Recent contributions to Distances and information geometry: A computational viewpoint

Frank Nielsen

Sony Computer Science Laboratories, Inc

DES HOUCHES

31st July 2020

Outline

1. Siegel-Klein geometry (bounded complex matrix domains)

Hilbert geometry of the Siegel disk: The Siegel-Klein disk model https://arxiv.org/abs/2004.08160

2. Information-geometric structures on the Cauchy manifold

On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds Entropy 2020, 22(7), 713; https://doi.org/10.3390/e22070713 https://www.mdpi.com/1099-4300/22/7/713

3. Generalizations of the Jensen-Shannon divergence & JS centroids

On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means Entropy 2019, 21(5), 485; https://doi.org/10.3390/e21050485 https://www.mdpi.com/1099-4300/21/5/485

On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon Centroid Entropy 2020, 22(2), 221; https://doi.org/10.3390/e22020221 https://www.mdpi.com/1099-4300/22/2/221

Hilbert geometry of the Siegel disk: <u>The Siegel-Klein disk model</u>

Frank Nielsen

Sony Computer Science Laboratories, Inc

https://arxiv.org/abs/2004.08160

Main standard models of hyperbolic geometry Conformal Poincaré model:

Hyperbolic Voronoi diagram

Metric tensor
 (Tissot indicatrix)

Lesser known non-conformal Klein model:

Hyperbolic Voronoi diagram

Straight geodesics

Hyperbolic Voronoi diagrams in 5 models

https://www.youtube.com/watch?v=i9IUzNxeH4o&t=3s

Hyperbolic Voronoi diagrams made easy, IEEE ICCSA 2010

Siegel upper space

Birth of symplectic geometry (complex matrix groups, Siegel & Hua, 1940's) Generalization of the Poincaré upper plane to *complex matrix domains*:

$$\mathbb{SH}(d) := \{ Z = X + iY : X \in \mathrm{Sym}(d, \mathbb{R}), Y \in \mathrm{PD}(d, \mathbb{R}) \}.$$

PD: Positive-definite cone

Infinitesimal length element:
$$ds_U^2(Z) = 2tr \left(Y^{-1}dZ \ Y^{-1}d\overline{Z}\right)$$

Geodesic length distance:
 $p_U(Z_1, Z_2) = \sqrt{\sum_{i=1}^d \log^2\left(\frac{1+\sqrt{r_i}}{1-\sqrt{r_i}}\right)},$
Spectral
decomposition with the i-th real eigenvalue $r_i = \lambda_i \left(R(Z_1, Z_2)\right)$
Matrix cross-ratio: $R(Z_1, Z_2) := (Z_1 - Z_2)(Z_1 - \overline{Z}_2)^{-1}(\overline{Z}_1 - \overline{Z}_2)(\overline{Z}_1 - \overline{Z}_2)^{-1}$
R: Not Hermitian, but all real eigenvalues!

Siegel upper space: Generalize PD matrix cone

PD: Positive-definite cone

$$\mathbb{SH}(d) := \{ Z = X + iY : X \in \operatorname{Sym}(d, \mathbb{R}), Y \in \operatorname{PD}(d, \mathbb{R}) \}.$$

 $ds_{U}^{2}(Z) = 2tr\left(Y^{-1}dZ \ Y^{-1}d\overline{Z}\right) \longrightarrow ds_{U}^{2}(Z) = tr\left((Y^{-1}dY)^{2}\right) = ds_{PD}(Y)$ $\stackrel{\rho_{PD}(Y_{1},Y_{2}) = \|Log(Y_{1}Y_{2}^{-1})\|_{F}}{= \sqrt{\sum_{i=1}^{d} \log^{2}\left(\lambda_{i}(Y_{1}Y_{2}^{-1})\right)}} \xrightarrow{\rho_{PD}(C^{\top}Y_{1}C, C^{\top}Y_{2}C) = \rho_{PD}(Y_{1},Y_{2})} C \in GL(d,\mathbb{R})$

Siegel upper space: Generalize Poincaré upper plane When complex dimension is 1, recover the Poincaré upper plane

$$\rho_U(Z_1, Z_2) = \rho_U(z_1, z_2),$$

$$\rho_U(z_1, z_2) := \log \frac{|z_1 - \overline{z}_2| + |z_1 - z_2|}{|z_1 - \overline{z}_2| - |z_1 - z_2|}$$

several equivalent formulas...

Generalized linear fractional transformations

Siegel upper space metric is invariant under generalized Moebius transformations called (biholomorphic) symplectic maps:

$$\phi_S(Z) := (AZ + B)(CZ + D)^{-1}, \qquad S = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

(matrix group representation)

Real symplectic group Sp(d,R):

 $\operatorname{Sp}(d,\mathbb{R}) = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \quad A, B, C, D \in M(d,\mathbb{R}) : AB^{\top} = BA^{\top}, \quad CD^{\top} = DC^{\top}, \quad AD^{\top} - BC^{\top} = I \right\}.$ Group inverse: $S^{(-1)} =: \begin{bmatrix} D^{\top} & -B^{\top} \\ -C^{\top} & A^{\top} \end{bmatrix}$

Group action is transitive: $\phi_{S(Z)}(iI) = Z$ (translation Z=A+iB) $S(Z) = \begin{bmatrix} B^{-\frac{1}{2}} & 0\\ AB^{-\frac{1}{2}} & B^{\frac{1}{2}} \end{bmatrix}$ (\Rightarrow homogeneous space) $\phi_{S(-1)(Z)}(Z) = iI$. $S(Z) = \begin{bmatrix} B^{-\frac{1}{2}} & 0\\ AB^{-\frac{1}{2}} & B^{\frac{1}{2}} \end{bmatrix}$

Orientation-preserving isometry in the Siegel upper space

Stabilizer group of Z=iI: The symplectic orthogonal matrices: (informally, play the role of "rotations" in the Siegel geometry)

$$\operatorname{SpO}(2d,\mathbb{R}) = \left\{ \begin{bmatrix} A & B \\ -B & A \end{bmatrix} : A^{\mathsf{T}}A + B^{\mathsf{T}}B = I, A^{\mathsf{T}}B \in \operatorname{Sym}(d,\mathbb{R}) \right\}$$
$$\operatorname{SpO}(2d,\mathbb{R}) = \operatorname{Sp}(2d,\mathbb{R}) \cap O(2d) \qquad O(2d) := \left\{ R \in M(2d,\mathbb{R}) : RR^{\mathsf{T}} = R^{\mathsf{T}}R = I \right\}$$

Orientation preserving isometry:

$$PSp(d, \mathbb{F}) = Sp(d, \mathbb{F}) / \{I_{2d}\}$$

When complex dimension is 1 (Poincaré upper plane), recover PSL(2,R)

Siegel disk domain

Disk domain:

Partial Loewner ordering

$$\mathbb{SD}(d) := \{ W \in \operatorname{Sym}(d, \mathbb{C}) : I - \overline{W}W \not\succeq 0 \}$$

Or equivalently $\mathbb{SD}(d) := \{ W \in \operatorname{Sym}(d, \mathbb{C}) : I - W\overline{W} \succ 0 \}$

