'Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning'

École de Physique des Houches Les Houches, July, 2020.

Computational dynamics of reduced coupled multibodyfluid system in Lie group setting

Zdravko Terze

Dept. of Aeronautical Engineering F. Mech. Eng. Naval Arch. University of Zagreb

Motivation

Why geometric approach ?

- Valuable mathematical insight to various problems of mechanics and engineering
 - traditional link between analytical mechanics and differential-geometry
 - modelling of finite (3D) rotations
 - numerical treatment of configuration constraints
 - \Rightarrow call 'naturally' for geometric mathematical framework
- Design of structure-preserving numerical integration methods
 - a) 'Smart' integration procedures that respect
 - underlying kinematic and dynamic structure of the system \rightarrow qualitative behaviour
 - integration methods on manifolds and Lie-groups
- Non-linear control design
- Connections to other fields of physics and engineering
 - mechanics of continuous media /multi-physics
 - \rightarrow fluid mechanics

/ fluid-structure interaction

- \rightarrow magnetism, optics
- \rightarrow nano-scale systems

Motivation / Fluid-structure interaction

- discretisation of fluid domain + coupling with solid motion
- Ioosely coupled algorithms / ALE formulation
- moving FV mesh: problems with accuracy, stability...

meshless methods: SPH, Lattice-Boltzmann Method ...

- configuration space: Lie groups
 - ▶ rigid body ⇒ SE(3) (SO(3)× \Re^3); SE(2)
 - ➢ incompressible fluid ⇒ $Diff_{Vol}(\mathcal{F})$

Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Annales de l'Institut Fourier 16(1), 319-361 (1966) ${\mathcal F}$: domain in ${\mathcal R}^2$ or ${\mathcal R}^3$

(infinite - dimensional group)

Incompressible ideal fluid

Lie algebra and dual spaces

Velocities

- at the identity: Lie algebras rigid body \Rightarrow se(3) (so(3)× \Re^3); se(2) $\widetilde{\omega} \in$ so(3)
- incompressible fluid $\Rightarrow V_{Div}(\mathscr{F}_0)$ divergence-free vector fields in \mathscr{F}_0 tangent to the boundary $\partial \mathscr{F}_0$
- Dual spaces of Lie algebras
 - ► rigid body $\Rightarrow y = I\omega \in so(3)^*$... angular momentum
 - ➢ incompresible fluid ⇒ vorticity field (circulation) V^{*}_{Div}(𝔅) for a flow v ∈ V_{Div}(𝔅)

VO FSB

DEPARTMENT OF AERONAUTICAL ENGINEERING CHAIR OF FLIGHT VEHICLE DYNAMICS

Dynamics

- Rotation motion of rigid body
 - geodesic on G = SO(3) equipped with left-invariant
 Riemannian metric

Motion of ideal incompressible fluid

- Seodesic on $G = \text{Diff}_{Vol}(\mathcal{F})$ with right-invariant Riemannian metric
- Dynamics evolves on:

TG: 'positions' + velocities (*Lie algebra*): body, fluid T^*G : 'positions' + momentum (body) / vorticity (fluid) (dual Lie algebra)

Symmetries

Rigid body G = SO(3) $L_h: G \to G; \ L_h(g): hg$ $G = \mathbf{R} \in SO(3)$ $KE_{body} = \frac{1}{2}\omega^T I\omega$

Incompressible fluid $G = \text{Diff}_{\text{Vol}}(\mathscr{F})$ $R_h: G \to G; \quad R_h(g): gh$

$$KE_{fluid} = \frac{1}{2} \iint_{\mathcal{F}} \mathbf{v}^2 dv$$

 $L_h, R_h \rightarrow KE_{invariant} \xrightarrow{Noether theorem} momentum map J conserved$

Momentum map: *SO*(3)

• Momentum map associated with G = SO(3)

$$J_G: T^*G \to so(3)^*$$

► angular momentum $y = I\omega \in so(3)^*$ conserved ⇒ 'coadjoint orbits' preserved

