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Mesdames, Messieurs les enseignants chercheurs 
Mesdames, Messieurs les présidents des comités 
consultatifs 
Messieurs les directeurs de la F.S.T., UFR STAPS, 
d’Instituts, de l’Ecole, 
Mesdames, Messieurs les directeurs des 
départements 

       
 
OBJET : Campagne d’avancement de grade 2011 des enseignants chercheurs, et calendrier. 
 
La procédure d’avancement de grade des professeurs des universités et des maîtres de conférences est fixée par 
les articles 40 et 56 du décret n° 84-431 du 6 juin 1984 modifié fixant les dispositions statutaires applicables aux 
enseignants chercheurs et portant statut particulier du corps des professeurs des universités et du corps des 
maîtres de conférences. 
 
Rappel des conditions administratives : 
 
A – Promotion à la hors classe des maîtres de conférences : Etre parvenu au 7ème échelon de la classe normale au 
31 décembre de l’année précédent la campagne et justifier de 5 ans d’ancienneté dans le corps des maîtres de 
conférences. 
 
B – Promotion à la 1ère classe des professeurs des universités : Etre professeur de 2ème classe au 31 décembre de 
l’année précédent la campagne. 
 
C – Promotion à la classe exceptionnelle, 1er échelon des professeurs des universités : Justifier d’une ancienneté 
de 18 mois dans la 1ère classe au 31 décembre de l’année précédent la campagne. 
 
D – Promotion à la classe exceptionnelle, 2ème échelon des professeurs des universités : Justifier d’une ancienneté 
de 18 mois dans le 1er échelon au 31 décembre de l’année précédent la campagne. 
 
Il est prévu (article 7-1 du décret suscité) que l’enseignant-chercheur promouvable, candidat à une promotion de 
grade, établisse un dossier de candidature à un avancement de grade comportant un rapport qui rend compte de 
l’ensemble de ses activités. Ce dossier sera examiné par les instances compétentes pour proposer la promotion de 
grade, selon les cas, la section du C.N.U. et le conseil d’administration restreint de l’établissement, ou l’instance 
nationale de l’avancement spécifique. 
 
Le dossier de candidature sera dématérialisé. A cette fin, sur le site INTERNET du Ministère de l’enseignement 
supérieur et de la recherche, au sein du portail GALAXIE, une application dédiée, nommée ELECTRA, permettra 
à l’enseignant-chercheur de constituer et suivre la circulation de son dossier. 
 
Adresse : 
 

https://www.galaxie.enseignementsup-recherche.gouv.fr/ensup/candidats;html 
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Famous quote on classical, macroscopic, thermodynamics taken from
Albert Einstein’s autobiographical notes:

A theory is more impressive the greater the simplicity of its premises, the
more different things it relates, and the more extended its area of
applicability. Hence the deep impression that classical thermodynamics
made upon me.
It is the only physical theory of universal content concerning which I am
convinced that, within the framework of the applicability of its basic
concepts, it will never be overthrown.

Note: thermodynamics directly originates from engineering
(maximal efficiency of steam engines, ..).
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Geometric modeling of thermodynamic systems

Whereas the geometry of Equilibrium Thermodynamics is well-known (Gibbs, Maxwell (1880s),
Hermann (1960s), Arnold (1989), Mrugala (1970s) ..), there are several competing formulations
for geometric irreversible thermodynamics:

• Metriplectic/GENERIC (Grmela, Öttinger et al.,)

• Irreversible Port Hamiltonian systems (Ramirez et al., 2013)

• variational formulations (Gay-Balmaz & Yoshimura, 2017)

• contact control Hamiltonian systems (Eberard et al. 2007 ... )

embedding the energy and entropy balance equations !

Recent interest in mathematical physics (black-hole thermodynamics, ..), information theory
(thermodynamically consistent machine learning ..), as well as in engineering (thermal/hysteresis
effects in mechatronics, heat networks, chemical engineering, .. nonlinear control).

Our motivation: to formulate a geometric, coordinate-free theory of irreversible thermodynamic
systems and their interconnections, generalizing the port-Hamiltonian formulation of
multi-physics systems.
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Main points

• Starting from Gibbs’ relation contact geometry has been recognized
as appropriate geometric framework for thermodynamics: (n + 1)
extensive - n intensive thermodynamical variables.

• Contact manifolds are canonically symplectized: gauge variable,
projective geometry.

• Irreversible thermodynamical processes are defined by homogeneous
Hamiltonian functions

Leads to unifying symplectic geometric formulation of (irreversible)
thermodynamic processes which :

• unifies of energy and entropy representations

• eases computations

• leads to a natural definition of ports
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Outline

1 Gibbs and contact geometry

2 From contact geometry to homogeneous symplectic geometry

3 Definition of port-thermodynamic systems

4 Examples

5 Conclusions
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Simplest context: consider a closed thermodynamic system:

extensive variables: volume V and entropy S , internal energy E

intensive variables: pressure P, temperature T

Its thermodynamic properties are formalized by Gibbs’ relation

dE = TdS − PdV

More generally for mixtures :

extensive variables, V ,S ,E and number of moles N1, · · · ,Nm,

intensive variables P,T and chemical potentials µ1, · · · , µm,

Gibbs’ relation

dE = TdS − PdV + µ1dN1 + · · ·+ µmdNm,
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What does Gibbs’ relation dE = TdS − PdV mean?