A generalization of Poincaré conformal disk: $\mathbb{SD}(1) = \mathbb{D}$

Spectral/operator norm:
$$\|M\|_{O} = \max_{x \neq 0} \frac{\|Mx\|_{2}}{\|x\|_{2}},$$
$$= \sqrt{\lambda_{\max}(M^{H}M)},$$
$$= \sigma_{\max}(M). \quad (= \text{Maximum singular value} >= 0)$$
Siogal disk domain:

Siegel disk domain: Shilov boundary

Stratified space (by matrix rank)

$$\mathbb{SD}(d) = \{ W \in \operatorname{Sym}(d, \mathbb{C}) : \|W\|_O < 1 \}$$

Distance in the Siegel disk domain

Siegel metric in the disk domain:

$$\mathrm{d}s_D^2 = \mathrm{tr}\left((I - W\overline{W})^{-1}\mathrm{d}W(I - W\overline{W})^{-1}\mathrm{d}\overline{W}\right)$$

When complex dimension is 1, recover the Poincaré disk metric:

 $\mathrm{d}s_D^2 = \frac{1}{(1-|w|^2)^2} \mathrm{d}w \mathrm{d}\bar{w}$

Siegel disk distance:

$$\rho_D(W_1, W_2) = \log\left(\frac{1 + \|\Phi_{W_1}(W_2)\|_O}{1 - \|\Phi_{W_1}(W_2)\|_O}\right)$$

Siegel translation of W1 to the origin matrix 0 (= Siegel translation):

 $\Phi_{W_1}(W_2) = (I - W_1 \overline{W}_1)^{-\frac{1}{2}} (W_2 - W_1) (I - \overline{W}_1 W_2)^{-1} (I - \overline{W}_1 W_1)^{\frac{1}{2}}$

Costly to calculate because we need square root and inverse matrices

Complex symplectic group (for Siegel disk)

$$\operatorname{Sp}(d,\mathbb{C}) = \left\{ M^{\top}JM = J, M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in M(2d,\mathbb{C}) \right\} \quad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$$

Equivalent to $AB^{\top} = BA^{\top}$, $CD^{\top} = DC^{\top}$, $AD^{\top} - BC^{\top} = I$.

$$\operatorname{Sp}(d,\mathbb{C}) = \left\{ M = \begin{bmatrix} A & B \\ \bar{B} & \bar{A} \end{bmatrix} \in M(2d,\mathbb{C}) \right\}, \qquad \begin{array}{c} A^{\mathsf{T}}\bar{B} - B^{H}A &= 0, \\ A^{\mathsf{T}}\bar{A} - B^{H}B &= I. \end{array}$$

Orientation-preserving isometry in the Siegel disk:

$$PSp(d, \mathbb{C}) = Sp(d, \mathbb{C}) / \{\pm I_{2d}\}$$

PSL(2,C) in 1D

Conversions Siegel upper space <-> Siegel disk

Some applications of Siegel symplectic geometry

Radar signal processing:

• Frederic Barbaresco. Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, Mostow/Berger bration and Frechet median.

In Matrix information geometry, pages 199-255. Springer, 2013.

- Ben Jeuris and Raf Vandebril. The Kahler mean of block-Toeplitz matrices with Toeplitz structured blocks. SIAM Journal on Matrix Analysis and Applications, 37(3):1151-1175, 2016.
- Congwen Liu and Jiajia Si. Positive Toeplitz operators on the Bergman spaces of the Siegel upper half-space.
 Communications in Mathematics and Statistics, pages 1-22, 2019.

Image processing:

Reiner Lenz. Siegel descriptors for image processing. IEEE Signal Processing Letters, 23(5):625-628, 2016.

• <u>Statistics</u>:

- Miquel Calvo and Josep M Oller. A distance between elliptical distributions based in an embedding into the Siegel group. Journal of Computational and Applied Mathematics, 145(2):319-334, 2002.
- Emmanuel Chevallier, Thibault Forget, Frederic Barbaresco, and Jesus Angulo. Kernel density estimation on the Siegel space with an application to radar processing. Entropy, 18(11):396, 2016.

Poincaré conformal disk vs Klein non-conformal disk

- Klein disk is **non-conformal** with **geodesics straight** Euclidean lines
- Klein mode well-suited for **computational geometry**: Eg., Voronoi diagram

Q: What is the equivalent of Klein geometry for the Siegel disk domain?

Hilbert (projective) geometry

Normed vector space $(V, \|\cdot\|)$ Bounded open convex domain Ω

Define Hilbert distance:

$$H_{\Omega,\kappa}(p,q) := \begin{cases} \kappa \log |\operatorname{CR}(\bar{p},p;q,\bar{q})|, & p \neq q, \\ 0 & p = q. \end{cases}$$
$$H_{\Omega,\kappa}(p,q) := \kappa \log \frac{\|\bar{q} - p\| \|\bar{p} - q\|}{\|\bar{q} - q\| \|\bar{p} - p\|}$$

Cross-ratio: $CR(a, b; c, d) = \frac{\|a - c\| \|b - d\|}{\|a - d\| \|b - c\|}.$

Related to Birkhoff geometry on (d+1)-dimensional cones

Rewriting the Hilbert distance

$$H_{\Omega,\kappa}(p,q) := \kappa \log \frac{\|\bar{q} - p\| \|\bar{p} - q\|}{\|\bar{q} - q\| \|\bar{p} - p\|}$$

$$H_{\Omega,\kappa}(p,q) = \begin{cases} \kappa \log \left| \frac{\alpha_+(1-\alpha_-)}{\alpha_-(\alpha_+-1)} \right|, & p \neq q, \\ 0 & p = q. \end{cases} \qquad \qquad \bar{p} = p + \alpha^-(q-p) \\ \bar{q} = p + \alpha^+(q-p) \end{cases}$$

Or equivalently (p,q expressed from linear interpolations of boundary points):

$$H_{\Omega,\kappa}(p,q) = \begin{cases} \kappa \log\left(\frac{1-\alpha_p}{\alpha_p}\frac{\alpha_q}{1-\alpha_q}\right) & \alpha_p \neq \alpha_q, \\ 0 & \alpha_p = \alpha_q. \end{cases} \qquad \begin{array}{c} p = (1-\alpha_p)\bar{p} + \alpha_p\bar{q} \\ q = (1-\alpha_q)\bar{p} + \alpha_q\bar{q} \end{cases}$$

Siegel-Klein disk model

$\mathbb{SD}(d) = \{ W \in \operatorname{Sym}(d, \mathbb{C}) : \|W\|_O < 1 \}$

Definition 2 (Siegel-Klein geometry) The Siegel-Klein disk model is the Hilbert geometry for the open bounded convex domain $\Omega = \mathbb{SD}(d)$ with constant $\kappa = \frac{1}{2}$. The Siegel-Klein distance is $\rho_K(K_1, K_2) := H_{\mathbb{SD}(d), \frac{1}{2}}(K_1, K_2).$

Calculating the Siegel-Klein distance Line passing through two matrix points:

 $\{K_1 + \alpha(K_2 - K_1), \alpha \in \mathbb{R}\}\$

Calculate the **two** α values on Shilov boundary $||K_1 + \alpha(K_2 - K_1)||_O = 1.$

Siegel-Klein distance:

$$\rho_K(K_1, K_2) = \frac{1}{2} \log \left(\frac{\alpha_+ (1 - \alpha_-)}{|\alpha_-|(\alpha_+ - 1)|} \right)$$

$$\bar{K}_1 = K_1 + \alpha_- (K_2 - K_1) \qquad \alpha_+ > 1$$

$$\bar{K}_2 = K_1 + \alpha_+ (K_2 - K_1) \qquad \alpha_- < 0$$

In practice, perform **bisection search** for the α values...

