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Information processing, 
learning and adaptation

• Natural phenomena occurring in the 
physical world

• Want a physics based explanation!



Information processing, 
learning and adaptation

• This is something observers do! Classically, the 
observer is taken out of physics. Many physicists feel 
uncomfortable about trying to discover a theory of 
how the observer describes the world.

• Physical modeling of neural systems has lead to the 
construction of neural networks and deep learning, and 
to some degree also an explanation of why they work, 
but no complete, overarching theory. 

• Machine learning has some solid theoretical 
foundations, e.g. in statistical learning theory. This is 
based on mathematical arguments, not on physics. 
Makes use of ad hoc measures.



Information processing, 
learning and adaptation

• We want a physics based approach in which: 

- complex behavior emerges from simple first 
principles

- rules for learning and adaptation can be derived 
from those principles, instead of having to choose 
objective functions ad hoc



• Observers interact with their environment: sense, process 
information, and act.  Thus often called ``agents”:

• Important: there are generic restrictions on agents. E. g.: 
Finite operating times, partial observability; partial control.

agent

data actions

environment

Problem description:



Abstract models of agents
Describe decision making and behavior as optimization

• What is being optimized? Often: some kind of utility 
function, under the constraint of a cost function

• Examples for utility: 
- rewards (reinforcement learning)
- loss or risk function (decision theory)
- error function (control theory)
- payoff (game theory) 

• Cost is often motivated by some philosophical 
argument, such as Ockham’s razor, or statistical 
arguments. Cost = measure of complexity or capacity of 
the model class.



Big issue with this approach

• Utility function and cost function need to be specified.
 

- It is not always a priori clear 
which utility to assign to 
actions/outcomes of actions.
- There are many “reasonable” 
complexity measures

• If there is no guiding principle, then 
we end up with descriptive modeling, rather than an 
explanatory theory.

�



Take a different approach:

1) Investigate physical nature of information 

2) Identify fundamental limits to information 
processing

3) Postulate one simple principle 

4) Derive rules for learning strategies and 
derive concrete learning methods 



Thermodynamic origins of  
information

• Discussions about the foundations of thermodynamics 
between Maxwell, Tait, Thompson, Clausius, and others...

• ...Maxwell’s “demon” emerged (1867):

• ...and inspired many. (Smoluchowski 1924, Szilard 1929, 
Brillouin1951 Landauer 1961, Bennett, 1973, Zurek 1986, ...)

``very observant and neat 
fingered being”



• Szilard’s 1929 work in particular outlined 
a physical foundation for information and 
information processing...

• ...inspiring more work attempting to go from an energy-
based view of the nature to an information-based view 
(von Neumann, Wiener, Shannon, ...)

• ... and (among other things) specific studies of mathematical 
models of certain neurons and their connections...



• ...“first neural networks” emerged (McCulloch&Pitts 1943)

• (refined over the years, 
but some of the basic ideas 
still in use)



• ...and inspired first 
“learning machine”, 
the Perceptron 
(Rosenblatt, 1957)

• Novikoff ’s perceptron convergence theorem (1962) 
inspired many...

• ... including Vapnik. Important insight: Empirical 
inductive inference implemented as minimization 
of empirical error is not consistent without further 
assumptions! There needs to be a restriction on the 
“complexity” of the function class, or its “capacity” 
for explaining data (Vapnik and Chervonenkis, 1971).

https://www.researchgate.net/scientific-contributions/2012147549_AY_Chervonenkis
https://www.researchgate.net/scientific-contributions/2012147549_AY_Chervonenkis


• ... This has shaped our modern view of machine learning as 
empirical inference with finite data (not error-free data). 

• The most ambitious version of empirical, inductive inference:
From empirical data to underlying laws.

• Note the difference from deductive inference 
(e.g. ab initio calculations): 
From known laws to specific predictions.
 

