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Abstract
Bayesian Neural Networks are successfully employed for confidence intervals estimation and they are able to
provide two types of uncertainties: aleatoric, due to the intrinsic noise of the data, and epistemic, due to the
ignorance of the model. Nevertheless BNNs are usually uncalibrated after training and tend towards overcon-
fidence in predicting the errors. An effective method for calibrating BNNs should effectively calibrate both
epistemic and aleatoric uncertainties, with low impact in terms of computational complexity. In this work
we show how BNN calibration is related to the value of the negative log likelihood and employing several
approaches as normalizing flows and alpha divergence we can obtain well-calibrated BNNs. We empirically
demonstrate the advantages of these techniques in regression problems involving parameters estimation with
correlations between their output uncertainties. We compare the use of normalizing flows and alpha divergence
both in training and in the calibration phase, and we show how the latter provides more reliable uncertainty
estimates for specific choices of alpha, a better coefficient of determination, and it is a considerably more effi-
cient approach especially for complex network architectures. Furthermore we apply the presented framework
to adversarial examples for traffic signs recognition and show its robustness advantage.

1 Methods
The variational inference approach consists in approximating the posterior distribution p(w|D) with a variational
distribution q(w|θ), depending on a set of parameters θ [2, 6]. The objective can then be formalized as finding
θ that makes q as close as possible to the true posterior, for instance by minimizing the KullBack-Leibler (KL)
divergence between the two distributions [6]

KL(q(w|θ)||p(w|D)) ≡
∫

Ω
q(w|θ) ln

q(w|θ)

p(w|D)
dw. (1)

Using Bayes theorem, we can find that minimizing Eq. (1) is equivalent to minimizing

KL(q(w|θ)||p(w))−
∑

(x,y)∈D

∫
Ω
q(w|θ) ln p(y|x,w)dw. (2)

If the network is minimized at θ̂, the probability distribution of y∗ for a new input x∗ can be written as [6]

q
θ̂
(y∗|x∗) =

∫
Ω
p(y∗|x∗,w)q(w|θ̂)dw, (3)

while the covariance of the variational predictive distribution, for a fixed x∗ is [6, 5]

Covqθ̂(y
∗,y∗|x∗) ≡ Eqθ̂[y

∗y∗T|x∗]− Eqθ̂[y
∗|x∗]Eqθ̂[y

∗|x∗]T. (4)

Alternatively we can consider minimizing the α divergence [1, 3] defined as

Dα[p||q] =
1

α(1− α)

(
1−

∫
p(x)αq(x)1−αdx

)
, (5)

where α = 0 is the KL used in VI, α = 1.0 is used in EP, the case α = 0.5 is the Hellinger distance and α = 2 is
the χ2 distance. In the limit of α/D → 0, the authors in [3, 7] arrive to a generalization of Eq. 2 given by

Lα ≈ KL(q(w|θ)||p(w))

− 1

α

∑
(x,y)∈D

ln

∫
Ω
q(w|θ)p(y|x,w)αdw , (6)

allowing to optimize the family of α divergences, determining approximate distributions q with different prop-
erties. We use a variant of VGG16 architecture, we train with Adam-optimizer. averaged over the mini-batch.
To model the distribution over the weights we used two methods, Dropout [6] and Flipout [11]. For Dropout we
tested several dropout rates while keeping L2 regularization fixed to 1e−5, while for Flipout we tested several L2
regularizations.

2 The 21cm signal
The 21cm signal from the neutral hydrogen in the intergalactic medium (IGM) is described through its brightness
temperature contrast, δTb, relative to the CMB [10]. We created 6000 brightness temperature images [4] with
resolution 1.5 Mpc through the semi-numerical code 21cmFast [9]. We varied two parameters corresponding to
the cosmological context: the matter density parameter Ωm ∈ [0.2, 0.4] and the rms linear fluctuation in the mass
distribution on 8h−1Mpc σ8 ∈ [0.6, 0.8], and the other two parameters corresponding to the astrophysical context:
the ionizing efficiency of high-z galaxies ζ ∈ [10, 100] and the minimum virial temperature of star-forming haloes
TFvir ∈ [3.98, 39.80] × 104K (hereafter represented in log10 units). For each set of parameters we produced 20
images at different redshifts in the range z ∈ [6, 12], and stacked them into a single multi-channel tensor.