Siegel-Klein distance to the origin (zero matrix 0)

Solve for $\|\alpha K\|_O = 1$

$$\alpha_{+} = \frac{1}{\|K\|_{O}} > 1 \quad \text{and} \qquad \alpha_{-} = -\frac{1}{\|K\|_{O}} < 0$$

$$\rho_{K}(0, K) = \log\left(\frac{1 + \frac{1}{\|K\|_{O}}}{\frac{1}{\|K\|_{O}} - 1}\right), \qquad \text{Siegel disk distance:}$$

$$= \frac{1}{2}\log\left(\frac{1 + \|K\|_{O}}{1 - \|K\|_{O}}\right) \qquad \rho_{D}(0, W) = \log\left(\frac{1 + \|W\|_{O}}{1 - \|W\|_{O}}\right)$$

$$= 2 \rho_{D}(0, K),$$

Theorem 1 (Siegel-Klein distance to the origin) The Siegel-Klein distance of matrix $K \in \mathbb{SD}(d)$ to the origin O is

$$\rho_K(0,K) = \frac{1}{2} \log \left(\frac{1 + \|K\|_O}{1 - \|K\|_O} \right)$$
 (123)

Siegel-Klein distance: Line passing through the origin Cial $\lambda = \frac{\operatorname{tr}(K_2)}{\operatorname{tr}(K_1)}$ $K_2 = \lambda K_1$ Line (K1K2) passing through the origin: as $\alpha' = \frac{1}{\lambda - 1} \left(\frac{1}{\|K_1\|_{O}} - 1 \right)$ $||K_1 + \alpha (K_2 - K_1)||_O = 1,$ $|1 + \alpha(\lambda - 1)| = \frac{1}{\|K_1\|_O}$ $\alpha'' = \frac{1}{1-\lambda} \left(1 + \frac{1}{\|K_1\|_O} \right)$ $\rho_K(K_1, K_2) = \frac{1}{2} \left| \log \left(\frac{\alpha'(1 - \alpha'')}{\alpha''(\alpha' - 1)} \right) \right|,$ Siegel-Klein distance: $= \frac{1}{2} \left| \log \frac{1 - \|K_1\|_O}{1 + \|K_1\|_O} \frac{\|K_1\|_O(1 - \lambda) - (1 + \|K_1\|_O)}{\|K_1\|_O(\lambda - 1) - (1 - \|K_1\|_O)} \right|$

Siegel-Klein distance between <u>diagonal matrices</u>

Theorem 4 (Siegel-Klein distance for diagonal matrices) The Siegel-Klein distance between two diagonal matrices in the Siegel-Klein disk can be calculated exactly in linear time.

Solve **d quadratic systems** for getting two α values:

$$\alpha^{2} \left(\bar{k}_{i}' - \bar{k}_{i} \right) \left(k_{i}' - k_{i} \right) + \alpha \left(\bar{k}_{i} (k_{i}' - k_{i}) + k_{i} (\bar{k}_{i}' - \bar{k}_{i}) \right) + \bar{k}_{i} k_{i} - 1 \leq 0, \forall i \in \{1, \dots, d\}.$$

Siegel-Klein distance:

$$\rho_{K}(K_{1}, K_{2}) = \frac{1}{2} \log \left(\frac{\alpha_{+}(1 - \alpha_{-})}{|\alpha_{-}|(\alpha_{+} - 1)} \right)$$

$$\alpha_{-} = \max_{i \in \{1, \dots, d\}} \alpha_{i}^{-},$$

$$\alpha_{+} = \min_{i \in \{1, \dots, d\}} \alpha_{i}^{+},$$

Approximating Hilbert geometry with <u>nested domains</u>

Property 1 (Bounding Hilbert distance) Let $\Omega_+ \subset \Omega \subset \Omega_-$ be strictly nested open convex bounded domains. Then we have the following inequality for the corresponding Hilbert distances:

Guaranteed approximation of the Siegel-Klein distance

Theorem 5 (Lower and upper bounds on the Siegel-Klein distance) The Siegel-Klein distance between two matrices K_1 and K_2 of the Siegel disk is bounded as follows:

$$\rho_K(l_-, u_+) \le \rho_K(K_1, K_2) \le \rho_K(u_-, l_+), \tag{152}$$

where

$$\rho_K(\alpha_m, \alpha_M) := \frac{1}{2} \log \left(\frac{\alpha_M (1 - \alpha_m)}{|\alpha_m| (\alpha_M - 1)} \right).$$
(153)

Converting Siegel-Poincaré (W) to/from Siegel-Klein (K)

Radial contraction to the origin

Siegel-Klein-> Siegel-Poincaré

$$C_{K \to D}(K) = \frac{1}{1 + \sqrt{1 - \|K\|_O^2}} K$$

Radial expansion to the origin:

Siegel-Poincaré-> Siegel-Klein-

$$C_{D \to K}(W) = \frac{2}{1 + \|W\|_{O}^{2}} W.$$

Siegel-Klein geodesics are unique Euclidean straight

$$\gamma_{K_1,K_2}(\alpha) = (1-\alpha)K_1 + \alpha K_2 = K_1 + \alpha (K_2 - K_1).$$

Follow from the definition of the Hilbert distance and the cross-ratio properties:

$$(p,q;P,Q) = (p,r;P,Q) \times (r,q;P,Q) \text{ when } r \text{ is collinear with } p,q,P,Q$$

$$(p,q;P,Q) = \frac{(p-P)(q-Q)}{(p-Q)(q-P)}$$

Main advantage of the Siegel-Klein model is that **geodesics are straight** Many <u>computational geometric techniques</u> thus apply: For example: Smallest Enclosing Balls, etc.

 $\rho_{\rm HG}(p,q) = \rho_{\rm HG}(p,r) + \rho_{\rm HG}(q,r)$

https://www.youtube.com/watch?v=Gz0Vjk5quQE

Hilbert geometry of elliptope (space of correlation matrices) <u>https://franknielsen.github.io/elliptope/index.html</u>

Geodesics in Cayley-Klein geometry are unique.

