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Famous quote on classical, macroscopic, thermodynamics taken from
Albert Einstein’s autobiographical notes:

A theory is more impressive the greater the simplicity of its premises, the
more different things it relates, and the more extended its area of
applicability. Hence the deep impression that classical thermodynamics
made upon me.

It is the only physical theory of universal content concerning which | am
convinced that, within the framework of the applicability of its basic
concepts, it will never be overthrown.

Note: thermodynamics directly originates from engineering
(maximal efficiency of steam engines, ..).
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Geometric modeling of thermodynamic systems

Whereas the geometry of Equilibrium Thermodynamics is well-known (Gibbs, Maxwell (1880s),
Hermann (1960s), Arnold (1989), Mrugala (1970s) ..), there are several competing formulations
for geometric irreversible thermodynamics:

® Metriplectic/GENERIC (Grmela, Ottinger et al.,)

® [rreversible Port Hamiltonian systems (Ramirez et al., 2013)

® variational formulations (Gay-Balmaz & Yoshimura, 2017)

® contact control Hamiltonian systems (Eberard et al. 2007 ... )

embedding the energy and entropy balance equations !

Recent interest in mathematical physics (black-hole thermodynamics, ..), information theory
(thermodynamically consistent machine learning ..), as well as in engineering (thermal/hysteresis
effects in mechatronics, heat networks, chemical engineering, .. nonlinear control).

Our motivation: to formulate a geometric, coordinate-free theory of irreversible thermodynamic
systems and their interconnections, generalizing the port-Hamiltonian formulation of
multi-physics systems.

AvdS, BM (UGroningen, Université Lyon-1) Homogenous symplectic approach



o Starting from Gibbs' relation contact geometry has been recognized
as appropriate geometric framework for thermodynamics: (n+ 1)
extensive - n intensive thermodynamical variables.

e Contact manifolds are canonically symplectized: gauge variable,
projective geometry.

o |rreversible thermodynamical processes are defined by homogeneous
Hamiltonian functions

Leads to unifying symplectic geometric formulation of (irreversible)
thermodynamic processes which :

e unifies of energy and entropy representations
e eases computations

e leads to a natural definition of ports
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@ Gibbs and contact geometry
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Simplest context: consider a closed thermodynamic system:

extensive variables: volume V and entropy S, internal energy E
intensive variables: pressure P, temperature T

Its thermodynamic properties are formalized by Gibbs' relation

dE = TdS — PdV

More generally for mixtures:
extensive variables, V, S, E and number of moles Ny, --- , Np,,
intensive variables P, T and chemical potentials g1, , ftm,

Gibbs' relation

dE = TdS — PdV + p1dNy + - - - + umdNp,
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What does Gibbs' relation dE = TdS — PdV mean?

Pragmatic answer: If E is expressed as function of the other two extensive
variables V| S

E=E(V,S),
then the two intensive variables —P, T are determined as
oE OE
—-P=—(V,S T=—(V,$S
8V( 9) 85( 9)
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Geometric point of view: Gibbs' equation (in the isentropic case) defines
the submanifold L C R3 given as

L={(V,E,~P)cR®| E:E(V),—Pzg—s

R R B I

(Figures taken from Ph.D. thesis of L.Bennayoun, 1999)

AvdS, BM (UGroningen, Université Lyon-1) Homogenous symplectic approach



Geometric point of view: Gibbs' equation defines the submanifold L C R®
given as

OE OE

— — 5 — — = — = —
L={(V,5,E,—-P, T)e R’ | E=E(V,S),-P OV’T 95

Different ways of locally parametrizing given by thermodynamic potentials
obtained by Legendre transformation of E(V/,S)
F(V,T) = E(V,S)-TS, Helmholtz energy coord. V, T
H(P,S) = E(V,S)+ PV, enthalpy coord. P, S

G(P, T) = H(P,S)-TS, Gibbs' free energy coord. P, T
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Contact geometric point of view

On the space R® > (V, S, E, —P, T) of extensive and intensive variables,
consider the contact form

0 := dE — TdS + PdV,

State properties are described by maximal submanifolds L restricted to
which 8 is zero; i.e., on L

0=0;, =dE — TdS + PdV i.e., Gibbs' relation

Any such L is 2-dimensional.

