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Motivation

Why geometric approach ?

 Valuable mathematical insight to various problems of mechanics and engineering

- traditional link between analytical mechanics and differential-geometry

- modelling of finite  (3D) rotations 

- numerical treatment of configuration constraints

call ‘naturally’ for geometric mathematical framework 

 Design of structure-preserving numerical integration methods

a)  ‘Smart’ integration procedures that respect

underlying kinematic and dynamic structure of the system  qualitative  behaviour

- integration methods on manifolds and Lie-groups

 Non-linear control design

 Connections to other fields of physics and engineering

- mechanics of continuous media /multi-physics

 fluid mechanics

/ fluid-structure interaction

 magnetism, optics

 nano-scale systems


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 discretisation of fluid domain + coupling with solid motion

 loosely coupled algorithms / ALE formulation

 moving FV mesh: problems with accuracy, stability...

 meshless methods: SPH, Lattice-Boltzmann Method ...

Motivation / Fluid-structure interaction
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 Geometric mechanics framework:

 rigid bodies and ideal incompressible fluid 

 analogy in the mathematical structure

 possibility for derivation of ‘monolithic’ solver  

 configuration space: Lie groups 

 rigid body        

 incompressible fluid

Geometric mechanics approach to the coupled problem

 (3)  ( (3) );  (2) SE SO SE 3R
 )(DiffVol F

32 RR or  in domain  :F

)group ldimensiona-infinite(

Arnold, V.: Sur la géométrie différentielle
des groupes de Lie de dimension infinie
et ses applications à l'hydrodynamique
des fluides parfaits. Annales de l'Institut
Fourier 16(1), 319-361 (1966)
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 Material velocity field (Lagrangian): 

 Spatial velocities (Eulerian):

(right invariance of Eulerian description)

Incompressible ideal fluid

)(DiffVol FG

t

txρ
txV





),(

),(

1),(  ρρty v

fixedρρ    1  oft independen v

fixedρρ 
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 Velocities 
 at the identity: Lie algebras

rigid body 

 incompressible fluid 

divergence-free vector fields in 

tangent to the boundary 

 Dual spaces of Lie algebras

 rigid body                                 ... angular momentum

 incompresible fluid      vorticity field (circulation)

for a flow  

Lie algebra and dual spaces 

 (3)  ( (3) ) ; (2)se so se 3R

 Div 0V ( )F

0F

(3)~ soω

0F

 *)3(soIωy 


Div 0V ( )v F

*
Div 0V ( )F
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Example: SO(3) / tangent and cotangent space

 angular velocity ‘    ’  &  angular momentum ‘   ’:ω y
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 Rotation motion of rigid body 

 geodesic on equipped with left-invariant 

Riemannian metric

 Motion of ideal incompressible fluid 

 geodesic on                          with right-invariant

Riemannian metric 

 Dynamics evolves on:

:  ‘positions’ + velocities (Lie algebra): body, fluid

: ‘positions’ + momentum (body) / vorticity (fluid) 

(dual Lie algebra)

Dynamics

)(DiffVol FG

TG

GT *

(3)SOG 
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Symmetries 

Rigid body Incompressible fluid 

(3)SOG 

dvKE fluid 
F

2

2

1
v

                   :)(    ;: hggLGGL hh 
)(Diff Vol FG

ghgRGGR hh :)(    ;: 

IωωKE T
body 2

1


conservedmap momentum    , JeoremNoether th
invarianthh KERL  
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 Momentum map associated with 

 angular momentum                         conserved        
‘coadjoint orbits’ preserved    

- solution in the form:

 KE and Lagrangian: G - invariant

Momentum map: SO(3)

(3)SOG 
** )3(: soGTJG 

*)3(soIωy 


yω
dt

dy
 -:equationEuler 

nn yty )(T1 R

)3(SOG  R

n
G

n yy *1 Ad,
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 Momentum map associated with 

 vorticity advection /                 vorticity + circulation

 fluid KE and Lagrangian                   - invariant

 momentum map is conserved 

 particle relabeling symmetry

 Kelvin’s theorem: circulation around closed 
curve -> preserved; vorticity is advected

 coadjoint orbits preserved !!