(= Hilbert geometry for **ellipsoidal domains**)

Clustering in Hilbert's projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices

Summary of Siegel-Klein geometry:

- Siegel and Hua studied in the 1940's the geometry of bounded complex matrix domains (= birth of symplectic geometry not directly related to symplectic manifolds equipped with a closed non-degenerate 2-form)
- The Siegel upper space generalizes the Poincaré upper plane, and the Siegel disk generalizes the Poincaré disk. Siegel upper space further *includes* in the cone of symmetric positive definite (SPD) matrices on the imaginary i-axis
- Orientation-preserving isometry group of the Siegel upper space is the projective real symplectic group. PSL(2,R) when complex dimension is 1. Orientation-preserving isometry group of the Siegel disk is the projective complex symplectic group. PSL(2,C) when complex dimension is 1.
- Hilbert geometry on the Siegel disk ensures **straight line geodesics**. Well-suited to computational geometry in the Siegel-Klein disk (eg, smallest enclosing ball)
- Siegel-Klein distance between two matrices can be calculated *exactly* when the line passing through the two matrices goes through the origin, or for diagonal matrices. Otherwise, guaranteed approximations of the Siegel-Klein distance by considering nested Hilbert geometries (require maximum singular values only).

Thank you! https://arxiv.org/abs/2004.08160

Audrey Terras

Harmonic Analysis on Symmetric Spaces— Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

Second Edition

D Springer

Henri Poincaré 1854–1912

Felix Klein 1849 – 1925

David Hilbert 1862–1943

Carl Ludwig Siegel 1896 - 1981

by Carl Ludwig Siegel

(AP)

Hua Luogeng Hua Loo-Keng 华罗庚 1910-1985

Some references: Siegel-Klein geometry: <u>https://arxiv.org/abs/2004.08160</u>

- Carl Ludwig Siegel. *Symplectic geometry*. American Journal of Mathematics, 65(1):1-86, 1943.
- Loo-Keng Hua. *On the theory of automorphic functions of a matrix variable I: Geometrical basis*. American Journal of Mathematics, 66(3):470-488, 1944.
- Loo-Keng Hua. *Geometries of matrices. II. study of involutions in the geometry of symmetric matrices.* Transactions of the American Mathematical Society, 61(2):193-228, 1947.
- Frédéric Barbaresco. *Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, Mostow/Berger fibration and Frechet median*. In Matrix information geometry, pages 199-255. Springer, 2013.
- Giovanni Bassanelli. *On horospheres and holomorphic endomorfisms of the Siegel disc.* Rendiconti del Seminario Matematico della Universita di Padova, 70:147-165, 1983.
- Pedro Jorge Freitas. *On the action of the symplectic group on the Siegel upper half plane*. PhD thesis, University of Illinois at Chicago, 1999.
- Nielsen, Frank, and Ke Sun. *Clustering in Hilbert's projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices*. Geometric Structures of Information. Springer, Cham, 2019. 297-331.

On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds

Frank Nielsen

Sony Computer Science Laboratories, Inc

On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds Entropy 2020, 22(7), 713; https://doi.org/10.3390/e22070713 https://www.mdpi.com/1099-4300/22/7/713

July 2020

Voronoi diagrams: Voronoi proximity cells

Given a finite point set $\mathcal{P} = \{P_1, \dots, P_n\}$

Voronoi cell:

$$\operatorname{Vor}_{D}(P_{i}) := \left\{ X \in \mathbb{X}, \quad D(P_{i}, X) \leq D(P_{j}, X), \quad \forall j \in \{1, \dots, n\} \right\}$$

The Voronoi diagram partitions the space into Voronoi cells

Euclidean distance (norm-induced): $\rho_E(P,Q) = ||p-q||_2$

Dual Voronoi structure is the Delaunay complex

Link adjacent Voronoi generators by a straight (geodesic) edge:

Dual orthogonal structures

Delaunay complex yields the Delaunay triangulation

when no *d+2 cocircular :* nice meshing properties

Voronoi diagrams for asymmetric dissimilarities

Asymmetric (oriented) distance: $D(P,Q) \neq D(Q,P)$ **Dual distance**: $D^*(P,Q) := D(Q,P)$ Involution: $(D^*)^*(P,Q) = D(P,Q)$

Dual Voronoi cells:

 $\begin{aligned} \operatorname{Vor}_{D}(P_{i}) &:= \{ X \in \mathbb{X}, \quad D(P_{i} : X) \leq D(P_{j} : X), \quad \forall j \in \{1, \dots, n\} \} \\ \operatorname{Vor}_{D}^{*}(P_{i}) &:= \{ X \in \mathbb{X} \quad D(X : P_{i}) \leq D(X : P_{j}), \quad \forall j \in \{1, \dots, n\} \}, \\ &= \{ X \in \mathbb{X} \quad D^{*}(P_{i} : X) \leq D^{*}(P_{j} : X), \quad \forall j \in \{1, \dots, n\} \}, \\ &= \operatorname{Vor}_{D}^{*}(P_{i}) = \operatorname{Vor}_{D^{*}}(P_{i}) \end{aligned}$

= Dual bisector is primal bisector for dual dissimilarity

Example: Bregman Voronoi diagrams

Bregman divergence for a convex C2 generator F:

$$B_F(\theta_1:\theta_2):=F(\theta_1)-F(\theta_2)-(\theta_1-\theta_2)^{\top}\nabla F(\theta_2).$$

Recover the ordinary Euclidean Voronoi diagram when $F_{\text{Eucl}}(\theta) = \frac{1}{2}\theta^{\top}\theta$

Three types of Voronoi diagrams:

Primal (curved) Dual (always affine) Symmetrized (curved)

Boissonnat, N, Nock. "Bregman Voronoi diagrams." Discrete & Computational Geometry 44.2 (2010): 281-307.

The Cauchy manifold

Manifold of the Cauchy distributions (Lorentzian distributions):

$$\mathcal{C}:=\left\{p_{\lambda}(x):=\frac{s}{\pi(s^{2}+(x-l)^{2})}, \quad \lambda:=(l,s)\in\mathbb{H}:=\mathbb{R}\times\mathbb{R}_{+}\right\}$$

Location-scale family (I,s) with base *standard Cauchy distribution*:

$$p_{l,s}(x) := \frac{1}{s} p\left(\frac{x-l}{s}\right) \qquad p(x) := \frac{1}{\pi(1+x^2)} =: p_{0,1}(x)$$

Several kinds of manifold information-geometric structures induced by:

- 1. Fisher-Rao geometry: Fisher information metric (+ Levi-Civita metric connection)
- **2.** α-geometry: Dualistic structure (Amari-Chentsov cubic tensor T), alpha connections
- **3. D-geometry**: Dualistic geometry from divergence (e.g., Kullback-Leibler divergence)
- 4. Hessian geometry from Hessian metrics (smooth flat divergence + conformal flattening)

Cauchy manifold: Fisher-Rao Riemannian geometry

Fisher information matrix (FIM) yielding Fisher Riemannian metric (FIm):

$$g_{\text{FR}}(\lambda) = [g_{ij}^{\text{FR}}(\lambda)], \quad g_{ij}^{\text{FR}}(\lambda) := E_{p_{\lambda}} \left[\partial_{i} l_{\lambda}(x) \partial_{j} l_{\lambda}(x) \right]$$

$$g_{\text{FR}}(\lambda) = g_{\text{FR}}(l,s) = \frac{1}{2s^{2}} \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \qquad \begin{array}{c} \text{Scaled hyperbolic} \\ \text{Poincaré upper plane} \\ \text{metric} \\ dsm = \frac{1}{2} dsn \end{array} \qquad g_{P}(x,y) = \frac{1}{y^{2}} \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right]$$