L is called a Legendre submanifold of (R5,#).

Thus the thermodynamic properties are defined by a Legendre submanifold
of R®.
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For any such L there exists locally at least one parametrization by

E(V,S),F(V,T),H(—P,S), or G(—P, T), such that

L = {(V’S’E’_P’T)|E:E(V75)v_ _3577—_%

or

L = {(V,S,E,~P,T)|E=F(V,T)-T% —p=90 5= _0F}

or
L = {(V.S.E,=P,T)| E=H(=P,S)+Psty.T = 54,V =525}
or
L = {(V,S,E,—~P,T)|E=G(-P,T) - $+P8P,
V=- a(— P)’S_ 8T

E.F,H, G are called generating functions for L.

NB Can get complicated: Maxwell spent 1874 summer on making a
plaster model for E = E(V/,S) (explaining discontinuous phase transitions)
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0 is special type of 1-form: a contact form

The 1-form 8 = dE — TdS + PdV satisfies the non-degeneracy condition

dOAdOND = (—dT AdS+dPAdV) A (—dT A dS+dP A dV)
A (dE — TdS + PdV)
= —2dTAdSAdPAdV AdE #0

0 is called maximally non-integrable:

maximal manifolds on which 6 is zero have minimal dimension; i.e., 2.

Such 1-forms are called contact forms and are 'as far as possible’ from
integrable 1-forms such as dK, for some K : R®> - R.

(NB: maximal manifolds on which dK is zero have dimension 4 instead.)
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Standard starting point of contact geometry

By Darboux’s theorem for any 1-form on R® satisfying
dOANdONOF£Q contact form

there exist coordinates
do,qd1,492,71,72
such that
0 = dgo — y1dq1 — Y2dqo

Any Legendre submanifold L of (R, ) is locally represented as

oF oF OF
L={lq0, 91, 92,71,%2) [ @0 = F =5 = 50 ar = — 5}

for some generating function F(qy,v,), {1,2} =1U J.
Conversely, any such L is Legendre submanifold.
Is immediately generalized to general contact manifolds.
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Definition
A contact manifold is a (2n + 1)-dimensional manifold M with (a locally
defined) 1-form 6 satisfying 6 A (d6)" # 0.

By Darboux’s theorem 3 coordinates qo, g1, , Gn, V1, - ,Yn for M s.t.
n
0 = dqo — Z%‘dql',
i=1

qo, g1, - ,qn extensive and 1, --- ,7, intensive variables. A Legendre
submanifold L is integral manifold of § of maximal dimension (= n).

Any Legendre submanifold L of (M, ) is locally represented as

OF OF OF
L= qo,;q1, - 54n, V1, Y qOZF*nyia I = 35,49 = 53>
U " | o o 57,1
for some generating function F(qy,v,), {1,---,n} =1UJ.
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As a result, since the 1970s (Hermann, Mrugala, ..) contact geometry has been recognized as
appropriate geometric framework for thermodynamics.

Thermodynamically consistent transformations are naturally expressed by contact
transformations; e.g. ¢ : R® — R such that ¢*0 = 76 for some nowhere vanishing function .

Infinitesimal contact transformations are the contact vector fields X satisfying
Lx6 = po

for some function p. The corresponding contact Hamiltonian is the function 6(X).

Mrugala has shown that a contact vector field X leaves a Legendre submanifold L invariant if
and only its contact Hamiltonian (X)) is zero on L.
This corresponds to leave the thermodynamic (equilibrium) properties of the system invariant !

This leads to the theory of thermodynamic transformations:
® reversible transformations as developed by Mrugala, Benayou, - - -
® jrreversible transformations by Grmela, Balian, Valentin

® controlled irreversible systems by Maschke, van der Schaft, Eberard, Favache, Ramirez, ...
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® From contact geometry to homogeneous symplectic geometry
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Summarizing:
® Gibbs' relation immediately leads to contact geometry.
® State properties are described by Legendre submanifolds.

® Contact transformations are natural tools.