• Note that machine learning often solves a simpler problem: 
From finite data to predictions.
(don’t need to know the underlying rules, just make good 
predictions; maybe this is what creatures do to survive?)

Experiences         Observer(s)         Laws

Laws         Explanations

=) =)

=)



• This brings us back to the central question...

• there should be laws of nature (physical laws) from which 
rules for inductive inference can be derived -- in simple 
words: how should an observer represent the data in physical 
memory? 

• Back to step 1) Investigate the physical nature of information

Usefulness of a model and its cost



From Carnot’s idealized heat engine 
to Szilard’s information engine

• Kelvin, Clausius and others were inspired by work the french 
engineer Nicolas Léonard Sadi Carnot published in 1824.

• We take a shortcut, Skipping Maxwell’s ,,demon’’ (1867), and 
go straight from Carnot’s idealized heat engine to Szilard’s 
idealized information engine. (1929).



Carnot process

Work out

Work in 
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1) Isothermal compression from 
V to V  at low temperature T. 

2) Isentropic compression to V’. 
Temperature of the gas 
changes from T to T’. 
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at high temperature T’. 

4) Isentropic expansion to V. 
Temperature change: T’ to T
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Carnot process
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Compute total work out
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Carnot process equivalent

1) Isothermal 
compression 
V to V @ T. 

2) Isentropic 
compression V
to V’. T to T’. 

3) Isothermal 
expansion 
V’ to V @ T’. 

4) Isentropic 
expansion V
to V. T’ to T.
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Carnot process to Szilard engine

1) Isoth. comp.
to V @ T. 

2) Isentr. comp. 
to V’. 
T to T’. 

3) Isoth. exp. 
to V @ T’. 

4) Isentr. exp. 
to V. 
T’ to T.
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1) Insert wall

2) Isothermal
expansion 

One particle gas!

no work

�W 0 = kT ln[2]

W = 0



Carnot process to Szilard engine

1) Isoth. comp.
to V @ T. 

2) Isentr. comp. 
to V’. 
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3) Isoth. exp. 
to V @ T’. 
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One particle gas!
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Carnot process to Szilard engine

1) Isoth. comp.
to V @ T. 

2) Isentr. comp. 
to V’. 
T to T’. 

3) Isoth. exp. 
to V @ T’. 

4) Isentr. exp. 
to V. 
T’ to T.

2

1

V

V1

V 0

V2 V2 = V

V1 =
V

2

1) Insert wall

2) Must measure and remember 
particle location!

3) Isothermal
expansion 

One particle gas!

�W 0 = kT ln[2]

W = 0

must be 
dissipative



Szilard engine
1) Insert wall

2) Measure and remember 
particle location.

3) Isothermal
expansion 

L R two possibilities

V

2

VV



Simple, concrete implementation

two possibilities

W = �Q = 0

1) Insert wall

2) Measure and remember 
particle location: 
isothermal compression

3) Isothermal
expansion 

V

2

VV



1) Insert partition

2) Measure and remember particle 
location: isotherm. comp. mem.

3) Isothermal
expansion of system

4) Pull out partition

Close the cycle:

WM = �QM = kT ln[2]

�W 0=Q0=kT ln[2]

V

2

V

V

Work medium Memory



1) Insert partition

2) Measure and 
remember

3) Isothermal
expansion 

4) Pull out partition

�W 0=Q0=kT ln[2]

WM = �QM = kT ln[2]

Szilard engine:

V

2

V

V

Work into 
information

Information
into work

No total work out: �W 0 �WM = 0

Work medium Memory



1) Insert partition into system and
pull out partition in memory

2) Measure and 
remember

3) Isothermal
expansion 

V

2

V

Work into 
information

Information
into work

WM = �QM = kTI[m,x]

�W

0=Q

0=kTI[m,x]

mx

Mutual information between the particle in the original box (x) and the 
particle in the memory (m) = entropy change (Gibbs-Shannon entropy) 

p(m,x) =

p(m)p(x)

p(m,x) =

p(m)p(x)

I[m,x] = H[m] +H[x]�H[m,x]

Szilard engine:
Work medium Memory

p(m,x) =

p(m|x)p(x)



Experimental verification
• By now has been done with a variety of different systems. 