 $\sqrt{2}$

Fisher-Rao distance is a geodesic length and metric distance:

$$\begin{split} \rho_{\mathrm{FR}}\left(p_{\lambda_{1}}\left(x\right), p_{\lambda_{2}}\left(x\right)\right) &= \min_{\substack{\lambda(s) \\ \text{such that} \\ \lambda(0) = \lambda_{1}, \lambda(1) = \lambda_{2}}} \int_{0}^{1} \sqrt{\left(\frac{\mathrm{d}\lambda(t)}{\mathrm{d}t}\right)^{T}} g_{\mathrm{FR}}(\lambda(s)) \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t} \mathrm{d}t \\ \rho_{\mathrm{FR}}[p_{l_{1},s_{1}}, p_{l_{2},s_{2}}] &= \frac{1}{\sqrt{2}} \rho_{P}(l_{1}, s_{1}; l_{2}, s_{2}) \qquad \text{where} \quad \rho_{P}(l_{1}, s_{1}; l_{2}, s_{2}) := \operatorname{arccosh}\left(1 + \delta(l_{1}, s_{1}, l_{2}, s_{2})\right) \\ \delta(l_{1}, s_{1}; l_{2}, s_{2}) := \frac{(l_{2} - l_{1})^{2} + (s_{2} - s_{1})^{2}}{2s_{1}s_{2}} \qquad \operatorname{arccosh}(x) := \log\left(x + \sqrt{x^{2} - 1}\right), \quad x > 1 \end{split}$$
Cauchy manifold: Rao's distance

Fisher-Rao distance between Cauchy distributions:

λ

$$\rho_{\text{FR}}[p_{l_1,s_1}, p_{l_2,s_2}] = \begin{cases} \frac{1}{\sqrt{2}} \left| \log \frac{s_1}{s_2} \right| & \text{when } l_1 = l_2, \\ \frac{1}{\sqrt{2}} \operatorname{arccosh} \left(1 + \frac{(l_2 - l_1)^2 + (s_2 - s_1)^2}{2s_1 s_2} \right) & \text{when } l_1 \neq l_2. \end{cases}$$

Extended to multidimensional "isotropic" location-scale families:

$$\begin{split} \mu &= (l,s) \in \mathbb{R}^d \times \mathbb{R} \\ \rho_{\text{FR}}[p_{l_1,s_1}, p_{l_2,s_2}] &= \frac{1}{\sqrt{2}} \operatorname{arccosh}\left(1 + \Delta(l_1, s_1, l_2, s_2)\right) \\ \Delta(l_1, s_1, l_2, s_2) &:= \frac{\|l_2 - l_1\|_2^2 + (s_2 - s_1)^2}{2s_1 s_2} \end{split}$$

Cauchy manifold: <u>Always curved self-dual structures</u>!

Skewness cubic tensor (Amari-Chentsov totally symmetric tensor):

$$T_{ijk}(\theta) := E_{p_{\lambda}} \left[\partial_{i} l_{\lambda}(x) \partial_{j} l\lambda(x) \partial_{k} l\lambda(x) \right] \qquad T_{\sigma(i)\sigma(j)\sigma(k)} = T_{ijk}$$

a-geometry: $(M, g_{FR}, \nabla^{-\alpha}, \nabla^{\alpha}) \qquad g_{FR}(\lambda) = g_{FR}(l,s) = \frac{1}{2s^{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

All α -geometries coincide with the Fisher-Rao geometry for the Cauchy manifold: ${}^{\alpha}\Gamma_{12}^{1} = {}^{\alpha}\Gamma_{21}^{1} = {}^{\alpha}\Gamma_{22}^{2} = -\frac{1}{s'},$ ${}^{\alpha}\Gamma_{11}^{2} = \frac{1}{s}.$ Scalar curvature: $\mathcal{K} = -2$.

Fisher-Rao geometry is 0-geometry : $(C, g_{FR}) = (C, g_{FR}, \nabla^0, \nabla^0)$

No way to choose α so that the α -geometry becomes dually flat

- For the Gaussian distributions, we can choose $\alpha=1$ or $\alpha=-1$
- For the t-Student distributions, we can choose: $\alpha = \pm \frac{k+5}{k-1}$

Cauchy manifold: q-Gaussians for q=2

q-Gaussians are maximum entropy distributions wrt Tsallis' q-entropy:

Tsallis' q-entropy:
$$T_q(p) := \frac{1}{q-1} \left(1 - \int_{-\infty}^{\infty} p^q(x) dx \right), \quad q \neq 1.$$

 $\lim_{q \to 1} T_q(p) = S(p) := -\int p(x) \log p(x) dx$ Shannon entropy

Cauchy distributions are q-Gaussians for q=2:

MaxEnt distributions for Tsallis' quadratic entropy:

$$T_2(p):=1-\int_{-\infty}^{\infty}p^2(x)\mathrm{d}x.$$

Related to Onicescu's informational energy: $E(p) := \int_{-\infty}^{\infty} p^2(x) dx$

Deformed q=2-exponential families Deformed exponential function: $\exp_{\mathcal{C}}(u) := \frac{1}{1-u}, \quad u \neq 1,$ Deformed reciprocal logarithm function: $\log_{\mathcal{C}}(u) := 1 - \frac{1}{u}, \quad u \neq 0,$

Deformed 2-exponential families (= Cauchy family):

$$p_{\theta}(x) = \exp_{\mathcal{C}}(\theta^{\top}x - F(\theta))$$

For Cauchy distributions, we find:

$$\log_{\mathcal{C}}(p_{\theta}(x)) = 1 - \frac{1}{s}\pi(s^{2} + (x-l)^{2}) = 1 - \pi\left(s + \frac{(x-l)^{2}}{s}\right),$$

$$=: \theta^{\top}t(x) - F(\theta),$$

$$= \underbrace{\left(2\pi\frac{l}{s}\right)x + \left(-\frac{\pi}{s}\right)x^{2}}_{\theta^{\top}t(x)} - \underbrace{\left(\pi s + \pi\frac{l^{2}}{s} - 1\right)}_{F(\theta)}.$$

Cauchy 2-Gaussians: Canonical factorization

Natural parameters:

$$\theta(l,s) = (\theta_1, \theta_2) = \left(2\pi \frac{l}{s}, -\frac{\pi}{s}\right) \in \Theta = \mathbb{R} \times \mathbb{R}_-$$

Natural-to ordinary parameter conversion: $\lambda(\theta) = (l,s) = \left(-\frac{\theta_1}{2\theta_2}, -\frac{\pi}{\theta_2}\right)$ Log-normalizer: $F(\theta(\lambda)) = \pi s + \pi \frac{l^2}{s} - 1 =: F_{\lambda}(\Lambda),$ $F(\theta) = -\frac{\pi^2}{\theta_2} - \frac{\theta_1^2}{4\theta_2} - 1.$

