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Goals:

|.  Generalize scalar quasi-arithmetic means to multivariate cases

Il. Show that the dually flat spaces of information geometry yields a natural
framework for defining and studying this generalization

Outline of the talk:
1. Weighted quasi-arithmetic means

2. Quasi-arithmetic centers and their invariance and equivariance properties
3. Quasi-arithmetic mixtures
4. Jensen-Shannon V-divergences




Weighted quasi-arithmetic means (QAMSs)

Standard (n-1)-dimensional simplex: A, = {(wy,...,w,) : w; > 0,3 w; = 1}

Definition (Weighted quasi-arithmetic mean (1930’s)). Let f : I C
R — R be a strictly monotone and differentiable real-valued function. The
weighted quasi-arithmetic mean (QAM) M (xy, ...,z w) between n scalars

r1,....orn € 1 C R with respect to a normalized weight vector w € A, _q, is
defined by

.nf

M¢(zy,....¢pw) := ! Z‘w-if(ilfz‘)

1=1

QAMs enjoy the

min{z, ..., x,} < Me(xq,...,2p;w) < max{zy,...,o,}

[Kolmogorov 1930] [Nagumo 1930] [De Finetti 1931]



Quasi-arithmetic means (QAMs)

* Classes of generators [f]=[g] with f = g yieldings the same QAM:

My(z,y) = M¢(x,y)if and only if‘g(t) = )\f(t)Jrc‘for A € R\{0}

* So let us fix wlog. strictly increasing and differentiable f since we can always
either consider either f or -f (i.e., A=-1, c=0).

* QAMs include p-power means for the smooth family of generators f (t):

- tP—1 | IR O
) = ine) 0=z PEON o= (b e

* Pythagoras means: Harmonic (p=-1), Geometric (p=0), Arithmetic (p=1)
* Homogeneous QAMs M (A, \y) = A My(x,y) for all A > 0 are exactly p-power means



A generalization of the law of large numbers (LLN)
and the central limit theorem (CLT)

e Quasi-arithmetic means for a strictly monotone and smooth function f(u):
My(rr,...oan) = fHO0 f(2:))

* Quasi-arithmetic expected value of a random variable X:

Ef[X] = fHE[f(X)))

* Law of large numbers for an iid random vector with variance V[X]<oo:
Mp(Xy..... X)) 25 EfX]

| . VIf(X)]
e Central limit theorem: Vi (Mp(Xy,. ., X)) — B [X]) = N (‘1 (f’(IEf[X]))2)

Miguel De Carvalho. Mean, what do you mean? The American Statistician, 70(3):270-274, 2016.




Univariate QAMs: M (xy, ... 2y w) = f (Z H*.;f(rg))

1=1

we face when going from univariate to multivariate cases:

Define the proper notion of "multivariate increasing” function F and its
equivalent class of functions

In general, the implicit function theorem only proves locally and inverse
function F1 of F: R = RY provided its Jacobian matrix is not singular

Information geometry provides the right framework to generalize QAMs to

quasi-arithmetic centers (QACs) and study their properties.
Consider the dually flat spaces of information geometry



Legendre-type functions

[o(E): Cone of lower semi-continuous (Isc) convex functions from £ into R U {400}

Legendre-Fenchel transformation of a convex function: F*(n) :=sup{0'n— F(0)}
cO

Problem: Domain H of n may not be convex... [*elo(E) " =F

Counterexample with h(£, &2) = [(8%/82) + &2 + £.°]/4 [Rockafeller 1967]
To by pass this problem:

Definition Legendre type function . (O, F) is of Legendre type if
the function F : © C X — R is strictly convex and differentiable with © # () an
open convex set and
d ; -
lim —F (AN + (1 —AN)f) = —oc0, VO €O,V ecdb. (1)

A—0 dA

Convex conjugate of a Legendre-type function (6,F(0)) is of Legendre-type:

Given by the Legendre function: F™(n) (VF n).1 > F(VF(n))
Gradient map VF is globally invertible: VF



Comonotone functions in inner product spaces

* Comonotone functions: V6,6, € X, 6, # 0, (01 — 62, G(01) — G(H2)) >0
(i.e., comonotone = monotone with respect to the identity function)

Proposition (Gradient co-monotonicity ). The gradient functions
VF (@) and VF*(n) of the Legendre-type convex conjugates F and F* in F are
strictly increasing co-monotone functions.