One example: single electron box (PNAS 2014):



Assumptions in this discourse

Idealized systems

• Can measure the relevant 
quantity

• Can afford to move 
arbitrarily slowly

• Have complete control

➡ Can achieve the ultimate 
information-to-work 
conversion limit

Real world learning systems

• Encounter partially 
observable environments

• Run at finite rates

• Have limited control

➡ Are there tighter bounds?

our focus today!



• Partition moves along 
y-axis

• But: observer can 
measure only x-position 

Example: Modified Szilard box

• Particle in box with 
excluded regions

➡ correlations

can’t extract any work 
(on average)

can extract work



• Note: Fully informative memory costs more than it can yield!

• Captures I[m,x] = ln(3)  =>  costs at least kT ln(3)

• Yields at most     kT ln(2)

• Dissipation (= work lost) over cycle can, on average, be no less 
than kT ( ln(3) -    ln(2) ) > 0    ... ultimate bound unachievable!

How much work?

-1 0 1m =memory:

_
3
2

_
3
2



If the ultimate bound of zero is unachievable, we need to ask: 

• Is there a tighter, more meaningful, bound on dissipation than 
zero?

Equivalent:  Are partially observable information engines subject 
to a tighter bound on dissipation than that pointed out by Szilard 
and Landauer?

If so, could this bound inform how observers ought to process 
information efficiently? 

 



• Important insight: Observer can not turn all information about 
the x position into work. Observer has to use memory to make 
an inference about the y position.Only relevant information 
(about the y position of the particle) can be turned into work! 

• This memory indeed captures I[m,y] =    ln(2) relevant info.  

Bound on dissipation?

-1 0 1m =memory:

3
2_

p(y|m)
1

0



• Lower the costs by making a less informative memory? 

• Captures I[m,x] = ln(2)  =>  costs at least kT ln(2)

• Yields at most  kT (   ln(5) - ln(3)) = kT I[m,y]

• Dissipation at least kT (ln(2)+ln(3)-   ln(5)) > 0

Can we reach zero dissipation with a different memory?

-1 1m =memory:

p(y|m)

1

6

5

6

_
6
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5



General bound
We will show that for generalized partially observable 
information engines:

• Relevant information is tighter bound on the work 
yield than total memorized information.

• Dissipation is bound by a trade off between total 
memory and relevant information.

• For isothermal information engines, dissipation is 
lower bound by irrelevant information.

Generalized information engines can run the memory 
forming step at a different temperature than the work 
extraction step.



• Cost:

• Gain: 

Example:  a “Szilard-Carnot” process

kT ln(2) kT ln(3)

kT 0
✓
5

6
ln(5)� ln(3)

◆
2

3
kT 0 ln(2)

↵⇤ =
ln(3)� ln(2)

ln(3) + 2 ln(2)/3� 5 ln(5)/6

' 1.847

↵ =
T 0

T



Illustrative simulations

• Modified Szilard box, two-state memory 
robshaw.net:8000/movie2/

• Modified Szilard box, three-state memory
robshaw.net:8000/movie3/

• Modified Szilard box, three-state memory, 
with lateral adiabatic compression
robshaw.net:8000/movie4/

• Carnot cycle animation: robshaw.net:8000/carnot/

• Szilard box animation: robshaw.net:8000/movie1/

http://robshaw.net:8000/movie2/
http://robshaw.net:8000/movie2/
http://robshaw.net:8000/movie3/
http://robshaw.net:8000/movie3/
http://robshaw.net:8000/movie4/
http://robshaw.net:8000/movie4/
http://robshaw.net:8000/carnot/
http://robshaw.net:8000/carnot/
http://robshaw.net:8000/movie1/
http://robshaw.net:8000/movie1/


General analysis 

• Uses concepts that appear in “far-from-equilibrium” 
thermodynamics

(An emerging area with much progress over the last 2 
decades, pioneered by C. Jarzynski’s 1997 work 
relation...

