Quasi-arithmetic centers, quasi-arithmetic mixtures, and the Jensen-Shannon ∇-divergences

Frank Nielsen



**GSI'23** 

Sony Computer Science Laboratories Inc

Sony CSL

June 2023

arXiv:2301.10980

## Talk outline, and contributions

#### <u>Goals</u>:

- I. Generalize scalar quasi-arithmetic means to multivariate cases
- II. Show that the dually flat spaces of information geometry yields a natural framework for defining and studying this generalization

#### Outline of the talk:

- 1. Weighted quasi-arithmetic means
- 2. Quasi-arithmetic centers and their invariance and equivariance properties
- 3. Quasi-arithmetic mixtures
- 4. Jensen-Shannon ∇-divergences



examples of α-geodesics with midpoints in the probability simplex

#### Weighted quasi-arithmetic means (QAMs)

Standard (n-1)-dimensional simplex:  $\Delta_{n-1} = \{(w_1, \ldots, w_n) : w_i \ge 0, \sum_i w_i = 1\}$ 

**Definition** (Weighted quasi-arithmetic mean (1930's)). Let  $f : I \subset \mathbb{R} \to \mathbb{R}$  be a strictly monotone and differentiable real-valued function. The weighted quasi-arithmetic mean (QAM)  $M_f(x_1, \ldots, x_n; w)$  between n scalars  $x_1, \ldots, x_n \in I \subset \mathbb{R}$  with respect to a normalized weight vector  $w \in \Delta_{n-1}$ , is defined by

$$M_f(x_1, \dots, x_n; w) := f^{-1}\left(\sum_{i=1}^n w_i f(x_i)\right).$$

QAMs enjoy the in-betweenness property:

$$\min\{x_1,\ldots,x_n\} \le M_f(x_1,\ldots,x_n;w) \le \max\{x_1,\ldots,x_n\}$$

[Kolmogorov 1930] [Nagumo 1930] [De Finetti 1931]

### Quasi-arithmetic means (QAMs)

• **Classes of generators** [f]=[g] with  $f \equiv g$  yieldings the same QAM:

$$M_g(x,y) = M_f(x,y)$$
 if and only if  $g(t) = \lambda f(t) + c$  for  $\lambda \in \mathbb{R} \setminus \{0\}$ 

- So let us fix wlog. strictly increasing and differentiable f since we can always either consider either f or -f (i.e.,  $\lambda$ =-1, c=0).
- QAMs include **p-power means** for the smooth family of generators  $f_p(t)$ :

$$M_p(x,y) := M_{f_p}(x,y) \qquad f_p(t) = \begin{cases} \frac{t^p - 1}{p}, \ p \in \mathbb{R} \setminus \{0\}, \\ \log(t), \ p = 0. \end{cases}, \quad f_p^{-1}(t) = \begin{cases} (1+tp)^{\frac{1}{p}}, \ p \in \mathbb{R} \setminus \{0\}, \\ \exp(t), \ p = 0. \end{cases}$$

- Pythagoras means: Harmonic (p=-1), Geometric (p=0), Arithmetic (p=1)
- Homogeneous QAMs  $M_f(\lambda x, \lambda y) = \lambda M_f(x, y)$  for all  $\lambda > 0$  are exactly p-power means

## A generalization of the law of large numbers (LLN) and the central limit theorem (CLT)

• Quasi-arithmetic means for a strictly monotone and smooth function f(u):

$$M_f(x_1, \dots, x_n) = f^{-1}(\sum_{i=1}^n f(x_i))$$

• Quasi-arithmetic expected value of a random variable X:

$$\mathbb{E}_f[X] = f^{-1}(\mathbb{E}[f(X)])$$

• Law of large numbers for an iid random vector with variance V[X]<∞:

$$M_f(X_1, \dots, X_n) \xrightarrow{a.s.} \mathbb{E}_f[X]$$

• Central limit theorem:  $\sqrt{n} \left( M_f(X_1, \dots, X_n) - \mathbb{E}_f[X] \right) \xrightarrow{d} N\left( 0, \frac{\mathbb{V}[f(X)]}{\left(f'(\mathbb{E}_f[X])\right)^2} \right)$ 

Miguel De Carvalho. Mean, what do you mean? The American Statistician, 70(3):270-274, 2016.