Euler equation : $\frac{dy}{dt} = -\omega \times y$ - solution in the form: $y^{n+1} = \mathbf{R}^{\mathrm{T}}(t) y^{n}$, $y^{n+1} = \mathrm{Ad}_{G}^{*} y^{n}$ $G = \mathbf{R} \in SO(3)$

Forward Euler on Lie-group

KE and Lagrangian: G - invariant

Momentum map: $\text{Diff}_{Vol}(\mathcal{F})$

• Momentum map associated with $\mathrm{Diff}_{\mathrm{Vol}}(\mathcal{F})$ $J_{\text{Diff}_{\text{Vol}}}: T^*\text{Diff}_{\text{Vol}} \to V_{\text{Div}}^*(\mathcal{F}_{o})$ vorticity advection / $V_{\text{Div}}^*(\mathcal{F}_0)$: vorticity + circulation $[\alpha] \in V_{\text{Div}}^*(\mathscr{F}_{o}); [\alpha] \mapsto (\mathbf{d}\alpha, \Gamma \coloneqq \int \alpha)$ fluid *KE* and Lagrangian \Rightarrow Diff_{Vol} - invariant momentum map is conserved particle relabeling symmetry Kelvin's theorem: circulation around closed curve -> preserved; vorticity is advected coadjoint orbits preserved !!

Euler equations: body rotation / fluid dynamics

Second Euler teorem on arbitrary Lie group G (left invariant metric):

 $\frac{d\mu}{dt} = ad_{\omega_{Lie}}^* \mu \ ; \ \mu \in g^*$ rigid body: $\mu = y \in so(3)^*$ $\dot{y} = ad_{\omega}^* y = -\omega \times y \implies y = Ad_G^* y$ ideal fluid: $[\alpha] \in V_{Div}^*(\mathscr{F}_0); \ [\alpha] \mapsto (\mathbf{d}\alpha, \Gamma)$

 $(\text{in } \mathcal{R}^3)... \quad \frac{\partial \mathbf{v}}{\partial t} = v \times \text{curl} v - \text{grad} p$

 $\dot{v} = -\mathbf{B}(\mathbf{v}, \mathbf{v})$; $\mathbf{B}(c, a) = \operatorname{curl} c \times a + \operatorname{grad} p$

- Solution: preservation of coadjoint orbits
 - body angular momentum; fluid circulation: $\operatorname{Ad}^*_{\operatorname{Diff}_{\operatorname{Vol}}}(\mathbf{d}\alpha,\Gamma) = (\mathbf{d}(\operatorname{Diff}_{\operatorname{Vol}}\alpha),\Gamma)$

Monolithic coupling

Geometric Fluid-MBS monolithic coupling

 $\mathcal{M} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_k \cup \mathcal{F}$

Assumptions:

✓ potential flow

v no vorticity (no circulation!)

✓ *F* is connected

> fluid velocity field: $\mathbf{v} = \nabla \phi$

: incompresibility $\Rightarrow \Delta \phi = 0$ in \mathcal{F}

Configuration space: $Q(\mathcal{M}) := \{ f : \mathcal{M} \to \mathcal{M} \}$

 $q_{\mathcal{F}} \in \operatorname{Diff}_{\operatorname{Vol}}(\mathcal{F})$ $q_{\beta_i} \sim \operatorname{rigid} \operatorname{body} \operatorname{motion} \beta_i$ $G_{body} \subseteq SE(3) \times \ldots \times SE(3) / \mathcal{R}^3 \times SO(3) \times \ldots \times \mathcal{R}^3 \times SO(3)$