Actually thermodynamic properties may also be written in entropy representation where the
properties are derived from the expression of the entropy function

S=5(V,E),
leading to the intensive variables, the reciprocal temperature %and;

LB E_Bwe
T OE T oV

This results from rewriting Gibbs' relation as dS = %dE + ;dV7
and defining the associated 'entropy’ contact form

- 1 P
0=dS— —dE — —=dV
T T

This is a different contact form ! (although 'conformally equivalent’ to 6) where the Legendre

submanifolds defining the thermodynamic properties are generated by Massieu’s functions.
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Basic message (Balian & Valentin, 2001): multiply Gibbs' contact form
0 = dE — TdS + PdV
on R by an extra (gauge) variable pg to obtain
pedE — pe TdS + pePdV/,
defining the Liouville form on the cotangent bundle T*R3 = R°®
a:= pgdE + psdS + pydV, ps:=—peT, pv :=peP

Then
_Ps _ T, Pv _ _p
—PE —PE

corresponds to energy representation, while

PE 1 pv P

—ps T —ps T

corresponds to entropy representation.
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Thus we have replaced the intensive variables
T, —P energy representation

or
1

T T
by the homogeneous coordinates

entropy representation

Pv, Ps, PE

In this way we replace the contact manifold R with contact form 6 or §
by the symplectic manifold R® = T*R3, with R3 the space of extensive
variables (V, S, E), and co-extensive variables (pv, ps, pg)-

In this way the energy and entropy representation are unified (main
motivation for Balian & Valentin). But there are many more advantages !
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Symplectization of contact manifolds

(cf. Arnold, Libermann & Marle)

Start with (n + 1)-dimensional manifold Q of all extensive variables.

Denote by 7*Q the (2n + 2)-dimensional cotangent bundle T*Q without
its zero-section.

Coordinates for the cotangent space will be homogeneous coordinates for
the space of intensive variables.

Define P(T*Q) as the projectivization of T*Q:
the (2n 4 1)-dimensional fiber bundle over @ with fiber at any point
q € Q given by the n-dimensional projective space P(T; Q).

Then P(T*Q) is contact manifold, defining the thermodynamic phase
space of extensive and intensive variables.
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Intermezzo: P(T*Q) as contact manifold

Indeed; let Q be (n+ 1)-dimensional. Take any point g € Q, and consider
the set of n-dimensional subspaces S of the (n + 1)-dimensional tangent
space T,4Q.

This defines an (2n 4 1)-dimensional manifold M, which is a fiber bundle
over @ with projection I1: M — Q.

Define a field of hyperplanes on M by considering at each point

(9,5) € M, with g € Q and S an n-dimensional subspace of T,Q, the
subspace of all tangent vectors at (g, S) to M which are such that the
projection to T¢Q (under IM) is contained in S.

It can be checked that this defines a contact structure on M: i.e., this
field of hyperplanes is the kernel of a (locally defined) contact form.
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P(T*Q) as contact manifold; cont'd

But an n-dimensional subspace S of the tangent space T,Q can be
identified with the set of all non-zero multiples of some cotangent vector
in T5Q whose kernel equals this subspace.

Hence, the contact manifold M as above is equal to
M=P(T*Q),
i.e., the fiber bundle over @ with fiber at any point g € Q given by the
projective space P(T;Q).
Conversely, 7*Q is the symplectization of the contact manifold P(T*Q).

Furthermore by Darboux’s theorem any other (2n 4+ 1)-dimensional contact
manifold is locally contactomorphic to the contact manifold P(T*Q) for
some (n + 1)-dimensional manifold Q.

Hence any contact manifold is locally P(T*Q) for some Q.
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P(T*Q) as contact manifold; cont'd

Summarizing, the canonical contact manifold (thermodynamic phase
space) is the (2n + 1)-dimensional manifold P(T*Q),

obtained from the (2n + 2)-dimensional symplectic cotangent bundle 7*Q.

Furthermore, objects on the thermodynamic phase space P(T*Q) can be
derived from corresponding objects on 7*Q having additional homogeneity
properties.