## Quasi-Arithmetic Centers (QACs) = Multivariate QAMs: Univariate QAMs: $M_f(x_1, ..., x_n; w) := f^{-1}\left(\sum_{i=1}^n w_i f(x_i)\right)$

Two problems we face when going from univariate to multivariate cases:

- 1. Define the proper notion of *"multivariate increasing"* function F and its equivalent class of functions
- 2. In general, the implicit function theorem only proves locally and inverse function  $F^{-1}$  of F:  $R^d \rightarrow R^d$  provided its Jacobian matrix is not singular

Information geometry provides the right framework to generalize QAMs to quasi-arithmetic centers (QACs) and study their properties. Consider the dually flat spaces of information geometry

## Legendre-type functions

 $Γ_0(E)$ : Cone of lower semi-continuous (lsc) convex functions from E into  $\mathbb{R} \cup \{+\infty\}$ Legendre-Fenchel transformation of a convex function:  $F^*(\eta) := \sup_{\theta \in \Theta} \{\theta^\top \eta - F(\theta)\}$ Problem: Domain H of η may not be convex...  $F^* \in Γ_0(E)$   $F^{**} = F$ 

Counterexample with  $h(\xi_1, \xi_2) = [(\xi_1^2/\xi_2) + \xi_1^2 + \xi_2^2]/4$  [Rockafeller 1967] To by pass this problem:

**Definition** Legendre type function .  $(\Theta, F)$  is of Legendre type if the function  $F: \Theta \subset \mathbb{X} \to \mathbb{R}$  is strictly convex and differentiable with  $\Theta \neq \emptyset$  an open convex set and

$$\lim_{\lambda \to 0} \frac{d}{d\lambda} F(\lambda \theta + (1 - \lambda)\bar{\theta}) = -\infty, \quad \forall \theta \in \Theta, \forall \bar{\theta} \in \partial \Theta.$$
(1)

Convex conjugate of a Legendre-type function ( $\Theta$ , F( $\Theta$ )) is of Legendre-type:

Given by the Legendre function:  $F^*(\eta) = \langle \nabla F^{-1}(\eta), \eta \rangle - F(\nabla F^{-1}(\eta))$ Gradient map  $\nabla F$  is globally invertible:  $\nabla F^{-1}(\eta)$ 

#### Comonotone functions in inner product spaces

• Comonotone functions:  $\forall \theta_1, \theta_2 \in \mathbb{X}, \theta_1 \neq \theta_2, \quad \langle \theta_1 - \theta_2, G(\theta_1) - G(\theta_2) \rangle > 0$ 

(i.e., **co**monotone = monotone with respect to the **identity function**)

**Proposition (Gradient co-monotonicity ).** The gradient functions  $\nabla F(\theta)$  and  $\nabla F^*(\eta)$  of the Legendre-type convex conjugates F and  $F^*$  in  $\mathcal{F}$  are strictly increasing co-monotone functions.

Proof using symmetrization of Bregman divergences = Jeffreys-Bregman divergence:

 $B_{F}(\theta_{1}:\theta_{2}) + B_{F}(\theta_{2}:\theta_{1}) = \langle \theta_{2} - \theta_{1}, \nabla F(\theta_{2}) - \nabla F(\theta_{1}) \rangle > 0, \quad \forall \theta_{1} \neq \theta_{2}$  $B_{F^{*}}(\eta_{1}:\eta_{2}) + B_{F^{*}}(\eta_{2}:\eta_{1}) = \langle \eta_{2} - \eta_{1}, \nabla F^{*}(\eta_{2}) - \nabla F^{*}(\eta_{1}) \rangle > 0, \quad \forall \eta_{1} \neq \eta_{2}$ 

because Bregman divergences (and sums thereof) are always non-negative

 $B_F(\theta_1:\theta_2) = F(\theta_1) - F(\theta_2) - \langle \theta_1 - \theta_2, \nabla F(\theta_2) \rangle \ge 0,$ 

 $B_{F^*}(\eta_1:\eta_2) = F^*(\eta_1) - F^*(\eta_2) - \langle \eta_1 - \eta_2, \nabla F^*(\eta_2) \rangle \ge 0$ 

Remark: Generalization of monotonicity because when d=1, f(x) is strictly monotone iff  $f(x_1)-f(x_2)$  is of same sign of  $x_1-x_2$  that is,  $(f(x_1)-f(x_2))(x_1-x_2)>0$ 