OF AERONAUTICAL ENGINEERING CHAIR OF FLIGHT VEHICLE DYNAMICS Fluid-Body model reduction / particle symmetr $G = \mathbf{R} \in SO(3)$ **Rigid body** $L(\mathbf{R}, \dot{\mathbf{R}}) = tr((\mathbf{R}^{-1}\dot{\mathbf{R}})^T I \mathbf{R}^{-1}\dot{\mathbf{R}}) \rightarrow \frac{1}{2}\omega^T I\omega$ $SO(3) \xrightarrow{Lie-Poisson} (Euler-Poincare)$ **Euler equations** (I)in Lie-Poisson form: $\dot{y} = -\omega \times y$, $y = I\omega \in so(3)^*$ $(I\dot{\omega} = I\omega \times \omega)$ (*no* **R** !!) **Rigid body + ideal fluid / particle relabeling symmetry** $\frac{Symplectic (\Gamma=0)}{(right)} \quad \text{Diff}_{Vol}(\mathcal{F})$ $\left[(q_{\beta_i}, q_{\mathcal{F}}, y_{\beta_i}, \alpha) \right] \mapsto (q_{\beta_i}, m(y_{\beta_i}))$ $T^* O \rightarrow T^* SE(3)$ (no fluid variables!!)

Fluid-MBS model reduction / particle symmetry

- **Reduction by the fluid** Diff_{vol} symmetry:
 - particle relabeling symmetry $\mathrm{Diff}_{\mathrm{vol}}(\mathcal{F})$
 - Fluid: Kelvin's theorem -> circulation preserved
 - \succ bodies: do not affect dynamics of \mathscr{B}_i

.... reduction at zero circulation:

 $(T^*Q)_{\Gamma=0} = \mathcal{J}^{-1}(O) / \operatorname{Diff}_{\operatorname{vol}}(\mathcal{F})$

▶ elimination of fluid variables $T^*Q \rightarrow T^*G_{body}$

reduced F-MBS configuration space: configuration space G_{body} of the submerged solids

 \succ reduced Lagrangian of F-MBS: function on TG_{body}

 \succ effect of fluid: added inertias to \mathscr{B}_i

Added inertias

Lagrangian F-MBS: $KE = KE_{body} + KE_{fluid}$

> KE_{fluid} : \mathcal{B}_i added inertias ; fluid velocity $f(\mathbf{v}_i \text{ and } \omega_i)$ velocity -> determined from velocity potential ϕ

$$\Delta \phi \,{=}\, 0\,$$
 in ${oldsymbol{\mathscr{F}}}$

- with prescribed velocities at $\partial \mathscr{B}_i$

Neumann problem for Laplace equation (linear !) with boundary conditions:

$$\nabla \boldsymbol{\phi} \cdot \mathbf{n}_i = \mathbf{v}_i \cdot \mathbf{n}_i \quad \text{in } \partial \boldsymbol{\mathscr{B}}_i$$
$$\nabla \boldsymbol{\phi} = 0 \qquad \text{at } \infty$$

- solved for translational and rotational potentials φ_i and χ_i after transformation (by superposition) into the form:

$$\phi = \sum_{i=1}^{N} (\omega_i \cdot \boldsymbol{\chi}_i + \mathbf{v}_i \cdot \boldsymbol{\varphi}_i)$$

- replaced by boundary value problem -> solved via BEM

Numerical efficiency

Fluid volume discretization \Rightarrow **Boundary** surface discretization

Multiple orders of magnitude fewer variables

MBS configuration and state space

MBS state space:

$$S = \mathcal{R}^3 \times SO(3) \times \ldots \times \mathcal{R}^3 \times so(3) \cong TG_{body}$$

with elements:

$$x = (\mathbf{r}_1, \mathbf{R}_1, \dots, \mathbf{r}_k, \mathbf{R}_k, \mathbf{v}_1, \widetilde{\boldsymbol{\omega}}_1, \dots, \mathbf{v}_k, \widetilde{\boldsymbol{\omega}}_k)$$

