate density components
- define ∇-Jensen-Shannon divergences
- Inductive arithmetic-harmonic geometric matrix mean expressed using QACs
- Amari, Shun-ichi: Information Geometry and Its Applications. Applied Mathematical Sciences, Springer Japan (2016)
- Masrani, V., Brekelmans, R., Bui, T., Nielsen, F., Galstyan, A., Ver Steeg, G., Wood, F.: q-paths: Generalizing the geometric annealing path using power means. In: Uncertainty in Articial Intelligence. pp. 1938-1947. PMLR (2021)
- Nakamura, Y.: Algorithms associated with arithmetic, geometric and harmonic means and integrable systems. Journal of computational and applied mathematics 131(1-2), 161174 (2001)
- Rockafellar, R.T.: Conjugates and Legendre transforms of convex functions. Canadian Journal of Mathematics 19, 200205 (1967)
- Zhang, J.: Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 15(12), 5384-5418 (2013)
- Nielsen, Frank. "The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.
- Atteia, Marc, and Mustapha Raïssouli. "Self dual operators on convex functionals: Geometric mean and square root of convex functionals." Journal of Convex Analysis 8.1 (2001): 223-240.
- Ben-Tal, A., Charnes, A., Teboulle, M.: Entropic means. Journal of Mathematical Analysis and Applications 139(2), 537551 (1989)
- Amari, Shun-ichi: Integration of stochastic models by minimizing -divergence. Neural computation 19(10), 27802796 (2007)
- Nielsen, F.: On the Jensen-Shannon symmetrization of distances relying on abstract means. Entropy 21(5), 485 (2019)

