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Embedding discrete hierarchical structures in 
hyperbolic spaces: Continuous representations

Sarkar, Low distortion delaunay embedding of trees in hyperbolic plane 
International symposium on graph drawing, 2011

Downstream tasks

Theorem: One can embed any weighted edge tree as a Delaunay graph of 
embedded tree nodes in hyperbolic geometry with arbitrary small distortion

Discrete tree/hierarchies 



Hyperbolic Voronoi diagram/Delaunay complex

On Voronoi diagrams on the information-geometric Cauchy manifolds 
Entropy 22.7 (2020)

Ordinary Voronoi/Delaunay Poincaré bisector/geodesic Poincaré Voronoi/Delaunay



Various models of hyperbolic geometry

Minkowski/Lorentz model is well-suited for optimization since the  
domain is uncontrained

Visualizing hyperbolic Voronoi diagrams, Symp. Computational Geometry 2014
Representation tradeoffs for hyperbolic embeddings, ICMLR 2018



Outline and contributions

• Present Hilbert simplex geometry (HSG) for embeddings of graphs

Contributions:

• Simple proof of monotonicity of Hilbert distance 

• Connection of Hilbert distance with  Aitchison distance

• Differentiable approximation of Hilbert distance for machine learning

• Application to non-linear HSG embedding: experimentally fast, robust, 
and competitive 



Funk and Hilbert distance 
• Consider an open bounded convex set Ω of a space (eg open standard simplex)

• Funk asymmetric distance (weak distance satisfies the triangular inequality):

• Hilbert  metric distance (1895) is the symmetrization of Funk distance:

Independent of the chosen norm since



Hilbert distance: The log cross-ratio metric

A metric distance which satisfies the triangle inequality:

Straight lines are geodesics but geodesics are not unique:



Hilbert geometry generalizes Klein and Cayley 
projective geometries
• When Ω=Open disk   → Klein geometry 

• When Ω=Open ellipsoid   → Cayley-Klein geometry

• When  Ω=Open convex with smooth boundary → hyperbolic-type Finsler 
geometry

Klein
Cayley-Klein



Funk and Hilbert balls

• Hilbert balls have

Euclidean hexagonal shapes

On balls in a Hilbert polygonal geometry, SoCG 2017



Hilbert: Metric vs Projective distance

• Metric distance on an open bounded convex set Ω of d-dim space

• Projective distance on the pointed cone C defined by homothets λΩ in dim d

• distances between points vs pseudo-distance between rays

Ω=standard simplex



Hilbert projective distance  in a cone

Cone defines a partial ordering:

Projective Hilbert distance:

Cone:

where

Projective distance:

which becomes a metric distance on Ω: 



Monotone distances
• Let T be a map. A distance is monotone or strictly monotone iff

• In information geometry, the separable monotone "distances" are 
precisely the f-divergences when d>2.

• Theorem: Funk distance and Hilbert simplex distance are non-
separable monotone distances 

• Contraction theorem (Birkhoff, 1957):

Jiao, Information measures: the curious case of the binary alphabet, 
IEEE Transactions on Information Theory 60.12 (2014) 



Aitchison distance: 
Another non-separable monotone distance

• Often used in COmpositional Data Analysis (CODA)

where G is the geometric mean 

Erb and Ay, The information-geometric perspective of Compositional Data Analysis
Advances in Compositional Data Analysis: Festschrift in Honour of Vera Pawlowsky-Glahn, 2021. 