#### Quasi-arithmetic centers: Definition generalizing QAMs

**Definition** (Quasi-arithmetic centers, QACs)). Let  $F : \Theta \to \mathbb{R}$  be a strictly convex and smooth real-valued function of Legendre-type in  $\mathcal{F}$ . The weighted quasi-arithmetic average of  $\theta_1, \ldots, \theta_n$  and  $w \in \Delta_{n-1}$  is defined by the gradient map  $\nabla F$  as follows:

$$M_{\nabla F}(\theta_1, \dots, \theta_n; w) := \nabla F^{-1} \left( \sum_i w_i \nabla F(\theta_i) \right),$$
$$= \nabla F^* \left( \sum_i w_i \nabla F(\theta_i) \right),$$

where  $\nabla F^* = (\nabla F)^{-1}$  is the gradient map of the Legendre transform  $F^*$  of F.

This definition generalizes univariate quasi-arithmetic means :  $M_f(x_1, \ldots, x_n; w) := f^{-1}\left(\sum_{i=1}^n w_i f(x_i)\right)$ 

Let 
$$F(t) = \int_a^t f(u) du$$

Then we have  $M_f = M_{F'}$ 

#### An illustrating example: The matrix harmonic mean

- Consider the real-value minus logdet function  $F(\theta) = -\log \det(\theta)$
- Domain F:  $Sym_{++}(d) \rightarrow \mathbb{R}$  the cone of symmetric positive-definite matrices
- Inner product:  $\langle A, B \rangle := \operatorname{tr}(AB^{\top})$

#### • We have: $F(\theta) = -\log \det(\theta),$ $\leftarrow$ Legendre-type function $\nabla F(\theta) = -\theta^{-1} =: \eta(\theta),$ $\nabla F^{-1}(\eta) = -\eta^{-1} =: \theta(\eta)$ $F^*(\eta) = \langle \theta(\eta), \eta \rangle - F(\theta(\eta)) = -d - \log \det(-\eta)$ $\leftarrow$ Legendre-type function

The quasi-arithmetic center with respect to F:  $M_{\nabla F}(\theta_1, \theta_2) = 2(\theta_1^{-1} + \theta_2^{-1})^{-1}$ The quasi-arithmetic center with respect to F\*:  $M_{\nabla F^*}(\eta_1, \eta_2) = 2(\eta_1^{-1} + \eta_2^{-1})^{-1}$ Generalize univariate harmonic mean with F(x)= log x, f(x)=F'(x)=1/x:  $H(a,b) = \frac{2ab}{a+b}$  for a, b > 0A Legendre-type function F gives rise to a pair of dual quasi-arithmetic centers

 $M_{\nabla F}$  and  $M_{\nabla F^*}$ : dual operators

### Dually flat structures of information geometry

- A Legendre-type Bregman generator F() induces a dually flat space structure:  $(\Theta, g(\theta) = \nabla_{\theta}^{2} F(\theta), \nabla, \nabla^{*})$
- A point P can be either parameterized by  $\theta$ -coordinate and dual  $\eta$ -coordinate



IAMS 2022I

#### Quasi-arithmetic barycenters and dual geodesics

• The **dual geodesics** induced by the dual flat connections can be expressed using **dual weighted quasi-arithmetic centers**:



## n-Variable Quasi-arithmetic centers as centroids in dually flat spaces

Consider *n* points  $P_1, \ldots, P_n$  on the DFS  $(M, g, \nabla, \nabla^*)$  (canonical divergence = Bregman divergence)

Reterenc

duality

#### Right-sided centroid:

$$\bar{C}_R = \arg\min_{P \in M} \sum_{i=1}^n \frac{1}{n} D_{\nabla,\nabla^*}(P_i : P)$$
$$\bar{\theta}_R = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n B_F(\theta_i : \theta)$$

$$\bar{\theta}_R = \theta(\bar{C}_R) = \frac{1}{n} \sum_{i=1}^n \theta_i = M_{id}(\theta_1, \dots, \theta_n)$$

 $\bar{\eta}_R = \nabla F(\bar{\theta}_R) = M_{\nabla F^*}(\eta_1, \dots, \eta_n).$   $\leftarrow \text{dual QAC}$ 



