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Talk outline, and contributions
Goals:

I. Generalize scalar quasi-arithmetic means to multivariate cases

II. Show that the dually flat spaces of information geometry yields a natural 
framework for defining and studying this generalization

Outline of the talk:

1. Weighted quasi-arithmetic means

2. Quasi-arithmetic centers and their invariance and equivariance properties

3. Quasi-arithmetic mixtures

4. Jensen-Shannon ∇-divergences

examples of
α-geodesics

with midpoints
in the 

probability simplex



Weighted quasi-arithmetic means (QAMs)

Standard (n-1)-dimensional simplex:

QAMs enjoy the in-betweenness property:

[Kolmogorov 1930] [Nagumo 1930] [De Finetti 1931]



Quasi-arithmetic means (QAMs)

• Classes of generators [f]=[g] with f ≡ g yieldings the same QAM:

• So let us fix wlog.  strictly increasing and differentiable f since  we can always 
either consider either f or -f (i.e., λ=-1, c=0). 

• QAMs include p-power means for the smooth family of generators fp(t):

• Pythagoras means: Harmonic (p=-1), Geometric (p=0), Arithmetic (p=1)

• Homogeneous QAMs     s are exactly p-power means 



A generalization of the law of large numbers (LLN) 
and the central limit theorem (CLT)

• Quasi-arithmetic means for a strictly monotone and smooth function f(u):

• Quasi-arithmetic expected value of a random variable X:

• Law of large numbers for an iid random vector with variance V[X]<∞:

• Central limit theorem:
Miguel De Carvalho. Mean, what do you mean? The American Statistician, 70(3):270-274, 2016.



Quasi-Arithmetic Centers (QACs) = Multivariate QAMs:

Two problems we face when going from univariate to multivariate cases:

1. Define the proper notion of "multivariate increasing" function F and its 
equivalent class of functions

2. In general, the implicit function theorem only proves locally and inverse 
function F-1 of F: Rd → Rd provided its Jacobian matrix is not singular

Univariate QAMs:

Information geometry provides the right framework to generalize QAMs to 
quasi-arithmetic centers (QACs) and study their properties.

Consider the dually flat spaces of information geometry



Legendre-type functions

Convex conjugate of a Legendre-type function (ϴ,F(θ)) is of Legendre-type:

Given by the Legendre function:

[Rockafeller 1967]

Legendre-Fenchel transformation of a  convex function:

Problem: Domain H of η may not be convex...
counterexample with

To by pass this problem:

Gradient map ∇F is globally invertible: ∇F-1



• Comonotone functions:

(i.e., comonotone = monotone with respect to the identity function)

Comonotone functions in inner product spaces

Proof using symmetrization of  Bregman divergences = Jeffreys-Bregman divergence:

because Bregman divergences(and sums thereof) are always non-negative

Remark: Generalization of monotonicity because when d=1,  f(x) is strictly monotone iff
f(x1)-f(x2) is of  same sign of x1-x2 that is,  (f(x1)-f(x2)) (x1-x2)>0



Quasi-arithmetic centers: Definition generalizing QAMs

This definition generalizes univariate quasi-arithmetic means : 

Then we have

Let



An illustrating example: The matrix harmonic mean
• Consider the real-value minus logdet function

• Domain F:                                the cone of symmetric  positive-definite matrices 

• Inner product: 

• We have:

The quasi-arithmetic center with respect to  F:  

Generalize univariate harmonic mean with F(x)= log x, f(x)=F'(x)=1/x:

←Legendre-type function

The quasi-arithmetic center with respect to  F*:  

←Legendre-type function

A Legendre-type function F gives rise to a pair of dual quasi-arithmetic centers

M∇F and M∇F* : dual operators



Dually flat structures of information geometry
• A Legendre-type Bregman generator F() induces a dually flat space structure: 

• A point P can be either parameterized by θ-coordinate and dual η-coordinate

[AMS 2022]



Quasi-arithmetic barycenters and dual geodesics

• The dual geodesics induced by the dual flat connections can be expressed 
using dual weighted quasi-arithmetic centers:

←primal QAC M∇F

←dual QAC  M∇F*



n-Variable Quasi-arithmetic centers as centroids
in dually flat spaces

Right-sided centroid: Left-sided centroid:

Consider (canonical divergence = Bregman divergence)

←primal QAC

←dual QAC

Notice that when n=2, weighted dual 
quasi-arithmetic barycenters
define the dual geodesics
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• By adding an affine term...