Advantages:
e Unification of energy, entropy, - - -, representations.
e All computations etc. will be much easier on T*Q.

o Will allow for a simple definition of power and rate of entropy ports.
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Objects on P(T*Q) from homogeneous objects on 7*Q

Definition

A function K : T*Q — R is homogeneous of degree r (in p) if

K(qu a1, aqm)‘p07}‘p1a co 7)‘pn) =
)\rK(Qqula"‘ »dn, PO, P1, " " * 7pn)7 V)‘?éo

Theorem (Euler)
Differentiable function K : T*Q — R is homogeneous of degree r iff

n

15).4 R
Zpia?(q, p) =rkK(q,p), forall(q,p) €T Q
i=0 !

Furthermore, if K is homogeneous of degree r, then its derivatives
g—g, i=0,1,---,n, are homogeneous of degree r — 1.
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Correspondence between Legendre submanifolds of P(T*Q)

and homogeneous Lagrangian submanifolds of 7*Q

T*Q is endowed with the Liouville 1-form
o = podqo + p1dq1 + - - - ppdqn
and the symplectic form
w=da=dpy Adqo+ dp1 Adg1+---dpn A dqs

A Lagrangian submanifold is a maximal submanifold £ C 7*Q restricted
to which w is zero.

L C T*Q is called homogeneous if whenever (g, p) € L then also
(g,A\p) € L for any 0 # X € R.
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Consider the canonical projection
T:T°Q - P(T*Q)

Then: any Legendre submanifold L C P(T*Q) defines a homogeneous
Lagrangian submanifold

L:=7LcT*Q,
and conversely any homogeneous Lagrangian submanifold is of this type.

Furthermore ! :

Homogeneous Lagrangian submanifolds £ C T*Q are maximal
submanifolds restricted to which the Liouville form o is zero.

(Hence, not only w := da is zero on L, but in fact « is zero on L 1)
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Simplest case

(9,S,E, p,ps, pe) can. coordinates for T*Q¢, Q¢ = Q x R x R.

Generating function of homogeneous Lagrangian submanifold £ in energy
representation

—peE(q,S)
yielding
L = {(9,S,E,p.ps,pe) | E=E(q,S),
p=—pe9e(q,S), ps = —pe%(q, )}
In the entropy representation, homogeneous generating function of L is
—psS(q. E)
yielding
£ = {(q,S,E,p,ps,pe) | S = S(q,E),
p=—ps9e(a,E), pe = —ps52(q, E)}
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General case

Any Legendre submanifold L of a contact manifold with coordinates

40> G, 5 Gny Y1, o 5 Yy 0= dqo —y1dqy - - — Ynddn
with generating function F(q,7,) (with fUJ={1,--- n})is

L = {(q0,q1, - »Gn 71 »7) | Go = F =155,
_ oF _ OF
qJ__Tw’fY/_aiq/

Then the homogeneous Lagrangian submanifold £ = 7~ %(L) is defined by
the homogeneous degree 1 generating function

Py
G(qo, " ,Gn:Pos "+ Pn) = _poF("”_To)

L = {(QO,"‘anPOa“'aPn)|QO:—ngO, qJ:_aicy Plzai
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Contact and homogeneous Hamiltonian vector fields

Take Hamiltonian K : 7*Q — R. Then Hamiltonian vector field Xk on
T*Q is

] = K ) = K ( ) canonical coordinates
i - i i
q 5 P y q, p

Any Hamiltonian vector field Xk is characterized by the property that the
Lie-derivative Lx, w = 0.

A Hamiltonian vector field Xx on 7*Q with K homogeneous of degree 1
not only satisfies Lx, w = 0, but in fact Lx, o =0

]LXKO( = ixda + d(Oé(XK)) =—dK+dK=0
Conversely, if Lx,a = 0, then by homogeneity a(Xx) = K, and thus
0= ]LXKa = ideé + d(a(XK)) = ideé + dK

implying that K, up to a constant, is homogeneous of degree 1.
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Contact and homogeneous Hamiltonian vector fields

Furthermore, any such Hamiltonian vector field X)x with K homogeneous
of degree 1 projects to a contact vector field X = 7. Xk on the contact
manifold P(T*Q), i.e.,

]LXRH = pB, for some function p

Correspondence between homogeneous Hamiltonian K on 7*Q and
contact Hamiltonian K on P(T*Q) is given as
p1 Pn )

K(QO,"' ydn, PO, " - aPn):POK(qu"’ sy qny — 5,
—Po —Po

Recall that a contact vector field X leaves a Legendre submanifold L
invariant if and only if its contact Hamiltonian K = 6(X) is zero on L.