Gradient of the log-normalizer: yields dual coordinate system eta

$$\nabla F(\theta) = \begin{bmatrix} -\frac{\theta_1}{2\theta_2} \\ \frac{\pi^2}{\theta_2^2} + \frac{\theta_1^2}{4\theta_2^2} \end{bmatrix}$$

Cauchy manifold: Dually flat manifold

$$\begin{split} D_{\text{flat}}[p_{\lambda_1}:p_{\lambda_2}] &:= \frac{1}{\int p_{\lambda_2}^2(x) \mathrm{d}x} \left(\int \frac{p_{\lambda_2}^2(x)}{p_{\lambda_1}(x)} \mathrm{d}x - 1 \right) \\ &= 2\pi s_2 \left(\frac{s_1^2 + s_2^2 + (l_1 - l_2)^2}{2s_1 s_2} - 1 \right), \\ &= 2\pi s_2 \frac{(s_1 - s_2)^2 + (l_1 - l_2)^2}{2s_1 s_2}, \\ &= 2\pi s_2 \delta(l_1, s_1, l_2, s_2), \\ D_{\text{flat}}[p_{\lambda_1}:p_{\lambda_2}] &= B_F(\theta_1:\theta_2) \end{split}$$

Bregman divergence: $B_F(\theta_1:\theta_2):=F(\theta_1)-F(\theta_2)-(\theta_1-\theta_2)^\top \nabla F(\theta_2)$

called the **Bregman-Tsallis q=2-divergence**

Dual potential functions of the Hessian structure

Dual to primal conversion:

$$\theta(\eta) = \begin{bmatrix} \frac{2\pi\eta_1}{\sqrt{\eta_2 - \eta_1^2}} \\ \frac{-\pi}{\sqrt{\eta_2 - \eta_1^2}} \end{bmatrix} := \nabla F^*(\eta)$$

Dual potential function:

$$F^*(\eta) := \theta(\eta)^\top \eta - F(\theta(\eta)) \qquad F^*(\eta) = 1 - 2\pi \sqrt{\eta_2} - \frac{1}{2} - \frac{1}{2}$$

Dual-to-ordinary parameter conversion:

$$\eta(\lambda) = \eta(\theta(\lambda)) = (\lambda_1, \lambda_1^2 + \lambda_2^2) = (l, l^2 + s^2)$$

$$F_{\lambda}^{*}(\lambda) := F^{*}(\eta(\lambda)) = 1 - 2\pi\sqrt{l^{2} + s^{2} - l^{2}} = 1 - 2\pi s$$
$$F_{\lambda}^{*}(\lambda) := 1 - \frac{1}{\int p^{2}(x)dx} = 1 - \frac{1}{\frac{1}{2\pi s}} = 1 - 2\pi s.$$

Dual-to-ordinary parameter conversion: $\lambda(\eta) = (l,s) = (\eta_1, \sqrt{\eta_2 - \eta_1^2}).$

Dually flat divergence (=Bregman divergence)

$$D_{\text{flat}}[p_{\lambda_1}:p_{\lambda_2}] = B_F(\theta_1:\theta_2) = B_{F^*}(\eta_2:\eta_1) = A_F(\theta_1:\eta_2) = A_{F^*}(\eta_2:\theta_1)$$

with the Legendre-Fenchel divergence: (non-negativity from Young's inequality)

$$A_F(\theta_1:\eta_2):=F(\theta_1)+F^*(\eta_2)-\theta_1^{\top}\eta_2$$

Dual Hessians of the potential functions:

$$\nabla^{2}F(\theta) = \begin{bmatrix} -\frac{1}{2\theta_{2}} & \frac{\theta_{1}}{2\theta_{2}^{2}} \\ \frac{\theta_{1}}{2\theta_{2}^{2}} & -\frac{\theta_{1}^{2}}{2\theta_{2}^{2}} - \frac{2\pi^{2}}{\theta_{2}^{2}} \end{bmatrix} =: g_{F}(\theta),$$

Dual Hessian metrics
$$\nabla^{2}F^{*}(\eta) = \begin{bmatrix} \frac{2}{\sqrt{\eta_{2}-\eta_{1}^{2}}} + \frac{2\eta_{1}^{2}}{(\eta_{2}-\eta_{1}^{2})^{\frac{3}{2}}} & -\frac{\eta_{1}}{(\eta_{2}-\eta_{1}^{2})^{\frac{3}{2}}} \\ -\frac{\eta_{1}}{(\eta_{2}-\eta_{1}^{2})^{\frac{3}{2}}} & \frac{1}{2}(\eta_{2}-\eta_{1}^{2})^{\frac{3}{2}} \end{bmatrix} =: g_{F}^{*}(\eta).$$

Crouzeix identity:
$$\nabla^2 F(\theta) \nabla^2 F^*(\eta(\theta)) = \nabla^2 F(\theta(\eta)) \nabla^2 F^*(\eta) = I_{\mu}$$

Hessian metrics are conformal to the Fisher information metric:

$$g_F^{ heta}(heta) = -rac{2 heta_2}{\pi^2}g_{
m FR}^{ heta}(heta), \ g_F^{\lambda}(\lambda) = rac{2}{\pi\sigma}g_{
m FR}^{\lambda}(\lambda).$$

Summary: Cauchy information-geometric structures:

Invariant f-divergences and \alpha-divergences: f-divergences: f convex, f(1)=0 **Standard f-divergence:** f'(1)=0, f''(1)=1

- Invariant because its satisfies the information monotonicity, and
- Infinitesimal small f-divergence is related to the Fisher information ${}^{I_f}g = g_{FR}$

$$\begin{array}{ll} \boldsymbol{\alpha}\text{-divergences:} & I_{\alpha}[p:q] \coloneqq \frac{1}{\alpha(1-\alpha)} (1 - C_{\alpha}[p:q]), \quad \alpha \notin \{0,1\} \\ & I_{\alpha}[p:q] = I_{1-\alpha}[q:p] = I_{\alpha}^{*}[p:q]. \end{array}$$
Chernoff $\boldsymbol{\alpha}$ -coefficient: $C_{\alpha}[p:q] := \int p^{\alpha}(x)q^{1-\alpha}(x)dx$

\alpha-divergences are f-divergences: $I_f[p:q] := \int_{\mathcal{X}} p(x) f\left(\frac{q(x)}{p(x)}\right) dx$,

$$f_{\alpha}(u) = \begin{cases} \frac{u^{1-\alpha}-u}{\alpha(\alpha-1)}, & \text{if } \alpha \neq 0, \alpha \neq 1\\ u \log(u), & \text{if } \alpha = 0 \quad \text{(reverse Kullback-Leibler divergence),}\\ -\log(u), & \text{if } \alpha = 1 \quad \text{(Kullback-Leibler divergence).} \end{cases}$$

Kullback-Leibler divergence: $D_{\text{KL}}[p:q] := \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) dx.$ (relative entropy)