• By an affine change of coordinate...

Invariance/equivariance of quasi-arithmetic centers
Information geometry is well-suited to study the properties of QACs:
A dually flat space (DFS) can be realized by a class of Bregman generators:

Affine Legendre invariance of dually flat spaces:
Invariance of quasi-arithmetic center:

Equivariance of quasi-arithmetic center:

Same DFS with 

Same DFS with such that 

Same canonical divergence of the DFS 
(= constrast function on the diagonal of the product manifold)



Canonical divergence versus 
Legendre-Fenchel/Bregman divergences

• Canonical divergence induced by dual flat connections is between points

• dual Bregman divergences BF and BF* between dual coordinates

• Legendre-Fenchel divergence YF between mixed coordinates



Affine Legendre invariance of dually flat spaces    
plus setting the unit scale of divergences

• Affine Legendre invariance: 

• Set the unit scale of canonical divergence (DFS differ here, rescaled):

(does not change the quasi-arithmetic center)  

amount to scale the potential function λF(θ) vs F(θ)



Illustrating example: Mahalanobis divergence
• Mahalanobis divergence = squared Mahalanobis metric distance

• The dual QACs induced by the dual Mahalanobis generators F and F* 
coincide to weighted arithmetic mean Mid: 

Primal potential function:

Dual potential function:

fails triangle inequality
of metric distances



Quasi-arithmetic mixtures (QAMixs), and α-mixtures

Dα denotes the α-divergences:

Centroid of n densities with respect to the α-divergences yields a QAMix: 

[Amari 2007]α-families of probability distributions [arXiv:2209.07481]



k=2 QAMixs  and the ∇-Jensen-Shannon divergence
• Jensen-Shannon divergence is bounded symmetrization of KL divergence:

• Interpret arithmetic mixture as the midpoint of a mixture geodesic (wrt to 
the flat non-parametric mixture connection ∇m in  information geometry).

• Generalize Jensen-Shannon divergence with arbitrary ∇-connections:

≤ log(2)



∇α-connections and geodesics in the probability 
simplex, ∇α-Jensen-Shannon divergence



α-geodesics coincide when they pass through 
a standard simplex vertex

grateful for fruitful discussions with Fábio Meneghetti and Sueli Costa
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Inductive Means: Geodesics/quasi-arithmetic centers
• Gauss and Lagrange independently studied the following convergence of pairs 

of iterations:

• In general, choosing two strict means M and M' with interness property will 
converge but difficult to analytically express the common limits of iterations

• When M=Arithmetic and M'=Harmonic, the arithmetic-harmonic mean AHM 
yields the geometric mean:

and proves quadratic convergence to
the arithmetic-geometric mean AGM 

where K is complete elliptic integral of the first kind
AGM also used to approximate ellipse perimeter and 𝜋



• Consider the cone of symmetric positive-definite matrices (SPD cone), and 
extend the AHM to SPD matrices:

• Then the sequences converge quadratically to the matrix geometric mean:

Inductive matrix arithmetic-harmonic mean 

which is also the Riemannian center of mass with respect to the trace metric:

←arithmetic mean 

←harmonic mean 

Riemannian distance

[Nakamura 2001, Atteia-Raissouli 2001 ]



Geometric interpretation of the AHM matrix mean

Primal geodesic midpoint is the arithmetic center  wrt Euclidean metric
Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric
Levi-Civita geodesic midpoint is geometric Karcher mean (not QAC)  

Dually flat space (SPD, gG, ∇A, ∇H) 
in information geometry defines
quasi-arithmetic centers as geodesic midpoints

[Nakamura 2001]

(SPD, gG, ∇A, ∇H) is a dually flat space,  ∇G is Levi-Civita connection



Summary: Beyond scalar quasi-arithmetic means  
Information geometry of dually flat spaces yields  a generalization of quasi-arithmetic means:

• 1d monotone function generalize to gradient map of a Legendre-type multivatiate function 
(comonotone)

• dual centers of mass of n≥2 points expressed using weighted quasi-arithmetic centers  
• dual geodesics expressed in coordinate systems as weighted quasi-arithmetic centers (n=2)
• invariance/equivariance analyzed from the viewpoint of information geometry

• define quasi-arithmetic mixtures which provides a way to integrate  density components
• define ∇-Jensen-Shannon divergences
• Inductive arithmetic-harmonic geometric matrix mean expressed using QACs

dual quasi-arithmetic centers
induced by a Legendre-type function

Applications of QACs:
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