Pragmatic answer: If E is expressed as function of the other two extensive
variables V , S

E = E (V ,S),

then the two intensive variables −P,T are determined as

−P =
∂E

∂V
(V , S), T =

∂E

∂S
(V ,S)
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Geometric point of view: Gibbs’ equation (in the isentropic case) defines
the submanifold L ⊂ R3 given as

L = {(V ,E ,−P) ∈ R5 | E = E (V ),−P =
∂E

∂V
}
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(Figures taken from Ph.D. thesis of L.Bennayoun, 1999)
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Geometric point of view: Gibbs’ equation defines the submanifold L ⊂ R5

given as

L = {(V , S ,E ,−P,T ) ∈ R5 | E = E (V , S),−P =
∂E

∂V
,T =

∂E

∂S
}

Different ways of locally parametrizing given by thermodynamic potentials
obtained by Legendre transformation of E (V ,S)

F (V ,T ) = E (V , S)− TS , Helmholtz energy coord. V ,T

H(P, S) = E (V , S) + PV , enthalpy coord. P,S

G (P,T ) = H(P,S)− TS , Gibbs’ free energy coord. P,T
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Contact geometric point of view

On the space R5 3 (V ,S ,E ,−P,T ) of extensive and intensive variables,
consider the contact form

θ := dE − TdS + PdV ,

State properties are described by maximal submanifolds L restricted to
which θ is zero; i.e., on L

0 = θL = dE − TdS + PdV i.e., Gibbs’ relation

Any such L is 2-dimensional.

L is called a Legendre submanifold of (R5, θ).

Thus the thermodynamic properties are defined by a Legendre submanifold
of R5.
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For any such L there exists locally at least one parametrization by

E (V , S),F (V ,T ),H(−P,S), or G (−P,T ), such that

L = {(V , S ,E ,−P,T ) | E = E (V ,S),−P = ∂E
∂V ,T = ∂E

∂S }

or

L = {(V , S ,E ,−P,T ) | E = F (V ,T )− T ∂F
∂T ,−P = ∂F

∂V ,S = − ∂F
∂T }

or

L = {(V , S ,E ,−P,T ) | E = H(−P, S)+P ∂H
∂(−P) ,T = ∂H

∂S ,V =− ∂H
∂(−P)}

or

L = {(V , S ,E ,−P,T ) | E = G (−P,T )− T ∂G
∂T + P ∂G

∂P ,

V = − ∂G
∂(−P) ,S = −∂G

∂T }

E ,F ,H,G are called generating functions for L.

NB Can get complicated: Maxwell spent 1874 summer on making a
plaster model for E = E (V , S) (explaining discontinuous phase transitions)
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θ is special type of 1-form: a contact form

The 1-form θ = dE − TdS + PdV satisfies the non-degeneracy condition

dθ ∧ dθ ∧ θ = (−dT ∧ dS + dP ∧ dV ) ∧ (−dT ∧ dS + dP ∧ dV )

∧ (dE − TdS + PdV )

= −2dT ∧ dS ∧ dP ∧ dV ∧ dE 6= 0

θ is called maximally non-integrable:

maximal manifolds on which θ is zero have minimal dimension; i.e., 2.

Such 1-forms are called contact forms and are ’as far as possible’ from
integrable 1-forms such as dK , for some K : R5 → R.

(NB: maximal manifolds on which dK is zero have dimension 4 instead.)
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Standard starting point of contact geometry

By Darboux’s theorem for any 1-form on R5 satisfying

dθ ∧ dθ ∧ θ 6= 0 contact form

there exist coordinates
q0, q1, q2, γ1, γ2

such that
θ = dq0 − γ1dq1 − γ2dq2

Any Legendre submanifold L of (R5, θ) is locally represented as

L = {(q0, q1, q2, γ1, γ2) | q0 = F − γJ
∂F

∂γJ
, γI =

∂F

∂qI
, qJ = − ∂F

∂γJ
, }

for some generating function F (qI , γJ), {1, 2} = I ∪ J.
Conversely, any such L is Legendre submanifold.
Is immediately generalized to general contact manifolds.
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Definition

A contact manifold is a (2n + 1)-dimensional manifold M with (a locally
defined) 1-form θ satisfying θ ∧ (dθ)n 6= 0.

By Darboux’s theorem ∃ coordinates q0, q1, · · · , qn, γ1, · · · , γn for M s.t.

θ = dq0 −
n∑

i=1

γidqi ,

q0, q1, · · · , qn extensive and γ1, · · · , γn intensive variables. A Legendre
submanifold L is integral manifold of θ of maximal dimension (= n).