Left-sided centroid:  

$$\bar{C}_L = \arg \min_{P \in M} \sum_{i=1}^n \frac{1}{n} D_{\nabla, \nabla^*}(P : P_i)$$

$$\bar{\theta}_L = \arg \min_{\theta} \frac{1}{n} \sum_{i=1}^n B_F(\theta : \theta_i)$$

$$\bar{\theta}_L = M_{\nabla F}(\theta_1, \dots, \theta_n), \quad \leftarrow \text{primal QAC}$$

$$\bar{\eta}_L = \nabla F(\bar{\theta}_L) = M_{\text{id}}(\eta_1, \dots, \eta_n)$$

Notice that when n=2, weighted dual quasi-arithmetic barycenters define the dual geodesics

#### Invariance/equivariance of quasi-arithmetic centers

Information geometry is well-suited to study the properties of QACs: A dually flat space (DFS) can be realized by a class of Bregman generators:

 $(M, q, \nabla, \nabla^*) \leftarrow \mathrm{DFS}([\theta, F(\theta); \eta, F^*(\eta)])$ 

#### **Affine Legendre invariance of dually flat spaces:**

• By adding an affine term...

Same DFS with  $\overline{F}(\theta) = F(\theta) + \langle c, \theta \rangle + d$ .

Invariance of quasi-arithmetic center:  $M_{\nabla \bar{F}}(\theta_1, \dots; \theta_n; w) = M_{\nabla F}(\theta_1, \dots; \theta_n; w)$ 

#### • By an affine change of coordinate...

Same DFS with  $\theta = A\theta + b$  such that  $\overline{F}(\overline{\theta}) = F(\theta)$ **Equivariance of quasi-arithmetic center:**  $\nabla \bar{F}(x) = (A^{-1})^{\top} \nabla F(A^{-1}(x-b)) \longrightarrow M_{\nabla \bar{F}}(\bar{\theta}_1, \dots, \bar{\theta}_n; w) = A M_{\nabla F}(\theta_1, \dots, \theta_n; w) + b$ Same canonical divergence of the DFS  $B_{\bar{F}(\overline{\theta_1}:\overline{\theta_2})} = B_F(\theta_1:\theta_2)$ (= constrast function on the diagonal of the product manifold)

## Canonical divergence versus Legendre-Fenchel/Bregman divergences

- Canonical divergence induced by dual flat connections is between points
- dual Bregman divergences  ${\rm B}_{\rm F}$  and  ${\rm B}_{\rm F^*}$  between dual coordinates
- Legendre-Fenchel divergence Y<sub>F</sub> between mixed coordinates

 $F(\theta) + F^*(\eta) - \langle \theta, \eta \rangle = 0$   $\eta = \nabla F(\theta)$ 

$$B_F(\theta_1:\theta_2) := F(\theta_1) - \underbrace{F(\theta_2)}_{=\langle \theta_2, \eta_2 \rangle - F^*(\eta_2)} - \langle \theta_1 - \theta_2, \nabla F(\eta_2) \rangle$$
$$= F(\theta_1) + F^*(\eta_2) - \langle \theta_1, \eta_2 \rangle =: Y_F(\theta_1:\eta_2)$$

 $\begin{array}{rcl} (M,g,\nabla,\nabla^*) & \leftarrow & \mathrm{DFS}([\Theta,F(\theta),H,F^*(\eta)]) \\ & \leftarrow & \mathrm{DFS}([\bar{\Theta},\bar{F}(\bar{\theta}),\bar{H},\bar{F}^*(\bar{\eta})]) \end{array}$ 

 $D_{\nabla,\nabla^*}(P_1:P_2) = B_F(\theta_1:\theta_2) = B_{F^*}(\eta_1,\eta_2) = Y_F(\theta_1:\eta_2) = Y_{F^*}(\eta_2:\theta_1)$  $= B_{\bar{F}}(\overline{\theta_1}:\overline{\theta_2}) = B_{\bar{F}^*}(\overline{\eta_1},\overline{\eta_2}) = Y_F(\overline{\theta_1}:\overline{\eta_2}) = Y_{F^*}(\overline{\eta_2}:\overline{\theta_1})$ 

## Affine Legendre invariance of dually flat spaces plus setting the unit scale of divergences

• Affine Legendre invariance:  $\overline{F}(\overline{\theta}) = F(A\theta + b) + \langle c, \theta \rangle + d$ 

$$F(\theta) = F(A\theta + b) + \langle c, \theta \rangle + d$$
$$\bar{F}^*(\bar{\eta}) = F^*(A^*\eta + b^*) + \langle c^*, \eta \rangle + d^*$$