Proof using symmetrization of Bregman divergences = Jeffreys-Bregman divergence:
BF(Ql : 92) + Bp(lfﬂ’g X 91) = <92 — 04, VF(Q;) — VF(EH)) >0, V6, 7é 0o
Bp«(ny :m2) + Bp=(n2 :m1) = (2 — 91, VE*(2) = VFE*(n1)) >0, ¥y # 1o
because Bregman divergences(and sums thereof) are always non-negative
Bp(6y :02) = F(01) — F(02) — (61 — 02, VF(63)) > 0,
Bp«(m :n2) = F*(m) — £ (n2) = (m — 2, VE (12)) = 0
Remark: because when d=1, f(x) is strictly monotone iff
f(x,)-f(x,) is of same sign of x,-x, that is, (f(x,)-f(x,)) (x;-x,)>0



Quasi-arithmetic centers: Definition generalizing QAMSs

Definition (Quasi-arithmetic centers, QACs)). Let FF : & — R be
a strictly convexr and smooth real-valued function of Legendre-type in F. The
weighted quasi-arithmetic average of 01,....0, and w € A,_1 is defined by the
gradient map VF as follows:

Myp(O1,....0p;w) = VE~! (Z TL-‘E'?F(HE:)) .,

1

= VF”~ (Z U*iVF(Hi)) ,

1

where VF* = (VF)~L is the gradient map of the Legendre transform F* of F.

This definition generalizes univariate quasi-arithmetic means : My(zq.... .2 w) == [~ (Z “Taf(irz'))
i=1
Let F'(t) = f; f(u)du
Then we have My = Mp:



An illustrating example: The matrix harmonic mean

* Consider the real-value minus F(0) = —logdet(#)
* Domain F:  Sym,.(d) - R the cone of symmetric positive-definite matrices
* Inner product: (A.B) :=tr(AB")

* We have: F() = —log det(), ¢«Legendre-type function
VE(#)=—-6"1 = n(8).
VE () =—n~" =6(n)
F*(n)=(0(n),n) — F(0(n)) = —d — logdet(—n) «<Legendre-type function

The quasi-arithmetic center with respectto F: My r(61.62) =2(07 + 65171
The quasi-arithmetic center with respectto F*: Mgp.-(n1,1m2) =2 (' + ngl)_l
Generalize univariate harmonic mean with F(x)=log x, f(x)=F'(x)=1/x:  H(a.b) = 29 for a,b > 0
A Legendre-type function F gives rise to a pair of dual quasi-arithmetic centers
My and My, : dual operators



Dually flat structures of information geometry

* A Legendre-type Bregman generator F() induces a dually flat space structure:
(©,9(0) = V5F(0),V,V")

* A point P can be either parameterized by 6-coordinate and dual n-coordinate

manifold P

V-affine coordinate system 6 V*-affine coordinate system 7

et -vr

o = ()

0
ﬁﬂn 6 =VF(n) —
m T 1(F)

Potential function F'(#) Dual pnteﬁtial function F*(n)

Legendre-Fenchel transform [AMS 2022]




Quasi-arithmetic barycenters and dual geodesics

* The dual geodesics induced by the dual flat connections can be expressed
using dual weighted quasi-arithmetic centers:

V-geodesic v (P, Q;1) = (PQ)Y (¥)

_ [ Ma(P(P),0(Q);1—1t.1)
PO = ( Alpr i1ty ) €

L

V*-geodesic yy- (P, Q;t) = (PQ)T‘ ()

(M, g, V, V") Mia(n(P).n(Q); 1 —t,t)




n-Variable Quasi-arithmetic centers as centroids

in duallv flat spaces

Consider n points P, ..., P, on the DFS (M, g,V,V*)

Right-sided centroid:

>0
Cr = argminpey .y = Dy g~ (PEP) %
Or = argming — >~ Bp(#; : 0) %
Or = 0(Cr)= %z:ﬁi:ﬂfid(ﬁl,...,ﬂn) g
iR = VF(Or)=Myp(n,...,0) & =
n () x
©on( b )

e 0. = Mgp(f.....0,)
E\ L = VF(OL) = Mia(n1. ..., 1n)

(canonical divergence = Bregman divergence)

Left-sided centroid:

Cr = argminpeyy S, - Dv v+(P : F;)
f; = arg ming - - S o, Br(6:6;)

g, —
ML

Myrp(01,....60,), &
VF(QL) = ﬂfld(nla ce

Notice that when n=2, weighted dual
guasi-arithmetic barycenters
define the dual geodesics



Invariance/equivariance of quasi-arithmetic centers

Information geometry is well-suited to study the
A dually flat space (DFS) can be realized by a class of Bregman generators:

(M, g,V,V*) < DFS((0, F(0):n, F*(n)])