Similarly, a homogeneous Lagrangian submanifold £ is left invariant by Xk
with K homogeneous of degree 1 if and only if K is zero on L.

(Thus Mrugala’s theory of thermodynamic transformations can be
immediately translated to the homogeneous symplectic formulation.)
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Furthermore, the Poisson bracket
{K', K?}

of two degree 1 Hamiltonians K1, K> on 7*Q is also of degree 1, and
corresponds to the Jacobi bracket {-, -}, of the corresponding contact
Hamiltonians K1, K on P(T*Q):

(K'Y, K2}, = {KT, K2}

(This will allow to set up an easy theory of controllability and observability
for port-thermodynamic systems as discussed hereafter.)
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Excursion to optimal control*

Consider the optimal control problem of minimizing

-
/ L(x(8), u(t)dt,  x(0) = xo, x € R,
0
over all input functions v : [0, T] — R™ for the dynamics x = f(x, u).
Define xp such that xg = L(x, u), x0(0) = 0 ('"Mayer problem’).

Define the Hamiltonian H : T*R"*1 x R™ — R as the canonical lifting of
the total dynamics

H(xo, X, Ao, A\, 1) = AT F(x, u) + MoL(x, u),

which is homogeneous in (Mg, A).

1See Ohsawa, Joszwikowski & Respondek for the contact formulation

AvdS, BM (UGroningen, Université Lyon-1) Homogenous symplectic approach



Optimal control cont’d

The corresponding Hamiltonian vector field Xy (parametrized by u) is

Xo = L(x,u)

x = f(x,u)

o =0

\ Of (x,u OL(x,u
B AT e

Thus Ag is constant. A\g = 0 is the so-called abnormal case. For A\g # 0
the standard co-state variables are defined as

resulting in the standard equations of Pontryagin's Maximum principle.
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For the infinite-horizon optimal control problem (T — o0), the stationary
Hamilton-Jacobi-Bellman equation corresponds to a homogeneous
Lagrangian submanifold £ C T*R"™?!, with generating function

—XoV(x)

where V is Bellman's value function, i.e.,

oV
E = {(Xo,X, )\0,)\) ’ X0 = V(X), A = —)\ga(x)}
and oV
min H(V(x), x, Ao, —)\ga(x), u)=0
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© Definition of port-thermodynamic systems
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Towards definition of port-thermodynamic systems

(1) Thermodynamic properties are described by a Legendre submanifold
L C P(T*Q) or the homogeneous Lagrangian submanifold £ C T*Q.

(2) Any thermodynamically consistent dynamics should leave the
thermodynamic properties invariant, i.e., should leave the Legendre
submanifold L € P(T*Q) or the homogeneous Lagrangian submanifold
L C T*Q invariant.

(3) How to define the dynamics on L or L ?

(4) How to define interaction ports of a thermodynamic system ?
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Change of paradigm: the thermodynamic phase space is

not an ordinary state space

State properties of the thermodynamic system are described by Gibbs’
relation: relation between all extensive and intensive variables.

Thus the Legendre submanifold L C P(T*Q) or the homogeneous
Lagrangian submanifold £ C 7*@Q describes the actual state space of the
thermodynamic system !

Thus in principle there is no need to consider points of P(T*Q) outside L,

and the dynamics of the thermodynamic system necessarily leaves
L C P(T*Q) invariant !

Similarly, in the homogeneous symplectic formulation there is no need to
consider points of 7*@Q outside £, and the dynamics of the
thermodynamic system necessarily leaves £ C T*Q invariant.

