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Motivation

Why geo

° Valuable

- traditio

e Non-line
e Connections to other fields of physics and engineering
- mechanics of continuous media /multi-physics
— fluid mechanics
| fluid-structure interaction
— magnetism, optics

— nano-scale systems
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ashless methods: SPH, Lattice-Boltzmann Method ...
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» rigid body = SE(3) (SO(3)xR”); SE(2)
» incompressible fluid = Diff, _ (£)

Arnold, V.: Sur la geométrie différentielle Z -domain in 322 or 323
de dimension infinie )

a l'hydrodynamique
Annales de I'Institut
1(1966)

(infinite - dimensional group)



.Inco mpressible 1deal ﬂ_

> Spatial velocities (Eulerian): v(,1) = pop
= Vv=pop ' independentof 7, ,

P = ponﬁxed

(right invariance of Eulerian description)
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Lie algebra and dual spac_

oV

e Dual spaces of Lie algebras
> rigid body = y =Iweso(3) ... angular momentum

> incompresible fluid = vorticity field (circulation) Vy;, (£)
foraflow veV,, (%)
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Dynamics

e R

e Dynamics evolves on:

TG : ‘positions’ + velocities (Lie algebra): body, fluid

T"G: ‘positions’ + momentum (body) / vorticity (fluid)
(dual Lie algebra)
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2

,R, >KE._ . Nocther theorem _y nomentum map J conserved

invariant
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- solution in the form:
Fonvar(.i.l;I:;::éon Lie-group G - R S S 0(3)
> KE and Lagrangian: G - invariant
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Momentum map it )

» particle relabeling symmetry

» Kelvin’s theorem: circulation around closed
curve -> preserved; vorticity is advected

» coadjoint orbits preserved !!
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v=-B(v,v) ; B(c,a)=curlcxa+ gradp
: 3 ov
(in R°)... == VX curly — gradp
> solution: preservation of coadjoint orbits

- body angular momentum; qui*d circulation:
AdDiffVO1 (da,T') =(d(Diff, ),
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Monolithic coupling

o G

: incompresibility = A¢=0 in ¥
> Configuration space: O(A)={f: M — M}
q € Diffy (#)
q, ~ rigid body motion j
Gyoiy € SE(3)%...xSE(3) / R’ xSOB)x.. xR xSO3)
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| . Symplectic (I'=0) . -
C>‘ ) (right) Difty, (#)

5@ | (. m(p,) "0 —T"SE(3)

(no fluid variables!!)
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Fluid-MBS model reducti_

e R

» reduced F-MBS configuration space:
configuration space Gbody of the
submerged solids

» reduced Lagrangian of F-MBS: function on TGbody

> effect of fluid: added inertias to %,
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Added inertias

- solved for translational and rotational potentials
@, and y, after transformation (by superposition)

into the form: N
Q= Z(wz A TV '(Di)

- replaced by boundia:llry value problem -> solved via BEM
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M=B,U..UB,UF

G; = R X S0(3) _
q; = (I‘i, R]) i gz = (rZIRZ)

gz = (r3,R3)

<y

function of x only
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_ g=L' (2)
fori =12 .. .8 -mapping # (t,q,Q) =V by
R’ SO3)
=3 B i-1 . q., solving system dynamics q..1
s w=hp, j=1%d .
e W ; - M CTv 0 i
% \,\ // .fr‘ = "’(tﬁ—l * C;'ha q{] exp(ui)) § C 0 )\‘ = g o]
A o -1 E
V“A_'-\V fr o deXp —H; (f?’ n) Q| F:AxS — sisintroduced as #(t,q) = (v, #(t,q)) S
P end _;_1 Lie-algebra substitution ODE g
_ s % o] u=dexp”! (%(t,9)) , u(0)=0 P
Vo = h Z;—lbjf} 8.4
h numerical method
97 = 90 €XP (Vﬁ) i ~ U,

> Munthe-Kaas type of integration algorithm:

scheme applied to substitution ODE in Lie-algebra &

xtended to DAE index 1 on Lie-groups
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Results (MBS + fluid flo