Any Legendre submanifold L of (M, θ) is locally represented as

L = {(q0, q1, · · · , qn, γ1, · · · , γn) | q0 = F−γJ
∂F

∂γJ
, γI =

∂F

∂qI
, qJ = − ∂F

∂γJ
, }

for some generating function F (qI , γJ), {1, · · · , n} = I ∪ J.
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As a result, since the 1970s (Hermann, Mrugala, ..) contact geometry has been recognized as
appropriate geometric framework for thermodynamics.

Thermodynamically consistent transformations are naturally expressed by contact
transformations; e.g. φ : R5 → R5 such that φ∗θ = τθ for some nowhere vanishing function τ .

Infinitesimal contact transformations are the contact vector fields X satisfying

LX θ = ρθ

for some function ρ. The corresponding contact Hamiltonian is the function θ(X ).

Mrugala has shown that a contact vector field X leaves a Legendre submanifold L invariant if
and only its contact Hamiltonian θ(X ) is zero on L.
This corresponds to leave the thermodynamic (equilibrium) properties of the system invariant !

This leads to the theory of thermodynamic transformations:

• reversible transformations as developed by Mrugala, Benayou, · · ·
• irreversible transformations by Grmela, Balian, Valentin

• controlled irreversible systems by Maschke, van der Schaft, Eberard, Favache, Ramirez, ...
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Summarizing:

• Gibbs’ relation immediately leads to contact geometry.

• State properties are described by Legendre submanifolds.

• Contact transformations are natural tools.

Actually thermodynamic properties may also be written in entropy representation where the
properties are derived from the expression of the entropy function

S = S(V ,E),

leading to the intensive variables, the reciprocal temperature 1
T
and P

T

1

T
=
∂S

∂E
(V ,E),

P

T
=
∂S

∂V
(V ,E)

This results from rewriting Gibbs’ relation as dS = 1
T
dE + P

T
dV ,

and defining the associated ’entropy’ contact form

θ̃ = dS −
1

T
dE −

P

T
dV

This is a different contact form ! (although ’conformally equivalent’ to θ) where the Legendre

submanifolds defining the thermodynamic properties are generated by Massieu’s functions.

AvdS, BM (UGroningen, Université Lyon-1) Homogenous symplectic approach 17 / 53



Basic message (Balian & Valentin, 2001): multiply Gibbs’ contact form

θ = dE − TdS + PdV

on R5 by an extra (gauge) variable pE to obtain

pEdE − pETdS + pEPdV ,

defining the Liouville form on the cotangent bundle T ∗R3 = R6

α := pEdE + pSdS + pV dV , pS := −pET , pV := pEP

Then
pS
−pE

= T ,
pV
−pE

= −P

corresponds to energy representation, while

pE
−pS

=
1

T
,

pV
−pS

=
P

T

corresponds to entropy representation.
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Thus we have replaced the intensive variables

T , −P energy representation

or
1

T
,
P

T
entropy representation

by the homogeneous coordinates

pV , pS , pE

In this way we replace the contact manifold R5 with contact form θ or θ̃
by the symplectic manifold R6 = T ∗R3, with R3 the space of extensive
variables (V ,S ,E ), and co-extensive variables (pV , pS , pE ).

In this way the energy and entropy representation are unified (main
motivation for Balian & Valentin). But there are many more advantages !
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Symplectization of contact manifolds
(cf. Arnold, Libermann & Marle)

Start with (n + 1)-dimensional manifold Q of all extensive variables.

Denote by T ∗Q the (2n + 2)-dimensional cotangent bundle T ∗Q without
its zero-section.

Coordinates for the cotangent space will be homogeneous coordinates for
the space of intensive variables.

Define P(T ∗Q) as the projectivization of T ∗Q:
the (2n + 1)-dimensional fiber bundle over Q with fiber at any point
q ∈ Q given by the n-dimensional projective space P(T ∗qQ).

Then P(T ∗Q) is contact manifold, defining the thermodynamic phase
space of extensive and intensive variables.
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Intermezzo: P(T ∗Q) as contact manifold

Indeed; let Q be (n + 1)-dimensional. Take any point q ∈ Q, and consider
the set of n-dimensional subspaces S of the (n + 1)-dimensional tangent
space TqQ.

This defines an (2n + 1)-dimensional manifold M, which is a fiber bundle
over Q with projection Π :M→ Q.

Define a field of hyperplanes on M by considering at each point
(q,S) ∈M, with q ∈ Q and S an n-dimensional subspace of TqQ, the
subspace of all tangent vectors at (q,S) to M which are such that the
projection to TqQ (under Π) is contained in S .

It can be checked that this defines a contact structure on M: i.e., this
field of hyperplanes is the kernel of a (locally defined) contact form.
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P(T ∗Q) as contact manifold; cont’d

But an n-dimensional subspace S of the tangent space TqQ can be
identified with the set of all non-zero multiples of some cotangent vector
in T ∗qQ whose kernel equals this subspace.