Momentum map:

)(DiffVol F

Vol

* *
Diff Vol Div o: Diff ( )J T V F

*
Div o( ) :  V F

 VolDiff

)(DiffVol F

   *
Div o

c

( ) ;  ( , : )V      dF
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 Second Euler teorem on arbitrary Lie group G (left 
invariant metric):

 rigid body: 

 ideal fluid:  

 solution: preservation of coadjoint orbits

- body angular momentum; fluid circulation:     

Euler equations: body rotation / fluid dynamics 

**   ;  gad
dt

d
Lieω  

*(3)soy

yωyady ω  -*

B( , )  ;  B( , ) curl grad

(in )...  curl grad

v c a c a p

v v p
t

    


  


3

v v

v



R

yy G
*Ad

   *
Div o( ) ;  ( , )V   dF

Vol

*
Diff Vol*Ad ( , ) ( (Diff ), )   d d
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 Geometric Fluid-MBS monolithic coupling 

 Assumptions:

 potential flow

 no vorticity (no circulation!)

 is connected

 fluid velocity field: 

: incompresibility

 Configuration space:

Monolithic coupling

1 k   M B B F

F
v

F in  0   
 ( ) : :Q f M M M

3 3(3) ... (3) / (3) ... (3)bodyG SE SE SO SO      R R

VolDiff ( )q F F
q ~   

i irigid body motion
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 Rigid body

 Euler equations
in Lie-Poisson form:

 Rigid body + ideal fluid / particle relabeling symmetry

Fluid-Body model reduction / particle symmetry 

( )
(3) Lie Poisson

Euler Poincare
SO 



)3(SOG  R

ω
*- ,     (3)     (  )y ω y y Iω so Iω Iω ω      

(   !!)no R

 ( 0)
Vol( )

 Diff ( )Symplectic
right

F
* *

(   !!)
 (3)
no fluid variables
T Q T SE

1 1 1
( , ) (( )  )

2
T TL tr I I   R R R R R R  

( , , , ) ( , ( ))
i i i i

q q y q y     F m
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 Reduction by the fluid             symmetry:

 particle relabeling symmetry

 fluid: Kelvin’s theorem -> circulation preserved

 bodies: do not affect dynamics of  

 .... reduction at zero circulation: 

 elimination of fluid variables

 reduced F-MBS configuration space:

configuration space          of the 

submerged solids

 reduced Lagrangian of F-MBS: function on 

 effect of fluid: added inertias to       

Fluid-MBS model reduction / particle symmetry

iB
bodyTG

bodyG

VolDiff

* 1
0 vol( ) ( ) / Diff ( )-T Q O  FI

* *
bodyT Q T G

iB

)(Diffvol F
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 Lagrangian F-MBS: 

 :        added inertias ; fluid velocity  

 velocity -> determined from velocity potential

- with prescribed velocities at 

 Neumann problem for Laplace equation (linear !) 
with boundary conditions:

- solved for translational and rotational potentials
after transformation (by superposition)

into the form:

- replaced by boundary value problem -> solved via BEM

Added inertias

F in  0
iB




                 0 at

 in  

 iiii B nvn





N

i
iiii

1

)(  vχ

ii χ and



fluidbody KEKEKE 

iBfluidKE )and( iif v
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Fluid volume discretization    Boundary surface discretization

•Multiple orders of magnitude fewer variables

 1 1
div

2 2
T dV db     


       nF F FF B



Numerical efficiency



DEPARTMENT OF AERONAUTICAL ENGINEERING

CHAIR OF FLIGHT VEHICLE DYNAMICS

MBS state space:

with elements:

 Lie group with Lie algebra 

with the element

 Lagrangian of F-MBS: 

function of x only

MBS configuration and state space

bodyTGsoSO  )3(...)3( 33 RRS

)~, , ,...~, , , ,..., ,( 1111 kkkkx ωvωvRrRr

), , ,..., ,~ , ,...,~ ,( 1111 kkkkz ωvωvωvωv 
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11

Numerical integration: F-MBS system

 Numerical integration ... 