Affine Legendre invariance of dually flat spaces:
* By adding an affine term...
Same DFS with F(Q) = F'(0) + (C: 9> +d. » *'T"'"I?F(le 1O 'LU) — *'?"'"IWF(le i w)

* By an affine change of coordinate...
Same DFSwith # = AH + b such that F(Q)

VE@) = (A TVF(A (- b)) »Mw Or, o Opiw) = AMop(01, .. On:w) + b

BF(E_ ) = Br (6'1 92) Same canonical d!vergence of'the DFS |
172 (= constrast function on the diagonal of the product manifold)




Canonical divergence versus
Legendre-Fenchel/Bregman divergences

e Canonical divergence induced by dual flat connections is between points
* dual Bregman divergences B, and B.. between dual coordinates
* Legendre-Fenchel divergence Y. between mixed coordinates

F(O)+ F*(n)—(#.n) =0 n=VEF(@®)
Bp(61:0s) = F(8;) — f_&@ — (th — 62, VE(12))
- F(91)+}(9?:Z>)_f*((;2) 12) = Yr(01: 1)
(M.qg,V, V") « DFS(|©,F(0),H, F*(n)])
« DFS([6. F(0). H. F*(i)])

D?F*(Pl . Pg) B BF(91 . 92) — BF*('T]L'T]Q) — Yp(f)l . '?’]2) — YF* ('?72 . 91)

L,




Affine Legendre invariance of dually flat spaces

plus setting the unit scale of divergences
 Affine Legendre invariance: F(0) = F(A) +b) + (c,0) + d
F(7) = F*(A™n +b%) + (") + d
 Set the unit scale of canonical divergence (DFS differ here, rescaled):
(does not change the quasi-arithmetic center) Dy v v+ = ADy v+

amount to scale the potential function AF(8) vs F(0)

Proposition (Invariance and equivariance of QACGCs). Let I'(0) be a
function of Legendre type. Then F(0) = AN(F(AQ+Db)+(c,0)+d) for A € GL(d),
b,c € R, d € R? and A € Rwg is a Legendre-type function, and we have

Moy = AMgp +b.




lllustrating example: Mahalanobis divergence

* Mahalanobis divergence = squared Mahalanobis metric distance

fails triangle inequality

1
Az(ela 92) — BFQ (91 . 92) — 5(92 — 91)T Q (92 — 91) of metric distances
Primal potential function:  Fp(f) = %QTQQ 1o + K

% 1 —
Dual potential function: F*(n) = §'T7TQ = Fo-1(n),

e The dual QACs induced by the dual Mahalanobis generators F and F*
coincide to weighted arithmetic mean M.

?\'IVFQ (9 ..... 9 " ) Q_l (Z u;iQei) — Z u"iei — ﬂfid (913 e 9?1; ’IU)’

1=1

Mvrg(m, .-, mmyw) =Q (Z w; Q7! ) = Mia(n1, -y s w).

1=1



Quasi-arithmetic mixtures (QAMixs), and a-mixtures

Definition . The M ;-mizture of n densities py,....p, weighted by w € A is
defined by

J\'If(}';'l(*}j)ﬂ ﬂpﬂ(I ) )
(plv .o ﬁpﬂ;u;)ﬂff(:r) = ,
J My(pi(x), ... palx);w)du(r)

Centroid of n densities with respect to the a-divergences yields a QAMix:

yMe = arg mln E w; Do (pis p

(P1, - P w
D, [m(s) : I(s)]
[ m(s)ds — ft's}ds—}—fms}lcrg,”ds a=-1
= { [I(s)ds — [m(s)ds + [I(s)log j“ds—kf.-f{s]log {{}d.‘}u'—l
o [m(s)ds + 1% [1(s)ds — =5 [m(s) )T 1(s) ds, a # +1.

D, denotes the a-divergences:

a-families of probability distributions [Amari 2007] [arXiv:2209.07481]



k=2 QAMixs and the V-Jensen-Shannon divergence

* Jensen-Shannon divergence is bounded symmetrization of KL divergence:

1 + +
Dys(p.4) = 5 (DKL (p 5 Q) + Dy (q = Q)) < log(2)

* Interpret arithmetic mixture as the midpoint of a mixture geodesic (wrt to
the flat non-parametric mixture connection V™ in information geometry).

* Generalize Jensen-Shannon divergence with arbitrary V-connections:

Definition (Affine connection-based V-Jensen-Shannon divergence).