Hence, the contact manifold M as above is equal to

M = P(T ∗Q),

i.e., the fiber bundle over Q with fiber at any point q ∈ Q given by the
projective space P(T ∗qQ).

Conversely, T ∗Q is the symplectization of the contact manifold P(T ∗Q).

Furthermore by Darboux’s theorem any other (2n + 1)-dimensional contact
manifold is locally contactomorphic to the contact manifold P(T ∗Q) for
some (n + 1)-dimensional manifold Q.

Hence any contact manifold is locally P(T ∗Q) for some Q.
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P(T ∗Q) as contact manifold; cont’d

Summarizing, the canonical contact manifold (thermodynamic phase
space) is the (2n + 1)-dimensional manifold P(T ∗Q),

obtained from the (2n + 2)-dimensional symplectic cotangent bundle T ∗Q.

Furthermore, objects on the thermodynamic phase space P(T ∗Q) can be
derived from corresponding objects on T ∗Q having additional homogeneity
properties.

Advantages:

• Unification of energy, entropy, · · · , representations.

• All computations etc. will be much easier on T ∗Q.

• Will allow for a simple definition of power and rate of entropy ports.
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Objects on P(T ∗Q) from homogeneous objects on T ∗Q

Definition

A function K : T ∗Q → R is homogeneous of degree r (in p) if

K (q0, q1, · · · , qn, λp0, λp1, · · · , λpn) =

λrK (q0, q1, · · · , qn, p0, p1, · · · , pn), ∀λ 6= 0

Theorem (Euler)

Differentiable function K : T ∗Q → R is homogeneous of degree r iff

n∑
i=0

pi
∂K

∂pi
(q, p) = r K (q, p), for all (q, p) ∈ T ∗Q

Furthermore, if K is homogeneous of degree r , then its derivatives
∂K
∂pi
, i = 0, 1, · · · , n, are homogeneous of degree r − 1.
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Correspondence between Legendre submanifolds ofP(T ∗Q)
and homogeneous Lagrangian submanifolds of T ∗Q

T ∗Q is endowed with the Liouville 1-form

α = p0dq0 + p1dq1 + · · · pndqn

and the symplectic form

ω = dα = dp0 ∧ dq0 + dp1 ∧ dq1 + · · · dpn ∧ dqn

A Lagrangian submanifold is a maximal submanifold L ⊂ T ∗Q restricted
to which ω is zero.

L ⊂ T ∗Q is called homogeneous if whenever (q, p) ∈ L then also
(q, λp) ∈ L for any 0 6= λ ∈ R.
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Consider the canonical projection

π : T ∗Q → P(T ∗Q)

Then: any Legendre submanifold L ⊂ P(T ∗Q) defines a homogeneous
Lagrangian submanifold

L := π−1L ⊂ T ∗Q,

and conversely any homogeneous Lagrangian submanifold is of this type.

Furthermore ! :

Theorem

Homogeneous Lagrangian submanifolds L ⊂ T ∗Q are maximal
submanifolds restricted to which the Liouville form α is zero.

(Hence, not only ω := dα is zero on L, but in fact α is zero on L !)
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Simplest case

(q,S ,E , p, pS , pE ) can. coordinates for T ∗Qe , Qe = Q × R× R.

Generating function of homogeneous Lagrangian submanifold L in energy
representation

−pEE (q,S)

yielding

L = {(q,S ,E , p, pS , pE ) | E = E (q, S),

p = −pE ∂E∂q (q,S), pS = −pE ∂E∂S (q,S)}

In the entropy representation, homogeneous generating function of L is

−pSS(q,E )

yielding

L = {(q, S ,E , p, pS , pE ) | S = S(q,E ),

p = −pS ∂S∂q (q,E ), pE = −pS ∂S∂E (q,E )}
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General case

Any Legendre submanifold L of a contact manifold with coordinates

q0, q1, · · · , qn, γ1, · · · , γn, θ = dq0 − γ1dq1 · · · − γndqn

with generating function F (qI , γJ) (with I ∪ J = {1, · · · , n} )is

L = {(q0, q1, · · · , qn, γ1, · · · , γn) | q0 = F − γJ ∂F∂γJ ,

qJ = − ∂F
∂γJ

, γI = ∂F
∂qI
}

Then the homogeneous Lagrangian submanifold L = π−1(L) is defined by
the homogeneous degree 1 generating function

G (q0, · · · , qn, p0, · · · , pn) = −p0F (qI ,
pJ
−p0

)

i.e.,

L = {(q0, · · · , qn, p0, · · · , pn) | q0 = − ∂G
∂p0
, qJ = − ∂G

∂pJ
, pI = ∂G

∂qI
}
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Contact and homogeneous Hamiltonian vector fields

Take Hamiltonian K : T ∗Q → R. Then Hamiltonian vector field XK on
T ∗Q is

q̇ =
∂K

∂p
, ṗ = −∂K

∂q
, (q, p) canonical coordinates

Any Hamiltonian vector field XK is characterized by the property that the
Lie-derivative LXK

ω = 0.