Kullback-Leibler divergence between Cauchy distributions is symmetric:

$$D_{\mathrm{KL}}[p_{l_1,s_1}:p_{l_2,s_2}] = \log\left(1 + \frac{(s_1 - s_2)^2 + (l_1 - l_2)^2}{4s_1s_2}\right)$$

A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions, arXiv:1905.10965

Fisher-Rao distance and chi-squared divergences:

$$\begin{split} D_{\chi_P^2}[p:q] &:= \int \frac{(q(x) - p(x))^2}{p(x)} \mathrm{d}x, \\ D_{\chi_N^2}[p:q] &:= \int \frac{(q(x) - p(x))^2}{q(x)} \mathrm{d}x = D_{\chi_P^2}^*[p:q] = D_{\chi_P^2}[q:p] \\ D_{\chi_P^2}[p_{l_1,s_1}:p_{l_2,s_2}] &= D_{\chi_N^2}[p_{l_1,s_1}:p_{l_2,s_2}], \\ &= \frac{(s_1 - s_2)^2 + (l_2 - l_1)^2}{2s_1s_2}, \\ &=: \delta(l_1,s_1;l_2,s_2). \end{split}$$

$$\rho_{\mathrm{FR}}[p_{l_1,s_1}, p_{l_2,s_2}] = \frac{1}{\sqrt{2}} \operatorname{arccosh} \left(1 + D_{\chi^2}[p_{l_1,s_1}: p_{l_2,s_2}] \right)$$

Fisher-Rao distance is a metric distance

Square-root metrization of the KL divergence

Theorem 3. The square root of the Kullback-Leibler divergence between two Cauchy density p_{l_1,s_1} and p_{l_2,s_2} is a metric distance:

$$\rho_{\mathrm{KL}}[p_{l_1,s_1}, p_{l_2,s_2}] := \sqrt{D_{\mathrm{KL}}[p_{l_1,s_1}: p_{l_2,s_2}]} = \sqrt{\log\left(1 + \frac{(s_1 - s_2)^2 + (l_1 - l_2)^2}{4s_1s_2}\right)}.$$
 (112)

The following function is a **metric transform** (and FR is metric distance):

$$t_{\text{FR}\to\text{KL}}(u) := \log\left(\frac{1}{2} + \frac{1}{2}\cosh(\sqrt{2}u)\right)$$

$$\cosh(x) := \frac{e^x + e^{-x}}{2}.$$

Scale family case: Hilbertian metric distance

Theorem 4. The square root of the KL divergence between to Cauchy densities of the same scale family is a *Hilbertian distance.*

$$D_{\mathrm{KL}}[p_{l,s_1}:p_{l,s_2}] = \log\left(\frac{(s_1+s_2)^2}{4s_1s_2}\right).$$

$$D_{\mathrm{KL}}[p_{l,s_1}:p_{l,s_2}] = 2\log\left(\frac{A(s_1,s_2)}{G(s_1,s_2)}\right)$$

$$= \|\phi(p) - \phi(q)\|_{H}.$$
Hilbertian norm
Arithmetic mean:
$$A(s_1,s_2) = \frac{s_1+s_2}{2}$$
Geometric mean:
$$G(s_1,s_2) = \sqrt{s_1s_2}$$
A-G inequality: A>=G

Cauchy hyperbolic Voronoi diagrams

Theorem 5. The Cauchy Voronoi diagrams under the Fisher-Rao distance, the the chi-square divergence and the Kullback-Leibler divergence all coincide, and amount to a hyperbolic Voronoi diagram on the corresponding location-scale parameters.

Voronoi bisectors are invariant under strictly monotonically increasing functions

Voronoi bisectors (dual bisectors coincide for symmetric distances):

$$\begin{aligned} \operatorname{Bi}_{D}(p_{\lambda_{1}}:p_{\lambda_{2}}) &= \left\{ \lambda \in \mathbb{H} : \delta(\lambda,\lambda_{1}) = \delta(\lambda,\lambda_{2}) \right\}, \\ \operatorname{Bi}_{D}(p_{l_{1},s_{1}}:p_{l_{2},s_{2}}) &= \left\{ (l,s) \in \mathbb{H} : \delta(l,s,l_{1},s_{1}) = \delta(l,s,l_{2},s_{2}) \right\}. \end{aligned}$$

$$D \in \{\rho_{\mathrm{FR}}, D_{\mathrm{KL}}, \sqrt{D_{\mathrm{KL}}}, D_{\chi^2}\}$$

Cauchy hyperbolic Voronoi diagrams

Poincaré conformal upper plane

Cauchy hyperbolic Voronoi diagrams

Several **models** of hyperbolic geometry:

- 1. Poincaré conformal upper plane
- 2. Poincaré conformal disk
- 3. Klein non-conformal disk:

Cauchy hyperbolic Delaunay complex

Dual Delaunay complex by **geodesically** linking adjacent Voronoi cells Not necessarily a triangulation but a **simplicial complex**!

Hyperbolic geometry is often used in ML for embedding hierarchical structures

Hyperbolic Delaunay edges are <u>orthogonal</u> to Voronoi bisectors

Hyperbolic Voronoi diagram with <u>all unbounded Voronoi cells</u>

Klein disk

Hyperbolic Delaunay complex: Empty-sphere property

Generalize the **empty sphere property** of the ordinary Voronoi diagram

Dually flat Cauchy Voronoi diagrams

Primal bisector: coincide with the hyperbolic bisector:

$$\begin{aligned} \operatorname{Bi}_{D_{\operatorname{flat}}}(p_{\lambda_1}:p_{\lambda_2}) &= \left\{ p_{\lambda} : D_{\operatorname{flat}}[p_{\lambda_1}:p_{\lambda}] = D_{\operatorname{flat}}[p_{\lambda_2}:p_{\lambda}] \right\}, \\ &= \left\{ \lambda : \delta(l_1,s_1;l,s) = \delta(l_2,s_2;l,s) \right\}. \end{aligned}$$

$$\operatorname{Bi}_{D_{\operatorname{flat}}}(p_{\lambda_1}:p_{\lambda_2}) = \operatorname{Bi}_{\rho_{\operatorname{FR}}}(p_{\lambda_1}:p_{\lambda_2}) = \operatorname{Bi}_{D_{\operatorname{KL}}}(p_{\lambda_1}:p_{\lambda_2}) = \operatorname{Bi}_{D_{\chi^2}}(p_{\lambda_1}:p_{\lambda_2}).$$

Dual bisector: coincide with the Euclidean bisector: $Bi^*_{D_{\text{flat}}}(p_{\lambda_1}:p_{\lambda_2}) = \{p_{\lambda} : D_{\text{flat}}[p_{\lambda}:p_{\lambda_1}] = D_{\text{flat}}[p_{\lambda}:p_{\lambda_2}]\},$ $= \{\lambda : \|\lambda - \lambda_1\| = \|\lambda - \lambda_2\|\}.$

 $\operatorname{Bi}_{D_{\operatorname{flat}}}^*(p_{\lambda_1}:p_{\lambda_2})=\operatorname{Bi}_{\rho_E}(p_{\lambda_1},p_{\lambda_2}).$