• Set the unit scale of canonical divergence (DFS differ here, rescaled): (does not change the quasi-arithmetic center)  $D_{\lambda, \nabla, \nabla^*} := \lambda D_{\nabla, \nabla^*}$ 

amount to scale the potential function  $\lambda F(\theta)$  vs  $F(\theta)$ 

**Proposition** (Invariance and equivariance of QACs). Let  $F(\theta)$  be a function of Legendre type. Then  $\overline{F}(\overline{\theta}) := \lambda(F(A\theta+b) + \langle c, \theta \rangle + d)$  for  $A \in GL(d)$ ,  $b, c \in \mathbb{R}^d$ ,  $d \in \mathbb{R}^d$  and  $\lambda \in \mathbb{R}_{>0}$  is a Legendre-type function, and we have

$$M_{\nabla \bar{F}} = A M_{\nabla F} + b.$$

### Illustrating example: Mahalanobis divergence

Mahalanobis divergence = squared Mahalanobis metric distance

$$\Delta^2(\theta_1, \theta_2) = B_{F_Q}(\theta_1 : \theta_2) = \frac{1}{2}(\theta_2 - \theta_1)^\top Q(\theta_2 - \theta_1)$$

fails triangle inequality of metric distances

 $F_Q(\theta) = \frac{1}{2}\theta^\top Q\theta + c\theta + \kappa$ Primal potential function:  $F^*(\eta) = \frac{1}{2}\eta^{\top}Q^{-1}\eta = F_{Q^{-1}}(\eta),$ Dual potential function:

The dual QACs induced by the dual Mahalanobis generators F and F\*

coincide to weighted arithmetic mean M<sub>id</sub>:

$$M_{\nabla F_Q}(\theta_1, \dots, \theta_n; w) = Q^{-1} \left( \sum_{i=1}^n w_i Q \theta_i \right) = \sum_{i=1}^n w_i \theta_i = M_{\mathrm{id}}(\theta_1, \dots, \theta_n; w),$$
$$M_{\nabla F_Q^*}(\eta_1, \dots, \eta_n; w) = Q \left( \sum_{i=1}^n w_i Q^{-1} \eta_i \right) = M_{\mathrm{id}}(\eta_1, \dots, \eta_n; w).$$

### Quasi-arithmetic mixtures (QAMixs), and $\alpha$ -mixtures

**Definition** . The  $M_f$ -mixture of n densities  $p_1, \ldots, p_n$  weighted by  $w \in \Delta_n^\circ$  is defined by

$$(p_1, \dots, p_n; w)^{M_f}(x) := \frac{M_f(p_1(x), \dots, p_n(x); w)}{\int M_f(p_1(x), \dots, p_n(x); w) d\mu(x)}.$$

**Centroid** of n densities with respect to the  $\alpha$ -divergences yields a QAMix:

$$(p_1,\ldots,p_n;w)^{M_{\alpha}} = \arg\min_p \sum_i w_i D_{\alpha}(p_i,p)_i$$

 $D_{\alpha}[m(s):l(s)]$ 

 $D_{\alpha}$  denotes the  $\alpha$ -divergences:

$$= \begin{cases} \int m(s)ds - \int l(s)ds + \int m(s)\log\frac{m(s)}{l(s)}ds & \alpha = -\frac{1}{2} \\ \int l(s)ds - \int m(s)ds + \int l(s)\log\frac{l(s)}{m(s)}ds + \int l(s)\log\frac{l(s)}{m(s)}ds & \alpha = 1 \\ \frac{2}{1+\alpha}\int m(s)ds + \frac{2}{1-\alpha}\int l(s)ds - \frac{4}{1-\alpha^2}\int m(s)^{\frac{1-\alpha}{2}}l(s)^{\frac{1+\alpha}{2}}ds, \quad \alpha \neq \pm 1 \end{cases}$$

[arXiv:2209.07481]

α-families of probability distributions [Amari 2007]

**k=2 QAMixs and the** ∇**-Jensen-Shannon divergence** • Jensen-Shannon divergence is bounded symmetrization of KL divergence:  $D_{\rm JS}(p,q) = \frac{1}{2} \left( D_{\rm KL} \left( p : \frac{p+q}{2} \right) + D_{\rm KL} \left( q : \frac{p+q}{2} \right) \right) \leq \log(2)$ 