Bodie




‘ @) ~ DEPARTMENT OF AERONAUTICAL ENGINEERING
1 o CHAIR OF FLIGHT VEHICLE DYNAMICS

e
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Results (MBS + fluid ﬂo_

Bodie
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i

Results (MBS + fluid flo

F
=

Bodie
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Fluid-Body / fluid flow withiireumom

Marsden, J.E. et al.: Hamiltonian
Reduction by Stages. Lecture Notes
in Math., vol. 1913, Springer-Verlag
Berlin Heidelberg (2007)

> fluid variables (¢;,¢) eliminated )
> added mass effect encoded by #z,y, € se(2)

"0 — T'SE(2) — se (2) » two stages reduction

~ Diff , action Q — principalbundle over SE(2) -: NC curvature:
. ~ generates Kutta-
~Neumann connection 4:70 - V. (¥) Zhukowski force
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Poisson o Symplectic (I') g Z
SE@2) Loy (T D iy, (F)

se (2) T°0—>T SE(2)

ions" ) H = (P S V) ‘b (no fluid variables!!)
P=Pxw

—— Kutta — Zhukowski force
P,I1 e se (2)
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Vortlclty effects? ... Osc_

{ =]
- 5.033a403

= 2079.1
-874.71
- 3g285

-6762e+03
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Kutta condition

0.20 Velocity potential
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Enforcing Kutta condition

—————— -
— Large velocity at
e velocity potential...(added masses) the sharp edge vy,

0.48
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0.05 0.40

0.00 0.32
-0.05 0.24
-0.10 016
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o stream function; irrotational vortex introduced I' = 2 7 |vy, |

4.0
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e P. Tallapragad:e ,
2015, 2016], Hailong X., Ph.D. thesis,
2007, Mason R.J., Ph.D. thesis,
CALTECH.
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Kutta condition Nonholonomic
constraint: no slip in
transverse direction,
free roll in the
longitudinal direction
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Flapping wing: vortices and unsteady effects

° Ellington, C.P., van den Berg, C.,Willmott, A.P., Thomas,
A.L.R.: Leading-edge vortices in insect flight. Nature 384,
626-630 (1996)

° Karasek, M., Muijres, F.T., Wagter, C.D., Remes, B.D.W.,
de Croon, G.C.H.E. A tailless aerial robotic flapper reveals
that flies use torque coupling in rapid banked turns. Science
361, 1089-1094 (2018)

g

/ Aﬁf )
% ‘f?‘ ?

e LEV - Leading edge vortex

e TEV1 - Starting trailing edge vortex
e TEV2 - Stopping trailing edge vortex
e TV1 - Upper tip vortex

e TV2 - Lower tip vortex
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27— ARD i
FR — ,OCR R ¢77€ I (I’)d]’ Lat. Drosophila melanogaster
Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing
rotation and a revised quasi-steady model of flapping flight.
Added mass force Journal of Experimental Biology 205(8), 1087—1096 (2002)

_Z Y - 1;\;\2;\ _£ e 3 1,\2,\
F, = p PRC (¢sma+¢acosa)jo rc”(r)dr 16,005Rc Ioc (r)dr
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DMOC optimisation proc

h, (QkSQkH’uk) >0

° Marsden, J.E., West, M.: Discrete mechanics and variational
integrators. Acta Numerica 10, 357-514 (2001)

e Ober-Blébaum, S., Junge, O., Marsden, J.E.: Discrete mechanics
and optimal control: An analysis. ESAIM: Control, Optimisation
and Calculus of Variations 17(2), 322-352 (2011)
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Flapping wing: optimised flapping pattern

5 Stroking angle ¢

3

Pitching angle 7

Initial
— Optimal

Initial
— Optimal | |

Angle [rad]
Angle [rad]

I i 1 i 0 i L i L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Flapping period Flapping period
-5 Total power
85,20 : x [
Initial
37 ———Optimal | |

Mean initial power — 1.2144x107° W
Mean optimal power — 1.0907 x107° W

Improvement — 10.2%

Power [W]
o

0 0.2 04 0.6 0.8 1
Flapping period
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Flapping wing on Mars

Earth Mars

Speed of sound 343 247
[m/s]

e Mars aircraft fly at low Re numbers due to a significant
difference in atmospheric density and only a slight difference
in gravitational acceleration, dynamic viscosity and speed of
sound.
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