⌦
e��W

↵
= e���F

...and G. Crooks’ 1998 detailed fluctuation 
theorem relating time reversal to dissipation)



F = Feq + Fadd

(e.g.: R. Shaw: The dripping faucet (1981),  
Takara, Hasegawa, Driebe, Phys. Lett. A(2010))

D[pkq] =
⌧
ln


p

q

��

p

relative entropy:
Fadd = kTD[ptkpeq]

F = hEip + kT hlog(p)ip

Core concept used here: nonequilibrium free energy associated 
with a nonequilibrium distribution p:

• Main insight: there is additional free energy out of equilibrium:

 

• Then: Free energy = corresponding equilibrium free energy + 
additional free energy:

• Experimental verification (Bechhoefer Lab, 2017):
With colloidal particle in laser trap



• System state (  ) can be decomposed in two ways:
- observables ( ) and everything else (  ) OR
- controlables (  ) and everything else (  )

• Memory (m): constructed from x; used to infer y.

• Free energy = Average energy - kT Entropy    (Shannon entropy)

• Need to look at free energy change      of the joint system-
observer engine state (the random variables z and m):

Partially observable generalized 
information engines

x x̄

ȳy

z

�E = W +Q

�F = �E � kT�H = W +Q� kT�H

First law:                    

�F



• Joint free energy change:

• Second law:

• Memory making step: 

• Work extraction step:

• Now we need to compute the entropy changes:

• Notation: Entropy
Joint entropy
Conditional entropy

Partially observable generalized 
information engines

W ��F = �Q+ kT�H � 0

�QM � �kT�HM
entropy decrease compensated 

by heat dissipation

absorbed heat compensated by 
entropy increaseQE  kT 0�HE

�F = W +Q� kT�H

H[p(m, z)] = �hln [p(m, z)]ip(m,z) ⌘ H[M,Z]
H[p(z)] = �hln [p(z)]ip(z) ⌘ H[Z]

H[p(z|m)] = �hln [p(z|m)]ip(m,z) ⌘ H[Z|M ]
H[p(m, z)] = H[(p(z|m)p(m)] = H[p(z|m)] +H[p(m)]

, H[M,Z] = H[Z|M ] +H[M ]



• Memory making step 
joint distribution BEFORE: 
(system and memory uncorrelated)  
joint distribution AFTER: 
(memory constructed only from observables)
Entropy change:

• Work extraction step 
BEFORE:  
AFTER: 
(no correlations left to exploit)
Entropy change:

p(m)p(z)

p(m|x)p(z)

�HM = H[M |X]�H[M ] = �I[M,X]

Entropy decreases by 
amount of information 
captured in memory

Entropy increases by 
amount of inferred 
information utilized

p(ȳ|y,m)p(y|m)p(m)
p(ȳ|y,m)p(y)p(m)

�HE = H[Y ]�H[Y |M ] = I[M,Y ]

QE  kT 0I[M,Y ]

�QM � kTI[M,X]
Dissipated heat no less 

than information captured
This is known (Landauer / Szillard)

Absorbed heat no more 
than relevant information 



• Memory making step                                              (Landauer) 

• Work extraction step                                                    (new)

• Dissipation 

• Isothermal engine (T’ = T):

Lower bound on dissipation

�QM � kTI[M,X] = kTImem

QE  kT 0I[M,Y ] = kT 0Irel

�Q � k (TImem � T 0Irel)

�Q � kTIirrel
Dissipation is controlled by 

how much irrelevant 
information is captured!Iirrel = Imem � Irel

(Still PRL, 2020)



From information engines to 
strategies for data representation 

and to machine learning

• Information engine:

‣ acquire and process 
information (using 
energy)

‣ use information to 
extract work 

• Simplest model for a ``proto-agent”.