A Hamiltonian vector field XK on T ∗Q with K homogeneous of degree 1
not only satisfies LXK

ω = 0, but in fact LXK
α = 0

LXK
α = iXdα + d(α(XK )) = −dK + dK = 0

Conversely, if LXK
α = 0, then by homogeneity α(XK ) = K , and thus

0 = LXK
α = iXdα + d(α(XK )) = iXdα + dK

implying that K , up to a constant, is homogeneous of degree 1.
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Contact and homogeneous Hamiltonian vector fields

Furthermore, any such Hamiltonian vector field XK with K homogeneous
of degree 1 projects to a contact vector field X

K̂
= π∗XK on the contact

manifold P(T ∗Q), i.e.,

LX
K̂
θ = ρθ, for some function ρ

Correspondence between homogeneous Hamiltonian K on T ∗Q and
contact Hamiltonian K̂ on P(T ∗Q) is given as

K (q0, · · · , qn, p0, · · · , pn) = p0K̂ (q0, · · · , qn,
p1

−p0
, · · · , pn

−p0
)

Recall that a contact vector field X leaves a Legendre submanifold L
invariant if and only if its contact Hamiltonian K̂ = θ(X ) is zero on L.

Similarly, a homogeneous Lagrangian submanifold L is left invariant by XK

with K homogeneous of degree 1 if and only if K is zero on L.
(Thus Mrugala’s theory of thermodynamic transformations can be
immediately translated to the homogeneous symplectic formulation.)
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Furthermore, the Poisson bracket

{K 1,K 2}

of two degree 1 Hamiltonians K1,K2 on T ∗Q is also of degree 1, and
corresponds to the Jacobi bracket {·, ·}J of the corresponding contact
Hamiltonians K̂1, K̂2 on P(T ∗Q):

{K̂ 1, K̂ 2}J = ̂{K 1,K 2}

(This will allow to set up an easy theory of controllability and observability
for port-thermodynamic systems as discussed hereafter.)

AvdS, BM (UGroningen, Université Lyon-1) Homogenous symplectic approach 31 / 53



Excursion to optimal control1

Consider the optimal control problem of minimizing∫ T

0
L(x(t), u(t))dt, x(0) = x0, x ∈ Rn,

over all input functions u : [0,T ]→ Rm for the dynamics ẋ = f (x , u).

Define x0 such that ẋ0 = L(x , u), x0(0) = 0 (’Mayer problem’).

Define the Hamiltonian H : T ∗Rn+1 × Rm → R as the canonical lifting of
the total dynamics

H(x0, x , λ0, λ, u) = λT f (x , u) + λ0L(x , u),

which is homogeneous in (λ0, λ).

1See Ohsawa, Joszwikowski & Respondek for the contact formulation
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Optimal control cont’d

The corresponding Hamiltonian vector field XH (parametrized by u) is

ẋ0 = L(x , u)

ẋ = f (x , u)

λ̇0 = 0

λ̇ = −λT ∂f (x ,u)
∂x − λ0

∂L(x ,u)
∂x

Thus λ0 is constant. λ0 = 0 is the so-called abnormal case. For λ0 6= 0
the standard co-state variables are defined as

p =
λ

−λ0
,

resulting in the standard equations of Pontryagin’s Maximum principle.
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For the infinite-horizon optimal control problem (T →∞), the stationary
Hamilton-Jacobi-Bellman equation corresponds to a homogeneous
Lagrangian submanifold L ⊂ T ∗Rn+1, with generating function

−λ0V (x)

where V is Bellman’s value function, i.e.,

L = {(x0, x , λ0, λ) | x0 = V (x), λ = −λ0
∂V

∂x
(x)}

and

min
u

H(V (x), x , λ0,−λ0
∂V

∂x
(x), u) = 0
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Towards definition of port-thermodynamic systems

(1) Thermodynamic properties are described by a Legendre submanifold
L ⊂ P(T ∗Q) or the homogeneous Lagrangian submanifold L ⊂ T ∗Q.

(2) Any thermodynamically consistent dynamics should leave the
thermodynamic properties invariant, i.e., should leave the Legendre
submanifold L ⊂ P(T ∗Q) or the homogeneous Lagrangian submanifold
L ⊂ T ∗Q invariant.

(3) How to define the dynamics on L or L ?

(4) How to define interaction ports of a thermodynamic system ?
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Change of paradigm: the thermodynamic phase space is
not an ordinary state space

State properties of the thermodynamic system are described by Gibbs’
relation: relation between all extensive and intensive variables.

Thus the Legendre submanifold L ⊂ P(T ∗Q) or the homogeneous
Lagrangian submanifold L ⊂ T ∗Q describes the actual state space of the
thermodynamic system !

Thus in principle there is no need to consider points of P(T ∗Q) outside L,
and the dynamics of the thermodynamic system necessarily leaves
L ⊂ P(T ∗Q) invariant !