Figure 2: Bayesian Network with Flow in output.
We quantify the performance of the network by its coefficient of determination

R2 = 1−
∑
i(µ̄(xi)− yi)2∑
i(yi − ȳ)2

(7)

and its confidence intervals, given by the percentage of times that yi falls in a β% confidence interval, with
β = {68.3, 95.5, 99.7}.

Flipout (NLL=-2.4) Dropout (NLL=-0.74)
σ8 Ωm ζ TFvir σ8 Ωm ζ TFvir

R2 0.92 0.97 0.83 0.97 0.87 0.94 0.65 0.92
C.L. 68.3% 74.1 70.2 75.4 70.3 70.4 67.3 58.5 76.1
C.L. 95.5% 97.4 96.2 98.5 96.0 95.7 96.3 91.7 98.5
C.L. 99.7% 99.7 99.9 99.9 99.9 99.6 99.8 99.8 99.9

We can observe that Flipout overperforms Dropout and gives more reliable uncertainty estimates. We can im-
prove even more the accuracy of the errors by implementing post-processing calibration methods [4]. Flipout
yields more accurate inferences and provides tighter constraints contours, see for example TFvir-ζ . Moreover, the
correlations such as σ8-Ωm provide significant information for breaking parameter degeneracies and thus, be able
to improve the existing measurements on cosmological parameters [8].
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Figure 2: 68% and 95% contours from one
example of our synthetic 21cm dataset.

IAF (NLL=-3.80)
σ8 Ωm ζ TFvir

R2 0.94 0.98 0.87 0.98
C.L. 68.3% 66.0 64.0 69.2 65.4
C.L. 95.5% 94.0 94.0 95.0 94.0
C.L. 99.7% 99.2 99.2 99.5 99.6

MAF (NLL=-3.73)
σ8 Ωm ζ TFvir

R2 0.94 0.98 0.87 0.98
C.L. 68.3% 64.7 63.7 69.1 65.0
C.L. 95.5% 93.3 94.2 95.1 94.0
C.L. 99.7% 99.0 99.3 99.3 99.4

NVP (NLL=-3.44)
σ8 Ωm ζ TFvir

R2 0.94 0.98 0.87 0.98
C.L. 68.3% 65.9 64.8 68.8 66.0
C.L. 95.5% 93.0 94.0 94.0 93.0
C.L. 99.7% 99.0 99.2 99.0 99.0

Figure 2: Metrics for the best experiments
with Normalizing Flows after calibration.

3 The Cosmic Microwave Background
We generated 50.000 images related to the Cosmic Microwave Background (CMB) maps projected in 20×20deg2

patches in the sky using the script described in [5]. These images have size of (256,256,3) and each image corre-
sponds to a specific set value of three parameters. We output a multivariate Gaussian, the NLL is

L ∼ 1

2
log |Σ| + 1

2
(y − µ)>Σ−1(y − µ) . (8)

Figure 3: Reliability diagrams, miscalibration area, NLL and R2 for varying α.

4 Adversarial Examples

We train a Classifier on the German traffic signs dataset
GTSRB, with VGG blocks: 32, 64, 64, 128 and final lin-
ear layers: 512, 128, 43. Optionally we decide to prepro-
cess the input images by reconstructing through a Vari-
ational Autoencoder (VAE) based on a residual encoder
and decoders and a latent size of 100. We attack the net-
work with Expectation over Transformation (EOT) with
a number of samples of 10 and with a Carlini Wagner
(CW) step. The attack is always performed in a white box
scenario by attacking the full system, either Classifier or
VAE+Classifier. We notice how BNNs classifiers trained
with alphas 0.5, 0.9 and 1.1 provide a defense advantage
with respect to the other Networks.

Figure 3: EOT CW attack for varying ep-
silon, and with different α during training.

These results show how a Bayesian approach, combined with the change in the optimization objective by varying
alpha, enhance the robustness of the Classifier to adversarial examples. As a future development, we can calibrate
the classifier after training it with KL, similarly to what we have done on the regression problems and compare
the robustness of alpha in training vs alpha in calibration.
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