AvdS, BM (UGroningen, Université Lyon-1) Homogenous symplectic approach



Change of paradigm: a simple analogy

Situation regarding invariance of L or £ may be compared with description
of, e.g.,an electrical capacitor: its 'state properties’ are

E=E(Q) (= 5c@). V=55 =)

From a geometric 'thermodynamic point of view’ this corresponds to
1-dimensional Legendre submanifold L of the 'thermodynamic phase space’
of the capacitor R3 > (@, E, V)

L= ((Q.E V)| E= (@), V= %(q))

instead of the common 1-dimensional vector space R with coordinate @ or
V.
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Definition of port-thermodynamic system

Introduce new notation emphasizing special role extensive variables S, E:

Define Q¢ = Q@ x R x R as the manifold of all extensive variables, with
coordinates for Q¢ denoted by

q°=(q,S,E),

with g coordinates for Q: remaining extensive variables (such as
Va va' o 7Nm)-

Cotangent bundle coordinates for 7* Q€ will be denoted by
(qeape) = (q757 Ev P, p57pE)

Consider the state properties defined by £ C 7*Q¢, or equivalently
L C P(T*Q¢), which should be left invariant by the dynamics of the
thermodynamic system.
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Definition of port-thermodynamic system; cont'd

This leads to defining the dynamics of a port-thermodynamic system with
state properties £ C 7*Q¢ by a homogeneous (degree 1 in p¢)
Hamiltonian, parametrized by u € R™

K=K+Ku:T"Q* =R, wuveR"

with K@ (drift Hamiltonian) and Kfj=1,--,m (input Hamiltonians),
which are all zero restricted to £, and hence leave £ invariant.

By Euler's Theorem, homogeneity implies

K2 =pTf + psfs + pefe, f—aa’f,a,fs ‘?9';; fe = (gﬁ,j

K¢ =pTg+psgs+pege, 8= %585 = a8 =

where the functions f, fs, fe, g, gs, ge are all homogeneous of degree 0;

defining the dynamics of the extensive variables.

AvdS, BM (UGroningen, Université Lyon-1) Homogenous symplectic approach



Additional conditions on the drift part K?

First Law of Thermodynamics additionally imposes
fE|L = 07

i.e., conservation of energy when no interaction with the environment
takes place.

Second Law of Thermodynamics imposes
fs|c >0,

i.e., entropy increases when no interaction with the environment takes
place: fs|c is irreversible entropy production.
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Symplectization leads to formalization of interaction with

environment through ports

Define the outputs (homogeneous degree 0)
Yp := 8E|c, homogeneous degree 0,

leading to the power balance %E’g = ypu.

(u,yp) defines a power port.

Alternative entropy-conjugate outputs are defined as
Ye ‘= &s|c, homogeneous degree 0,

; d
leading to the rate of entropy balance S|z > yeu.

(u, ye) defines a rate of entropy port.
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Some additional observations

¢ Note that the Hamiltonians K2 and K€ are (physically)
dimension-less.

e On the other hand, in the energy representation the contact
Hamiltonians K@ and K¢ have dimension of power; and in the entropy
representation dimension of rate of entropy.

e One could also define ports with respect to the other extensive
variables; e.g., volume V.
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O Examples
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Example (Mass-spring-damper system)

Consider extensive variables z (extension of the spring), 7 (momentum)
and entropy S. State properties are described by Lagrangian submanifold
L with generating function

pE < 2y U(S)>

2m
defining the state properties
2
L = {(Z,?T,S, E7p27p71'ap57pE) | E= %kz2 + ;Tim -+ U(S)7
pz = —Pekz, pr = —pen, ps = —peU'(S)}
Dynamics is given by the homogeneous Hamiltonian

K= ey (b dn) s G+ (oeper)

The power-conjugate output y, = - is the velocity of the mass.
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Example (Gas-piston-damper system)

This system is analogous to previous example, replacing z by volume V
and the partial energy 2kz? + U(S) by internal energy of the gas U(V, S).