Similarly, in the homogeneous symplectic formulation there is no need to
consider points of T ∗Q outside L, and the dynamics of the
thermodynamic system necessarily leaves L ⊂ T ∗Q invariant.
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Change of paradigm: a simple analogy

Situation regarding invariance of L or L may be compared with description
of, e.g.,an electrical capacitor: its ’state properties’ are

E = E (Q) (=
1

2C
Q2), V =

dE

dQ
(Q) (=

Q

C
)

From a geometric ’thermodynamic point of view’ this corresponds to
1-dimensional Legendre submanifold L of the ’thermodynamic phase space’
of the capacitor R3 3 (Q,E ,V )

L = {(Q,E ,V ) | E = E (Q), V =
dE

dQ
(Q)},

instead of the common 1-dimensional vector space R with coordinate Q or
V .
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Definition of port-thermodynamic system

Introduce new notation emphasizing special role extensive variables S ,E :

Define Qe = Q × R× R as the manifold of all extensive variables, with
coordinates for Qe denoted by

qe = (q, S ,E ),

with q coordinates for Q: remaining extensive variables (such as
V ,N1, · · · ,Nm).

Cotangent bundle coordinates for T ∗Qe will be denoted by

(qe , pe) = (q, S ,E , p, pS , pE )

Consider the state properties defined by L ⊂ T ∗Qe , or equivalently
L ⊂ P(T ∗Qe), which should be left invariant by the dynamics of the
thermodynamic system.
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Definition of port-thermodynamic system; cont’d

This leads to defining the dynamics of a port-thermodynamic system with
state properties L ⊂ T ∗Qe by a homogeneous (degree 1 in pe)
Hamiltonian, parametrized by u ∈ Rm

K := K a + K cu : T ∗Qe → R, u ∈ Rm,

with K a (drift Hamiltonian) and K c
j , j = 1, · · · ,m (input Hamiltonians),

which are all zero restricted to L, and hence leave L invariant.

By Euler’s Theorem, homogeneity implies

K a = pT f + pS fS + pE fE , f = ∂K a

∂p , fS = ∂K a

∂pS
, fE = ∂K a

∂pE

K c = pTg + pSgS + pEgE , g = ∂K c

∂p , gS = ∂K c

∂pS
, gE = ∂K c

∂pE

where the functions f , fS , fE , g , gS , gE are all homogeneous of degree 0;

defining the dynamics of the extensive variables.
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Additional conditions on the drift part K a

First Law of Thermodynamics additionally imposes

fE |L = 0,

i.e., conservation of energy when no interaction with the environment
takes place.

Second Law of Thermodynamics imposes

fS |L ≥ 0,

i.e., entropy increases when no interaction with the environment takes
place: fS |L is irreversible entropy production.
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Symplectization leads to formalization of interaction with
environment through ports

Define the outputs (homogeneous degree 0)

yp := gE |L, homogeneous degree 0,

leading to the power balance d
dtE |L = ypu.

(u, yp) defines a power port.

Alternative entropy-conjugate outputs are defined as

ye := gS |L, homogeneous degree 0,

leading to the rate of entropy balance d
dtS |L ≥ yeu.

(u, ye) defines a rate of entropy port.
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Some additional observations

• Note that the Hamiltonians K a and K c are (physically)
dimension-less.

• On the other hand, in the energy representation the contact
Hamiltonians K̂ a and K̂ c have dimension of power; and in the entropy
representation dimension of rate of entropy.

• One could also define ports with respect to the other extensive
variables; e.g., volume V .
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Example (Mass-spring-damper system)

Consider extensive variables z (extension of the spring), π (momentum)
and entropy S . State properties are described by Lagrangian submanifold
L with generating function

−pE
(

1

2
kz2 +

π2

2m
+ U(S)

)
,

defining the state properties

L = {(z , π,S ,E , pz , pπ, pS , pE ) | E = 1
2kz

2 + π2

2m + U(S),

pz = −pEkz , pπ = −pE π
m , pS = −pEU ′(S)}

Dynamics is given by the homogeneous Hamiltonian

K = pz
π

m
+ pπ

(
−kz − d

π

m

)
+ pS

d( πm )2

U ′(S)
+
(
pπ + pE

π

m

)
u

The power-conjugate output yp = π
m is the velocity of the mass.
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Example (Gas-piston-damper system)

This system is analogous to previous example, replacing z by volume V
and the partial energy 1

2kz
2 + U(S) by internal energy of the gas U(V ,S).

Dynamics is defined by the Hamiltonian

K = pz
π

m
+ pπ

(
−∂U
∂V
− d

π

m

)
+ pS

d( πm )2

∂U
∂S

+
(
pπ + pE

π

m

)
u,

where the power-conjugate output yp = π
m is the velocity of the piston.