- Interpret arithmetic mixture as the midpoint of a mixture geodesic (wrt to the flat non-parametric mixture connection ∇<sup>m</sup> in information geometry).
- Generalize Jensen-Shannon divergence with arbitrary **∇-connections**:

**Definition** (Affine connection-based  $\nabla$ -Jensen-Shannon divergence). Let  $\nabla$  be an affine connection on the space of densities  $\mathcal{P}$ , and  $\gamma_{\nabla}(p,q;t)$  the geodesic linking density  $p = \gamma_{\nabla}(p,q;0)$  to density  $q = \gamma_{\nabla}(p,q;1)$ . Then the  $\nabla$ -Jensen-Shannon divergence is defined by:

$$D_{\nabla}^{\mathrm{JS}}(p,q) := \frac{1}{2} \left( D_{\mathrm{KL}}\left( p : \gamma_{\nabla}\left( p,q;\frac{1}{2} \right) \right) + D_{\mathrm{KL}}\left( q : \gamma_{\nabla}\left( p,q;\frac{1}{2} \right) \right) \right).$$

# $\nabla^{\alpha}$ -connections and geodesics in the probability simplex, $\nabla^{\alpha}$ -Jensen-Shannon divergence



$$D_{\nabla^{\alpha}}^{\mathrm{JS}}(p,q) = \frac{1}{2} \left( D_{\mathrm{KL}}\left( p : \gamma_{\nabla^{\alpha}}\left( p,q;\frac{1}{2} \right) \right) + D_{\mathrm{KL}}\left( q : \gamma_{\nabla^{\alpha}}\left( p,q;\frac{1}{2} \right) \right) \right)$$

# α-geodesics coincide when they pass through a standard simplex vertex



grateful for fruitful discussions with Fábio Meneghetti and Sueli Costa

#### Inductive Means: Geodesics/quasi-arithmetic centers

- Gauss and Lagrange independently studied the following convergence of pairs of iterations:
- $a_{t+1} = \frac{a_t + b_t}{2}$  and proves quadratic convergence to  $b_{t+1} = \sqrt{a_t b_t}$  the arithmetic-geometric mean AGM

 $AGM(a_0, b_0) = \frac{\pi}{4} \frac{a_0 + b_0}{K\left(\frac{a_0 - b_0}{a_0 + b_0}\right)}$ 

where K is complete elliptic integral of the first kind AGM also used to approximate ellipse perimeter and  $\pi$ 

- In general, choosing two strict means M and M' with interness property will converge but difficult to *analytically express the common limits of iterations*
- When M=Arithmetic and M'=Harmonic, the arithmetic-harmonic mean AHM yields the geometric mean:

$$a_{t+1} = A(a_t, h_t)$$
$$h_{t+1} = H(a_t, h_t)$$

$$AHM(x, y) = \lim_{t \to \infty} a_t = \lim_{t \to \infty} h_t = \sqrt{xy} = G(x, y)$$

#### Inductive matrix arithmetic-harmonic mean

• Consider the cone of symmetric positive-definite matrices (SPD cone), and extend the AHM to SPD matrices:

$$\begin{aligned} A_{t+1} &= \frac{A_t + H_t}{2} = A(A_t, H_t) & \leftarrow \text{arithmetic mean} \\ H_{t+1} &= 2\left(A_t^{-1} + H_t^{-1}\right)^{-1} = H(A_t, H_t) & \leftarrow \text{harmonic mean} \end{aligned}$$

• Then the sequences converge quadratically to the matrix geometric mean:

$$AHM(X,Y) = \lim_{t \to +\infty} A_t = \lim_{t \to +\infty} H_t.$$
$$AHM(X,Y) = X^{\frac{1}{2}} (X^{-\frac{1}{2}} Y X^{-\frac{1}{2}})^{\frac{1}{2}} X^{\frac{1}{2}} = G(X,Y)$$

which is also the **Riemannian center of mass** with respect to the trace metric:

#### Geometric interpretation of the AHM matrix mean

$$A_{t+1} = \frac{A_t + H_t}{2} = A(A_t, H_t) \qquad P_{t+1} = \gamma \left( P_t, Q_t : \frac{1}{2} \right)$$
  

$$H_{t+1} = 2 \left( A_t^{-1} + H_t^{-1} \right)^{-1} = H(A_t, H_t) \qquad Q_{t+1} = \gamma^* \left( P_t, Q_t : \frac{1}{2} \right)$$