Let V be an affine connection on the space of densities P, and ~v(p,q;t) the

geodesic linking density p = yv(p,q:0) to density g = yv(p,q:1). Then the V-
Jensen-Shannon divergence is defined by:

. 1 1 1
D (p.q) = 5 (DKL (p 2ok (paq; 2)) + Dx1, (q LYV (paq; 2))) :




Ve-connections and geodesics in the probability
simplex, V2-Jensen-Shannon divergence




a-geodesics coincide when they pass through
a standard simplex vertex

Embedded probability simplex

* a-geodesics in the probability simplex — X i

91eJouadap-uou
CIIETIEY.ETe

grateful for fruitful discussions with Fabio Meneghetti and Sueli Costa



Inductive Means: Geodesics/quasi-arithmetic centers

* Gauss and Lagrange independently studied the following convergence of pairs

of iterations:
a; + by

a1 = : and proves quadratic convergence to AGM (g, by) = T ag+ by
the arithmetic-geometric mean AGM 00 4 7o (ﬂ-ﬂ—bﬂ)
bt_|_1 — (1t bt ap—+bg

where K is complete elliptic integral of the first kind
AGM also used to approximate ellipse perimeter and

* In general, choosing two strict means M and M' with interness property will
converge but difficult to analytically express the common limits of iterations

* When M=Arithmetic and M'=Harmonic, the arithmetic-harmonic mean AHM
yields the geometric mean:

at4+1 = A(a't*- h’t) AHl\I(I y) = lim a; = 11111 hy = \/ry = G’(:Iay)

h’t—l—l — H(C{-t, h’t) t—oo




Inductive matrix arithmetic-harmonic mean

e Consider the cone of symmetric positive-definite matrices (SPD cone), and
extend the AHM to SPD matrices:

A+ H
At = t_g t = A(A;, Hy) <
Hiy = 2(A7 " +H ) ' =H(ALH,) <

* Then the sequences converge quadratically to the matrix geometric mean:
AHM(X,Y)= lim A, = lim H,.

t— 400 t— 400

AHM(X,Y) = X3 (X3 Y X %)% X3 = G(X,Y) |
which is also the Riemannian center of mass with respect to the trace metric:

1 1

G(X,Y)=arg ﬂfllel]%pl(ld) —p?(X. M) + 2P (Y, M). p(Pr, ) = dzlog Ai (P Py Py 1) Riemannian distance

gp(Vi,Va) = tr (PT'ViP~1V3) [Nakamura 2001, Atteia-Raissouli 2001 ]



Geometric interpretation of the AHM matrix mean

1

A+ H Py = ’:"(Pv :_)

H,. = A_l H_l -1 H(A, H Qi+1 = ":"* Py, Qs - i
+1 = 2(A7 +H; )" = H(A:, Hy) 2

(SPD, g€, VA, VM) is a dually flat space, V€is Levi-Civita connection
Gu(P.Q) = P4 (PTEQPH) Pt

Dually flat space (SPD, g€, V4, V")

in information geometry defines

guasi-arithmetic centers as geodesic midpoints

V-geodesic

Al(P.Q) = (1 — )P+ aQ

V*-geodesic

O Ho(P.Q) = (1—a)P~t +aQ™) ™"

. L . . . . A _ T
Primal geodesic midpoint is the arithmetic center wrt Euclidean metric gp(X,Y) =tr(X 1Y)

Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric gp (X Y) tr(P*XP?Y)

Levi-Civita geodesic midpoint is geometric Karcher mean (not QAC)  ¢%(X.Y) =tr(P'XP7Y)
[Nakamura 2001]



Summary: Beyond scalar quasi-arithmetic means

Information geometry of dually flat spaces yields a generalization of quasi-arithmetic means:

Me(zy,....¢opw) 1= f_l (Z u‘;f(;r;))

1=1
* 1d monotone function generalize to gradient map of a Legendre-type multivatiate function
(comonotone) : b ’ ‘
el =N (Z ! "VF(H’)> dual quasi-arithmetic centers
>induced by a Legendre-type function

(4

« dual centers of mass of n>2 points expressed using weighted quasi-arithmetic centers
* dual geodesics expressed in coordinate systems as weighted quasi-arithmetic centers (n=2)
* invariance/equivariance analyzed from the viewpoint of information geometry
F(0) == NF(AO+b)+{(c.0)+d) == N[op=AMgp +b.
* define quasi-arithmetic mixtures which provides a way to integrate density components
e define V-Jensen-Shannon divergences
* Inductive arithmetic-harmonic geometric matrix mean expressed using QACs

Applications of QACs: = (Z uu-VF(H,-)>
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