Author's personal copy

internal contact Hamiltonian function:

f0 ¼"
@ ~S
@X

"pX

 !t

bFth

and the following interaction contact Hamiltonian function:

fint ¼
@ ~S
@U

"pU

 !
½ð _XeÞtg _Xeþ _Q þFth! _Xe'þ

@ ~S
@X

"pX

 !t

! _Xe

¼
@ ~S
@U

"pU

 !

½ð _XeÞtg _Xeþ _Q '"ðpXþpUFthÞ
t! _Xe

It should be noted again that the contact Hamiltonian functions
are tensor products, defined by the matrix b for the internal
contact Hamiltonian function and by the matrix ! for the control
contact Hamiltonian function, both with the dimension of an
entropy flow. The term containing ! is linear in the intensive
variables and cancels out when calculating the entropy produc-
tion using the expression of the x0-component of the contact
vector field (7):

dS
dt

¼
dx0
dt

!!!!
L
¼"pU

@ðf0þ fintÞ
@pU

!!!!
L
"pX

@ðf0þ fintÞ
@pX

!!!!
L

¼
1
T
½ð _XeÞtgt _Xeþ _Q þFtthbFth'

As expected, the entropy variation is due to the dissipative effects
(via the terms containing b and g) and to the heat exchange. By
comparison with (24), the dissipation D represents the entropy
variation that is not due to heat transfer.

4. Case study: the adiabatic piston

In this section, we shall illustrate the contact formalism by
considering the example of a gas in an adiabatic isolated cylinder
closed by a piston (Fig. 1). When the piston moves, friction effects
cause transformation of mechanical energy into heat. The system
cannot exchange heat with the environment, but a heat transfer
between the gas and the piston can take place.

This example has already been used in order to illustrate the
GENERIC and Matrix formalism and to emphasize some relations
with dissipative port-Hamiltonian systems in Jongschaap and
Öttinger (2004). It is a very simple example and hence the contact,
GENERIC and Matrix models of this system are easy to build.
However it is sufficient to illustrate the differences and to
highlight the advantages of the contact model from the point of
view of control. Indeed it is an open system and it can be seen as a
complex system composed of two subsystems: the piston and the
enclosed gas.

The piston is considered as a solid and its volume is considered
to be constant. Furthermore its mass is constant as it is subject to
no mass exchange. Finally we assume that the temperature

distribution in the piston is uniform. Hence it will be described as
a simple thermodynamic system in motion, closed and under-
going isochore transformations. The displacements of the piston
are assumed to be small enough so that the center of mass of the
gas does not undergo significant motion. We shall also consider
the additional assumption that there is no mass exchange with
the environment.

As a consequence of the above assumptions, the state of the
system can be described by d¼ 5 variables (2 degrees of freedom
for the gas, 3 degrees of freedom for the piston). For instance, the
following set of variables can define the state of the system:

( for the piston: the internal energy Upis, the momentum q and
the position z;

( for the gas: the internal energy Ugas and the volume V.

Remark 4. For the sake of clarity in the notations, the super-
scripts ‘‘gas’’ and ‘‘pis’’ are not used when it is obvious to which
system the quantity applies. For example we are not considering
the motion of the center of mass of the gas, and thus the only
momentum we have to consider is the one of the piston.
Consequently we shall use the notation q instead of qgas.

4.1. Contact formulation as a compartmental system

We shall consider the gas–piston system as a compartmental
system composed of the piston and the gas in the cylinder.
According to Section 2.3, we first give the contact formulation of
each subsystem and then gather them through interconnection
relations. Both subsystems, the gas and the piston, are considered
as simple homogeneous thermodynamic systems.

4.1.1. The compartment gas
The thermodynamic model and its description in the thermo-

dynamic phase space has been given in Example 1. However
considering that there is no mass exchange with the environment,
and for the sake of simplicity, the vector of extensive variable may
be reduced to xgas¼(Ugas, Vgas) with the internal energy Ugas and
volume Vgas. The thermodynamic phase space becomes R5 3
ðx0,Ugas,Vgas,pU ,pV Þ with intensive variable of the gas pgas¼(pU, pV)
and the entropy function of the gas: ~S

gas
ðUgas,VgasÞ may be used as

generating function of the Legendre submanifold associated with
the thermodynamic properties of the gas.

The dynamical model is given by the balance equation on the
extensive variables xgas¼(Ugas, Vgas). The internal energy balance
equation is the sum of the heat flow coming from the piston and
the mechanical power due to the displacement of the piston:

dUgas

dt
¼ _Q p-g"AvwallP ð26aÞ

where vwall denotes the velocity of the surface, of area A, in
contact with the piston and P denotes the pressure of the gas:

P¼"
@Sgas

@V
@Sgas

@Ugas

" #"1

:

The ‘‘balance’’ equation on the volume is equal to

dV
dt

¼ Avwall ð26bÞ

The formulation as a control contact system on the whole
thermodynamic phase space is then obtained in accordance with
Section 2.3 by using the balance equation in the definition of
generated by the contact Hamiltonian function:

f gasðxgas,pgas,ZgasÞ ¼ @
~S
gas

@Ugas
"pgasU

 !
_Q p-g"vwallAP

$ %

Fig. 1. Study case: the adiabatic piston.
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Example (Heat exchanger)