Lie group with Lie algebra with the element

 $z = (\mathbf{v}_1, \widetilde{\boldsymbol{\omega}}_1, \dots, \mathbf{v}_k, \widetilde{\boldsymbol{\omega}}_k, \dot{\mathbf{v}}_1, \dot{\boldsymbol{\omega}}_1, \dots, \dot{\mathbf{v}}_k, \dot{\boldsymbol{\omega}}_k)$

Lagrangian of F-MBS: function of x only $\mathcal{M} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_k \cup \mathcal{F}$

Numerical integration: F-MBS system

 $\Re^3 \times SO(3)$

• Numerical integration ... $M \sim added mass$; $Q=Q_{ext}+Q_{ideal}+Q_{vort}$

- Munthe-Kaas type of integration algorithm:
- RK scheme applied to substitution ODE in Lie-algebra S
 - ... extended to DAE index 1 on Lie-groups

Results (MBS + fluid flow without circulation)

Bodies with blunt edges, no circulation:

Results (MBS + fluid flow without circulation)

Bodies with blunt edges, no circulation:

Results (MBS + fluid flow without circulation)

Bodies with blunt edges, no circulation:

Results (MBS + fluid flow without circulation)

Bodies with blunt edges, no circulation:

Fluid-Body / fluid flow with circulation

• Constant circulation Γ is preserved:

 $\mathrm{Ad}^*_{\mathrm{Diff}_{\mathrm{Vol}}}(0,\Gamma) = (0,\Gamma)$

Marsden, J.E. et al.: *Hamiltonian Reduction by Stages.* Lecture Notes in Math., vol. 1913, Springer-Verlag Berlin Heidelberg (2007)

(Kelvin's theorem) ... particle relabeling symetry

 Fluid-body symplectic reduced space: (T^{*}Q)_Γ = J⁻¹(Γ)/Diff_{vol}(𝔅)

 Isomorphism between (T^{*}Q)_Γ and T^{*}SE(2) [(q_{βi},q_𝔅,y_{βi},α)] → (q_{βi},m(y_{βi}))

Fluid variables (q_𝔅, α) eliminated
> added mass effect encoded by m, y_{𝔅i} ∈ se(2)*
T*Q → T*SE(2) → se*(2) > two stages reduction
~ Diff_{vol} action Q → principal bundle over SE(2) -:: NO
~ Neumann connection A: TQ → V_{Div} (𝔅)

-:: NC curvature: generates Kutta-Zhukowski force

Vorticity effects? ... Oscillating airfoil

- airfoil oscillating with frequency of 100 Hz
- simulated in *foam-extend* by using RANS with k-ω turbulence model
- effect of shedding trailing edge vortices is obvious
 - vorticity effects will be accounted for by enforcing a Kutta condition

Kutta condition

- Fluid is considered as ideal and vorticity effects are accounted for by enforcing a Kutta condition
- Kutta condition: velocity at the sharp edge must have meaningful physical value

Stagnation point: velocity can be zero or infinity

Enforcing Kutta condition

Vortex mechanism (UVLM)

Q FSB DEPA

DEPARTMENT OF AERONAUTICAL ENGINEERING CHAIR OF FLIGHT VEHICLE DYNAMICS

Enforcing Kutta condition

- Kutta condition: to be enforced by shedding vortices of appropriate "strength" from the trailing edge
- Procedure: distance from trailing edge at which to create a new vortex at each time step?
- P. Tallapragada, S. Kelly [2010, 2013, 2015, 2016], Hailong X., Ph.D. thesis, 2007, Mason R.J., Ph.D. thesis, CALTECH.

Flapping wing application

- Flapping wing of insect type
- large amplitudes of wing motion + complicated kinematics (...with high frequencies)
- very high accelerations \implies considerable 'added masses' effect
- highly unsteady flow (Strouhal number St ~ 1) / vortices at both edges !!
- low Reynolds number (*Re* = O (10² ~ 10⁰)) / but very thin boundary layer !!