HSG: Isometry to a vector space (Normed Hilbert)
• The only Hilbert geometries isometric to vector spaces are obtained with 

open simplex domains:

• Slanted hyperplane:

• Isometric mapping:

• Norm/unit ball in vector space:

• Distance: 

Minkowski sum of sets:

Foertsch and Karlsson, Hilbert metrics and Minkowski norms, Journal of Geometry 83.1-2 (2005)



Symmetric polytope norm NH

Visualized on the slanted plane V2:

de la Harpe, P. On Hilbert’s metric for simplices. 
In Geometric Group Theory, volume 1, 1991



HSG isometry to a normed space



Logarithmic mapping and variation semi-norm

Logarithmic representation:

Hilbert distance as normed distance:

Hilbert projective distance as semi-normed variation distance:

variation semi-norm:

(log monotone increasing: log max=max log, log min=min log)



Metric/projective Hilbert simplex/pos. orthant distance



Relationship between HSG and Aitchison

Hilbert distance: Aitchison distance:

Logarithm mapping normalized by homogeneous geometric mean:



Hilbert simplex Voronoi diagrams



Differentiable approximation of Hilbert simplex distance
• max and min operations in Hilbert simplex distance are not differentiable

• log-sum-exp (LSE) commonly used in ML to approximate max operator

• We approximate Hilbert simplex distance by differentiable function:

with guarantees

where

The larger T, the better the approximation: 
Guaranteed bounds on information-theoretic measures of univariate mixtures 

using piecewise log-sum-exp inequalities. Entropy 18.12 (2016) 



Differentiable approximation: Experiments

106 pairs of points randomly sampled inside the d-dimensional standard simplex

We measure:



Non-linear embeddings: Evaluation metrics

Remark: When (M1,ρ1) isometric to (M2,ρ2)  ↔ same representation power 

Loss associated to a distance matrix [Dij] (e.g., calculated from weighted graphs):

or use row-stochastic probability matrix [Pij] (loss in manifold learning/graph embedding):

empirical average of the KL divergence
between pmf Pi and qi

heat kernel



Non-linear embeddings: Results (MSE)
Use Adam local optimizer [Kingma & Ba, 2015]
Repeat 10 different instances to get standard deviation shown in color bands

The larger the embedding dimension, the better!
Hilbert & hyperbolic hyberboloid geometries experimentally performed best 

Hilbert simplex geometry 
is the winner

for discrete graphs



Non-linear embeddings: Results (empirical KLD)

Funk geometry also 
good for embedding!

Hilbert simplex geometry 
is the winner

for discrete graphs

hyperbolic geometry 
is the winner for continuous data



Non-linear embeddings: Comparative results 



Summary

• Proposed differentiable approximation of Hilbert distance  

• Presented Hilbert simplex geometry for graph embeddings  via distance 
matrices using Adam optimizer

• Results for non-linear embeddings:  Hilbert/Funk simplex geometry is 
experimentally fast, robust, and competitive compared to L1, L2, Aitchison 
and hyperbolic hyperboloid embeddings  

• Proved the monotonicity of Funk and Hilbert distances 

• Shown a connection between Hilbert distance and  Aitchison distance via

the normalized logarithmic representation of standard simplex points



Erdős–Rényi random graph datasets G(n,p)  

Graph with n nodes constructed by connecting nodes randomly
An edge Eij  is included in the graph with probability p
(independently from other edges)

Image courtesy of Wikipedia

Caption:
"An Erdős–Rényi–Gilbert graph with 1000 vertices at 
the critical edge probability p=1/(n−1) 
showing a large component and many small ones"



Barabási–Albert random graph datasets G(n,m)

Image courtesy of Wikipedia
Caption:
"Display of three graphs generated with the Barabasi-Albert 

(BA) model. Each has 20 nodes and a parameter of attachment 
m as specified. The color of each node is dependent upon its 

degree (same scale for each graph)."

• Generating random scale-free networks  with power-law degree distributions
• Preferential attachment m:  

the more connected a node is, the more likely it is to receive new links.
• Begins with an initial connected network of m0 vertices.
• Add vertices incrementally: A new vertex v is connecto to already existing vertex vi with 
probability deg(vi)/Σjdeg(vj)
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Non-linear Embeddings in Hilbert Simplex Geometry

• Hilbert simplex geometry isometric to normed vector space:• Hilbert distance
on the simplex:

HD is projective distance on the positive orthant cone.

• Differentiable approximation of the
Hilbert distance:

Voronoi 
diagram

• Loss functions for embedding distance matrices:

or empirical average Kullback-Leibler divergence: 