Extensive variables S1, S2 (entropies of the two compartments) and E
(total energy). The state properties are described by

L = {(S1, S2,E , pS1 , pS2 , pE ) | E = E1(S1) + E2(S2),

pS1 = −pEE ′1(S1), pS2 = −pEE ′2(S2)},

corresponding to generating function −pE (E1(S1) + E2(S2), with E1,E2

energies of the two compartments. Denoting the temperatures
T1 = E ′1(S1),T2 = E ′2(S2), the dynamics is given by Hamiltonian

K a = λ(
1

T1
− 1

T2
)(pS1T2 − pS2T1)

with λ Fourier’s conduction coefficient. Dynamics on L satisfies

Ṡ1 + Ṡ2 = λ(
1

T1
− 1

T2
)(T2 − T1) ≥ 0
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Example (Carnot cycle for a gas)

L = {(V ,S ,E , pV , pS , pE ) | E = E (V ,S), pV = −pE
∂E

∂V
, pS = −pE

∂E

∂S
}

Assuming reversibility K a = 0. Furthermore, consider input Hamiltonians

K c
V = pV + pE

∂E

∂V
, K c

q = pE + pS
∂S

∂E

with inputs uV rate of extension of the volume, and uq heat flow.

In case of an ideal gas

E (V ,S) = CV e
S
CV Ve

− R
CV ,

with CV heat capacity (at constant volume), and R universal gas constant.

Adiabatic process corresponds to K c
V uV , and isothermal process to a

combination of K c
V uV and K c

q uq such that T = ∂E
∂S remains constant.
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Interconnection of port-thermodynamic systems

Consider two port-thermodynamic systems with phase space

(qi , pi , Si , pSi ,Ei , pEi
) ∈ T ∗Qi × T ∗R× T ∗R, i = 1, 2,

and Liouville one-forms αi = pidqi + pSidSi + pEi
dEI on the space of

extensive and co-extensive variables T ∗Qi × T ∗R× T ∗R.
Impose the constraint

pE1 = pE2 =: pE

This leads to the summation of the Liouville forms α1 and α2:

αsum := p1dq1 + p2dq2 + pS1dS1 + pS2dS2 + pEd(E1 + E2)

on the composed space defined as

T ∗Qe
1 ◦ T ∗Qe

2 := {(q1, p1, q2, p2, S1, pS1 ,S2, pS2 ,E , pE )

∈ T ∗Q1 × T ∗Q2 × T ∗R× T ∗R× T ∗R}
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Let the state properties of the two individual systems be defined by
homogeneous Lagrangian submanifolds

Li ⊂ T ∗Qi × T ∗Ri × T ∗Ri , i = 1, 2,

with generating functions −pEi
Ei (qi , Si ), i = 1, 2.

The state properties of the composed system are defined by homogeneous
Lagrangian submanifold

L1 ◦ L2 := {(q1, q2, p1, p2, S1, pS1 ,S2, pS2 ,E , pE | E = E1 + E2,

(qi , pi , Si , pSi ,Ei , pEi
) ∈ Li , i = 1, 2},

with generating function −pE [E1(q1,S1) + E2(q2, S2)].
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Consider the dynamics on Li defined by Hamiltonians
Ki = K a

i + K c
i ui , i = 1, 2.

Assume Ki do not depend on Ei , i = 1, 2. Then

K1 + K2

is well-defined on L1 ◦ L2 for all u1, u2.

Imposing interconnection constraints on the power-port variables
u1, u2, yp1, yp2 satisfying

yp1u1 + y2pu2 = 0,

yields the closed-loop dynamics on L1 ◦ L2.

Similarly for interconnection via rate of entropy flow ports, imposing
interconnection constraints satisfying

ye1u1 + ye2u2 ≥ 0,

For example, the mass-spring-damper system can be built up from power
interconnection of ’thermodynamic’ subsystems:
(1) mass, (2) spring, (3) damper.
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• Gibbs’ relation describes state properties, and corresponds to
Legendre submanifold of contact manifold.

• Contact geometry can be symplectized. This allows easy switching
between entropy and energy representation, and simplifies picture
(e.g., extensive and intensive variables) and computations.

• Thermodynamic systems defined by L (state properties) and by
K = K a + K cu which is zero on L.

• Leads to simple definition of power ports and rate of entropy flow
ports for thermodynamic systems; and thereby interconnection theory
of port-thermodynamic systems.

• Allows for nonlinear controllability and observability analysis of
thermodynamic systems: Poisson bracket {K1,K2} of homogeneous
Ki is again homogeneous.

• Additional geometry: intrinsically defined Riemannian metric on L,
generalizing the Weinhold and Ruppeiner metrics.

• Homogeneity with respect to the extensive variables can be added:
Gibbs-Duhem relations.

• Open problem: ’Canonical’ form of K a and K c is yet unknown.
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