Postulate for observers

• Choose a data representation strategy (in the form of a 
mapping from data to memory) that would allow for 
minimal wasted energy.

• The energy that is actually dissipated depends on the 
specific implementation and the environmental context. 

• Minimize the bound on dissipation!

• (Do not minimize actual dissipation at all times, just 
make it possible that energy efficiency could be high 
whenever needed.)



• General bound on dissipation 

• minimization (over all possible stochastic maps from data to 
memory) is the same as (subject to normalization of p(m|x))

• => “Information Bottleneck” method     (Tishby, Pereira, Bialek,1999)

• Solutions must satisfy

Data representation strategy from 
minimizing lowest achievable dissipation

�Q � k (TImem � T 0Irel)

min
p(m|x)

(I[M,X]� ↵I[M,Y ]) ↵ =
T 0

T
with

p(m|x) = p(m)

Z(x,↵)
e

�↵D[p(y|x)kp(y|m)]



• Work in = dissipated heat 
= kT I

• Work out = absorbed heat
= kT’ I

• Efficiency:

• Therefore: Information Bottleneck method provides a strategy 
to make achieving maximum efficiency possible for an observer.

total work out
heat in at T’

mem

rel

⌘ = 1� T

T 0
Imem

Irel
= ⌘C � T

T 0
Iirrel
Irel

Carnot efficiency is 
reduced in proportion 
to ratio of irrelevant to 

relevant information

Efficiency



• Dynamical and interactive learning.

- Contains interesting special cases, for example Crutchfield’s 
``computational mechanics” 

- Can be applied to reinforcement learning.

‣ Optimal behavior strategies emerge that balance 
control (exploitation) with exploration.     

• Quantum generalization of IB

• Learning from finite data

S. Still (2009) EPL 

Generalized Information Bottleneck 
Framework

A. Grimsmo and S. Still (2016) Phys. Rev. A

S. Still and D. Precup (2012) 
        Theory in Biosciences

S. Still, J. P. Crutchfield and C. J. Ellison (2010) CHAOS
S. Still (2014) Entropy

S. Still and W. Bialek (2004) Neural Comp. 



Boltzmann machine

• Input patterns drive this neural network out of its 
parameter dependent equilibrium state, p, to a 
non-equilibrium state, q. 

• The associated additional free energy, D[q∥p] is 
dissipated during the relaxation process involved 
in predicting labels on new patterns. 

• Those parameters are found that minimize 
D[p∥q], thereby minimizing a lower bound on the 
average dissipation encountered during prediction.



Core ingredients of information 
theory

• Shannon’s rate distortion curve directly follows from 
(Zipf’s) ``principle of minimum effort”, for cases where a 
distortion function, d, (equiv. utility) is given. 

• A minimum effort coding strategy is then achieved by 
precisely

• Shannon’s channel capacity is the maximum work 
potential that can be achieved with a given channel.

(S. Still, WITMSE, 2014)

min
p(m|x)

(I[m,x]� � hd(m,x)i)



Conclusions

• Making a data representation that minimizes the smallest 
possible dissipation that a partially observable information 
engine can achieve requires the use of predictive inference 
in the following sense: 

• Keep only that part of the available information which is 
relevant to the task at hand.

• This is concretely solved by the Information Bottleneck 
method, which can be derived from the following (mild) 
postulate:

• An observer has no reason to represent data in a way that 
forces more dissipation than absolutely necessary.



Outlook

• Can we use the same reasoning to find other general 
learning strategies? 

• General idea: Observers use those rules that allow them 
to come as close as possible to physical limits on 
information processing (whenever they actually need to).

• Other important limitations on learners to investigate: 
partial control, finite time operation. 

• Other important physical limits on computation to 
explore: speed, accuracy, robustness.

• Extend treatment from average quantities to worst-case 
scenarios (e.g. single shot thermodynamics)
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