 Munthe-Kaas type of integration algorithm:

 RK scheme applied to substitution ODE in Lie-algebra

 ... extended to DAE index 1 on Lie-groups                                                      

s





















ξ

Q

λ

v

0C

CM T 

)(' zLq q

dynamics system solving  

bymapping v),,( - QqtH

)),(,(),(: qtvqt HFF  as introduced is     sSR

0)0(,)),((dexp 1  
 uqtu u F        

 ODE  onsubstituti  algebra-Lie     

 ~ ; = + +ext ideal vortM Q Q Q Qadded mass
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Bodies with blunt edges, no circulation:

 added masses are function of system configuration

and system velocities / translations and rotations

Results (MBS + fluid flow without circulation)
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Bodies with blunt edges, no circulation:

 added masses are function of system configuration

and system velocities / translations and rotations

Results (MBS + fluid flow without circulation)
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 Constant circulation     is preserved: 

(Kelvin’s theorem) ... particle relabeling symetry 

 Fluid-body symplectic reduced space: 

 Isomorphism between               and 

 fluid variables               eliminated
 added mass effect encoded by 

 two stages reduction         

Fluid-Body / fluid flow with circulation



)(Diff/)()( vol
1* F

-QT I

)( *QT )2(*SET

( , )q F

Vol

*
DiffAd (0, ) (0, )  

*, (2)
i

y se m
)2()2( *** seSETQT 

( , , , ) ( , ( ))
i i i i

q q y q y     F m

vol~ Diff   (2)Q SEaction principal bundle over 

Div o:~ ( )A TQ VNeumann connection  F
-:: NC curvature: 
generates Kutta-
Zhukowski force

Marsden, J.E. et al.: Hamiltonian
Reduction by Stages. Lecture Notes
in Math., vol. 1913, Springer-Verlag
Berlin Heidelberg (2007)
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 Rigid body

 Euler equations
in Lie-Poisson form:

 Rigid body + ideal fluid (planar case)

Fluid - Body / two stages reduction

( )
(3) Lie Poisson

Euler Poincare
SO 

 1 1
( , ) ( )

2 2
T TL tr I I  R R R R  

)3(SOG  R

ω
*- ,     (3)     (  )y ω y y Iω so Iω Iω ω      

(   !!)no R

( )
(2) Poisson

left
SE   ( )

Vol( )
 Diff ( )Symplectic

right
 F

* *

(  " " !!)
(2) (2)

no translations
T SE se * *

(   !!)
 (2)
no fluid variables
T Q T SE

  3

3
*

Π

   ,Π (2)se


  
    



P v b
P P b v

P




Kutta – Zhukowski force
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 airfoil oscillating with frequency of 100 Hz

 simulated in foam-extend by using RANS with k-ω 
turbulence model

 effect of shedding trailing edge vortices is obvious

 vorticity effects will be accounted for by enforcing a 
Kutta condition

Vorticity effects?  ... Oscillating airfoil
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 Fluid is considered as ideal and vorticity effects are
accounted for by enforcing a Kutta condition

 Kutta condition: velocity at the sharp edge must have
meaningful physical value

Kutta condition

Stagnation point: 
velocity can be zero

or infinity
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 velocity potential…(added masses)

 stream function; irrotational vortex introduced

Enforcing Kutta condition
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Vortex mechanism (UVLM)
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 Kutta condition: to be enforced by
shedding vortices of appropriate
„strength” from the trailing edge

 Procedure: distance from trailing
edge at which to create a new
vortex at each time step?