Flapping wing: vortices and unsteady effects

- Ellington, C.P., van den Berg, C.,Willmott, A.P., Thomas, A.L.R.: *Leading-edge vortices in insect flight*. Nature 384, 626-630 (1996)
- Karásek, M., Muijres, F.T., Wagter, C.D., Remes, B.D.W., de Croon, G.C.H.E. *A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns*. Science 361, 1089–1094 (2018)

- LEV Leading edge vortex
- TEV1 Starting trailing edge vortex
- TEV2 Stopping trailing edge vortex
- TV1 Upper tip vortex
- TV2 Lower tip vortex

Flapping wing: quasi-steady aerodynamic model

: Lift enhancement due to the stabilized LEV during translation
: Reduction of the effective angle of attack due to the 'downwash'
: Lift enhancement due to the rapid rotation at the end of 'translation'
: 'Added mass effect'

Translational forces

$$F_{TL} = \int_0^R \frac{1}{2} \rho r^2 \dot{\phi}^2 c(r) C_{TL}(\alpha) dr$$
$$F_{TD} = \int_0^R \frac{1}{2} \rho r^2 \dot{\phi}^2 c(r) C_{TD}(\alpha) dr$$

Rotational force $F_{R} = \rho C_{R} R^{2} \dot{\phi} \dot{\eta} \overline{c}^{2} \int_{0}^{1} \hat{r} \hat{c}^{2}(\hat{r}) dr$

Added mass force

Lat. Drosophila melanogaster

Sane, S.P., Dickinson, M.H.: *The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.* Journal of Experimental Biology 205(8), 1087–1096 (2002)

$$F_A = \frac{\pi}{4} \rho R^2 \overline{c}^2 (\ddot{\phi} \sin \alpha + \dot{\phi} \dot{\alpha} \cos \alpha) \int_0^1 \hat{r} \hat{c}^2(\hat{r}) dr - \frac{\pi}{16} \rho \ddot{\alpha} R \overline{c}^3 \int_0^1 \hat{c}^2(\hat{r}) dr$$

DMOC optimisation procedure

$$\begin{split} \min_{q_d, u_d} J_d \left(q_d, u_d \right) &= \sum_{k=0}^{N-1} C \left(q_k, q_{k+1}, u_k \right) \\ q_0 &= q^0 \\ q_N &= q^T \\ p^0 + D_1 L_d \left(q_0, q_1 \right) + f_0^- &= 0 \\ -p^T + D_2 L_d \left(q_{N-1}, q_N \right) + f_{N-1}^+ &= 0 \\ d \left(q_{k-1}, q_k \right) + D_1 L_d \left(q_k, q_{k+1} \right) + f_{k-1}^+ + f_k^- &= 0 \\ h_d \left(q_k, q_{k+1}, u_k \right) &\geq 0 \end{split}$$

• Marsden, J.E., West, M.: *Discrete mechanics and variational integrators.* Acta Numerica 10, 357–514 (2001)

 Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics and optimal control: An analysis. ESAIM: Control, Optimisation and Calculus of Variations 17(2), 322–352 (2011)

Flapping wing: optimised flapping pattern

Mean initial power $\rightarrow 1.2144 \times 10^{-5}$ W Mean optimal power $\rightarrow 1.0907 \times 10^{-5}$ W Improvement $\rightarrow 10.2\%$

Flapping wing on Mars

	Earth	Mars
Atmospheric density [kg/m ³]	1.225	1.55×10^{-3}
Gravitational acceleration $\left[m/s^2 \right]$	9.81	3.72
Dynamic viscosity [kg/ms]	1.8×10^{-5}	$1.5 imes 10^{-5}$
Speed of sound [<i>m</i> /s]	343	247

• Mars aircraft fly at low Re numbers due to a significant difference in atmospheric density and only a slight difference in gravitational acceleration, dynamic viscosity and speed of sound.

Flapping wing on Mars: optimisation of hover

• Thank you for your ATTENTION