Dynamics is defined by the Hamiltonian

T ou d(Z)? T
K=pz5+pﬂ< v —d— ) PS—5y +<pﬂ+p55)u

S

where the power-conjugate output y, = 7- is the velocity of the piston.
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Example (Heat exchanger)
Extensive variables 51, S» (entropies of the two compartments) and E
(total energy). The state properties are described by
L = {(517527 E7p517p52apE) | E= El(Sl) + E2(S2)7
pPs; = _pEE]/.(Sl)v Ps, = _pEEé(S2)}7
corresponding to generating function —pg(E1(S1) + E2(Sz2), with Ej, Ep

energies of the two compartments. Denoting the temperatures
T1 = E{(51), T2 = E5(S2), the dynamics is given by Hamiltonian

1
—)(ps, T2 — ps, T1)

1
Ko = A= —
(Tl T>

with X\ Fourier's conduction coefficient. Dynamics on L satisfies

51+52:)\(?1—?2)(T2— Tl)ZO
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Example (Carnot cycle for a gas)

OE OE

— {(V,S,E E=E(V — = —pres
L {( 757 aquDSapE)‘ ( 75)7PV pE8V7p5 PEaS

Assuming reversibility K¢ = 0. Furthermore, consider input Hamiltonians

0S

O0E
Ky =pv+pPesy;, Ki =PEtPsyE

oV’
with inputs uy rate of extension of the volume, and u, heat flow.

In case of an ideal gas

R

s R
E(V,S)= Cyev Ve ¢v,

with Cy heat capacity (at constant volume), and R universal gas constant.

Adiabatic process corresponds to K{,uy, and isothermal process to a
combination of K{,uy and Kcuq such that T = 85 remains constant.
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Interconnection of port-thermodynamic systems

Consider two port-thermodynamic systems with phase space
(Qi;Pi,SIaPS,-;EhPE,-)G T*Qi>< T*R x T*Ra i:1727
and Liouville one-forms o; = p;dq; + ps,dS; + pg,dE; on the space of

extensive and co-extensive variables T*Q; x T*R x T*R.
Impose the constraint

PE, = PE, = PE
This leads to the summation of the Liouville forms o1 and ao:
Qsum ‘= p1dq1 + p2dq2 + ps, dS1 + ps,dSy + ped(E1 + E2)
on the composed space defined as
T*Qle 0 T*QZE = {(q17 P1, g2, p2, 517 Ps; 5 527 Ps,; E7 pE)
ET QL x T"@Q x T"R x T*R x T*R}
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Let the state properties of the two individual systems be defined by
homogeneous Lagrangian submanifolds

E,‘ C T*Q, X T*R, X T*R,', i = ]_,27
with generating functions —pg, Ei(qi, Si),i = 1,2.

The state properties of the composed system are defined by homogeneous
Lagrangian submanifold

‘CI O‘C2 = {(ql’q2ap17p27517p517527p527Ea PE | E= El + E27
(qiapi»si,PS,-inaPE,-) € £i7 = 172}a

with generating function —pg [E1(q1, S1) + Ex(g2, S2)].
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Consider the dynamics on £; defined by Hamiltonians
K; = K,-a + K,-Cu,-, i=1,2.
Assume K; do not depend on E;,i =1,2. Then
Ki+ Ko

is well-defined on £y o £, for all uy, us.
Imposing interconnection constraints on the power-port variables
u, U, ¥p1, yp2 satisfying

Yp1u1 + yopu2 =0,
yields the closed-loop dynamics on £ o £5.

Similarly for interconnection via rate of entropy flow ports, imposing
interconnection constraints satisfying

Ye1U1 + Yeotin > 0,

For example, the mass-spring-damper system can be built up from power
interconnection of 'thermodynamic’ subsystems:
(1) mass, (2) spring, (3) damper.
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Outline

@ Conclusions
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Gibbs' relation describes state properties, and corresponds to
Legendre submanifold of contact manifold.

Contact geometry can be symplectized. This allows easy switching
between entropy and energy representation, and simplifies picture
(e.g., extensive and intensive variables) and computations.
Thermodynamic systems defined by £ (state properties) and by

K = K? + K°u which is zero on L.

Leads to simple definition of power ports and rate of entropy flow
ports for thermodynamic systems; and thereby interconnection theory
of port-thermodynamic systems.

Allows for nonlinear controllability and observability analysis of
thermodynamic systems: Poisson bracket {Ki, K2} of homogeneous
K; is again homogeneous.

Additional geometry: intrinsically defined Riemannian metric on L,
generalizing the Weinhold and Ruppeiner metrics.

Homogeneity with respect to the extensive variables can be added:
Gibbs-Duhem relations.

Open problem: 'Canonical’ form of K? and K€ is yet unknown.
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