 P. Tallapragada, S. Kelly [2010, 2013,
2015, 2016], Hailong X., Ph.D. thesis,
2007, Mason R.J., Ph.D. thesis,
CALTECH.

Enforcing Kutta condition
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 Kutta condition is a nonintegrable velocity constraint

 equivalent representation in MBS dynamics rear wheel 
constraint in the Chalpygin cart 

Equivalence with MBS / nonholonomic constraint

equivalent

Kutta condition

Airfoil Rotor Rotor
Cart

Nonholonomic 
constraint: no slip in 
transverse direction, 
free roll in the 
longitudinal direction 


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 Flapping wing of insect type

 large amplitudes of wing motion + complicated kinematics  (..with high frequencies)

 very high accelerations        considerable ‘added masses’ effect

 highly unsteady flow (Strouhal number St ~ 1)   / ....   vortices at both edges  !!

 low Reynolds number (Re = O (10^2 ~ 10^0))   / ....   but very thin boundary layer !!



Flapping wing application
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 LEV – Leading edge vortex

 TEV1 – Starting trailing edge vortex

 TEV2 – Stopping trailing edge vortex

 TV1 – Upper tip vortex

 TV2 – Lower tip vortex

Flapping wing: vortices and unsteady effects 

 Ellington, C.P., van den Berg, C.,Willmott, A.P., Thomas,
A.L.R.: Leading-edge vortices in insect flight. Nature 384,
626-630 (1996)

 Karásek, M., Muijres, F.T., Wagter, C.D., Remes, B.D.W.,
de Croon, G.C.H.E. A tailless aerial robotic flapper reveals
that flies use torque coupling in rapid banked turns. Science
361, 1089–1094 (2018)
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Flapping wing: quasi-steady aerodynamic model

2 2

0

2 2

0

1
( ) ( )

2
1

( ) ( )
2

R

TL TL

R

TD TD

F r c r C dr

F r c r C dr

  

  













12 2 2

0
ˆˆ ˆ( )R RF C R c rc r dr   

1 12 2 2 3 2

0 0
ˆˆ ˆ ˆ ˆ( sin cos ) ( ) ( )

4 16AF R c rc r dr Rc c r dr
            

Translational forces

Rotational force

Added mass force

Lat. Drosophila melanogaster

: Lift enhancement due to the stabilized LEV during translation
: Reduction of the effective angle of attack due to the ‘downwash’
: Lift enhancement due to the rapid rotation at the end of ‘translation’
: ‘Added mass effect’

Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing
rotation and a revised quasi-steady model of flapping flight.
Journal of Experimental Biology 205(8), 1087–1096 (2002)
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   2 1 1 1 1, , 0d k k d k k k kD L q q D L q q f f 
     

DMOC optimisation procedure 

   
1

1,
0

min , , ,
d d

N

d d d k k kq u
k

J q u C q q u






0

0q q

 1, , 0d k k kh q q u 

T
Nq q

 0
1 0 1 0, 0dp D L q q f   

 2 1 1, 0T
d N N Np D L q q f 

    

 Marsden, J.E., West, M.: Discrete mechanics and variational
integrators. Acta Numerica 10, 357–514 (2001)

 Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics
and optimal control: An analysis. ESAIM: Control, Optimisation
and Calculus of Variations 17(2), 322–352 (2011)
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Flapping wing: optimised flapping pattern 

Mean initial power →                         

Mean optimal power →

Improvement →

51.2144 10 W
51.0907 10 W

10.2%
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Flapping wing on Mars

 Mars aircraft fly at low Re numbers due to a significant
difference in atmospheric density and only a slight difference
in gravitational acceleration, dynamic viscosity and speed of
sound.
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Flapping wing on Mars: optimisation of hover 
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 Thank you for your

ATTENTION