#### (SPD, $g^G$ , $\nabla^A$ , $\nabla^H$ ) is a dually flat space, $\nabla^G$ is Levi-Civita connection $G_{\alpha}(P,Q) = P^{\frac{1}{2}} \left( P^{-\frac{1}{2}} Q P^{-\frac{1}{2}} \right)^{\alpha} P^{\frac{1}{2}}$



Dually flat space (SPD,  $g^G$ ,  $\nabla^A$ ,  $\nabla^H$ ) in information geometry defines quasi-arithmetic centers as geodesic midpoints

 $H_{\alpha}(P,Q) = \left( (1-\alpha)P^{-1} + \alpha Q^{-1} \right)^{-1}$ 

 $g_P^A(X,Y) = \operatorname{tr}(X^\top Y)$ Primal geodesic midpoint is the arithmetic center wrt Euclidean metric Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric  $g_P^H(X,Y) = tr(P^{-2}XP^{-2}Y)$  $g_P^G(X,Y) = \operatorname{tr}(P^{-1}XP^{-1}Y)$ Levi-Civita geodesic midpoint is geometric Karcher mean (not QAC)

[Nakamura 2001]

1 \

#### Summary: Beyond scalar quasi-arithmetic means

**Information geometry of dually flat spaces** yields a generalization of quasi-arithmetic means:

$$M_f(x_1, \dots, x_n; w) := f^{-1}\left(\sum_{i=1}^n w_i f(x_i)\right)$$

1d monotone function generalize to gradient map of a Legendre-type multivatiate function  $M_{\nabla F}(\theta_1, \dots, \theta_n; w) \coloneqq \nabla F^{-1}\left(\sum_i w_i \nabla F(\theta_i)\right) \qquad \text{dual quasi-arithmetic centers} \\ = \nabla F^*\left(\sum_i w_i \nabla F(\theta_i)\right) \qquad \text{induced by a Legendre-type function}$ (comonotone)

**Applications of QACs:** 

- dual centers of mass of  $n \ge 2$  points expressed using weighted quasi-arithmetic centers
- dual geodesics expressed in coordinate systems as weighted quasi-arithmetic centers (n=2)
- invariance/equivariance analyzed from the viewpoint of information geometry

 $\bar{F}(\bar{\theta}) := \lambda (F(A\theta + b) + \langle c, \theta \rangle + d) \implies M_{\nabla \bar{F}} = A M_{\nabla F} + b.$ 

- define quasi-arithmetic mixtures which provides a way to integrate density components
- define ∇-Jensen-Shannon divergences
- Inductive arithmetic-harmonic geometric matrix mean expressed using QACs

- Amari, Shun-ichi: Information Geometry and Its Applications. Applied Mathematical Sciences, Springer Japan (2016)
- Masrani, V., Brekelmans, R., Bui, T., Nielsen, F., Galstyan, A., Ver Steeg, G., Wood, F.: q-paths: Generalizing the geometric annealing path using power means. In: Uncertainty in Articial Intelligence. pp. 1938-1947. PMLR (2021)
- Nakamura, Y.: Algorithms associated with arithmetic, geometric and harmonic means and integrable systems. Journal of computational and applied mathematics 131(1-2), 161174 (2001)
- Rockafellar, R.T.: Conjugates and Legendre transforms of convex functions. Canadian Journal of Mathematics 19, 200205 (1967)
- Zhang, J.: Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 15(12), 5384-5418 (2013)
- Nielsen, Frank. "The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.
- Atteia, Marc, and Mustapha Raïssouli. "Self dual operators on convex functionals: Geometric mean and square root of convex functionals." *Journal of Convex Analysis* 8.1 (2001): 223-240.
- Ben-Tal, A., Charnes, A., Teboulle, M.: Entropic means. Journal of Mathematical Analysis and Applications 139(2), 537551 (1989)
- Amari, Shun-ichi: Integration of stochastic models by minimizing -divergence. Neural computation 19(10), 27802796 (2007)
- Nielsen, F.: On the Jensen-Shannon symmetrization of distances relying on abstract means. Entropy 21(5), 485 (2019)