Summary of Cauchy Voronoi diagrams:

Formula	Voronoi
$D_{\chi^2}[p_{l_1,s_1},p_{l_2,s_2}] = rac{(l_2-l_1)^2+(s_2-s_1)^2}{2s_1s_2}$	$\operatorname{Vor}_{D_{\chi^2}}$ hyperbolic Voronoi
$\rho_{\text{FR}}[p_{l_1,s_1}, p_{l_2,s_2}] = \frac{1}{\sqrt{2}} \operatorname{arccosh}(1 + D_{\chi^2}[p_{l_1,s_1}, p_{l_2,s_2}])$	$\operatorname{Vor}_{\rho_{\mathrm{FR}}}$ hyperbolic Voronoi
$D_{\mathrm{KL}}[p_{l_1,s_1}, p_{l_2,s_2}] = \log\left(1 + \frac{1}{2}D_{\chi^2}[p_{l_1,s_1}, p_{l_2,s_2}]\right)$	$Vor_{D_{KL}}$ hyperbolic Voronoi
$ \rho_{\text{KL}}[p_{l_1,s_1}, p_{l_2,s_2}] = \sqrt{D_{\text{KL}}[p_{l_1,s_1}, p_{l_2,s_2}]} \text{ (metric)} $	$\operatorname{Vor}_{\rho_{\mathrm{KL}}}$ hyperbolic Voronoi
$D_{\text{flat}}[p_{l_1,s_1}, p_{l_2,s_2}] = 2\pi s_2 D_{\chi^2}[p_{l_1,s_1}, p_{l_2,s_2}]$	Bregman Voronoi:
	$\operatorname{Vor}_{D_{\operatorname{flat}}}$ hyperbolic Voronoi, $\operatorname{Vor}_{D_{\operatorname{flat}}}^*$ Euclidean Voronoi.

Summary: Information-geometric Cauchy manifolds

- The α-geometries of the Cauchy manifolds all coincide, and yields a hyperbolic geometry of constant negative scalar curvature -2.
- By using Tsallis' quadratic entropy, we can realize Cauchy distributions (q-Gaussians for q=2) as maximum entropy distributions.
- The dual potential functions induced by deformed q=2 log-normalizer yields a conformal flattening of the curved Fisher-Rao geometry where the Riemannian metric is a conformal metric of the Fisher information metric.
- The Kullback-Leibler divergence between two Cauchy distributions is **symmetric**, and its **square root yields a metric distance**. For scaled Cauchy distributions, the square root of the KLD is a **Hilbertian metric**.
- The Cauchy Voronoi diagrams wrt to the chi-squared, KL, and Fisher-Rao distances coincide with a hyperbolic Voronoi diagram. The dual Voronoi diagram for the flat divergence coincides with the Euclidean Voronoi diagram.
- The hyperbolic Delaunay complex is **orthogonal** to the hyperbolic Voronoi diagram, and is often not a triangulation, hence its name **hyperbolic Delaunay complex**.

On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon Centroid

Frank Nielsen

Sony Computer Science Laboratories, Inc

On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon Centroid Entropy 2020, 22(2), 221; https://doi.org/10.3390/e22020221 https://www.mdpi.com/1099-4300/22/2/221

The Jensen-Shannon divergence in a nutshell

Kullback-Leibler divergence: (asymmetric, unbounded)

$$\mathrm{KL}(p:q) := \int p \log \frac{p}{q} \mathrm{d}\mu.$$

require same support

Jensen-Shannon divergence:
(symmetric, bounded)
$$0 \le JS(p:q) \le log 2$$
 $JS(p,q) := \frac{1}{2} \left(KL\left(p:\frac{p+q}{2}\right) + KL\left(q:\frac{p+q}{2}\right) \right),$ $0 \le JS(p:q) \le log 2$ $= \frac{1}{2} \int \left(p \log \frac{2p}{p+q} + q \log \frac{2q}{p+q} \right) d\mu = JS(q,p).$ Do not require same
support $JS(p,q) = h\left(\frac{p+q}{2}\right) - \frac{h(p) + h(q)}{2}$

Shannon entropy: $h(p) = -\int p \log p d\mu$

JSD (capacitory discrimination) = total KL divergence to the average distribution

 (\mathcal{X}, \sqrt{JS}) is a Hilbert metric space

The extended Jensen-Shannon divergence

Extended Kullback-Leibler divergence to **positive measures**:

$$\begin{aligned} \mathrm{KL}^{+}(\tilde{p}:\tilde{q}) &:= \mathrm{KL}(\tilde{p}:\tilde{q}) + \int \tilde{q} \mathrm{d}\mu - \int \tilde{p} \mathrm{d}\mu, \\ &= \int \left(\tilde{p} \log \frac{\tilde{p}}{\tilde{q}} + \tilde{q} - \tilde{p} \right) \mathrm{d}\mu. \end{aligned}$$

Extended Jensen-Shannon divergence to **positive measures**:

$$\begin{split} \mathrm{JS}^{+}(\tilde{p},\tilde{q}) &:= & \frac{1}{2} \left(\mathrm{KL}^{+}\left(\tilde{p}:\frac{\tilde{p}+\tilde{q}}{2} \right) + \mathrm{KL}^{+}\left(\tilde{q}:\frac{\tilde{p}+\tilde{q}}{2} \right) \right), \\ &= & \frac{1}{2} \left(\mathrm{KL}\left(\tilde{p}:\frac{\tilde{p}+\tilde{q}}{2} \right) + \mathrm{KL}\left(\tilde{q}:\frac{\tilde{p}+\tilde{q}}{2} \right) \right) = \mathrm{JS}(\tilde{p},\tilde{q}) \end{split}$$

Extended Jensen-Shannon divergence upper bounded by $(\frac{1}{2}\log 2)(\int (\tilde{p} + \tilde{q})d\mu)$

Skewed Jensen-Shannon divergences

Notation for *statistical mixture*: $(pq)_{\alpha}(x) := (1 - \alpha)p(x) + \alpha q(x)$ $\alpha \in [0, 1]$

Skewed Jensen-Shannon divergence for $\alpha \in (0, 1)$

$$JS_a^{\alpha}(p:q) := (1-\alpha)KL(p:(pq)_{\alpha}) + \alpha KL(q:(pq)_{\alpha}),$$

= $(1-\alpha)\int p\log\frac{p}{(pq)_{\alpha}}d\mu + \alpha\int q\log\frac{q}{(pq)_{\alpha}}d\mu.$

By introducing the **skewed Kullback-Leibler divergence**:

$$K_{\alpha}(p:q) := \mathrm{KL}(p:(1-\alpha)p + \alpha q) = \mathrm{KL}(p:(pq)_{\alpha})$$

Symmetric skewed Jensen-Shannon divergence

ce:
$$JS^{\alpha}(p,q) := \frac{1}{2}K_{\alpha}(p:q) + \frac{1}{2}K_{\alpha}(q:p) = JS^{\alpha}(q,p).$$

... and we recover the JSD for $\frac{1}{2}$: $JS(p,q) = \frac{1}{2} \left(K_{\frac{1}{2}}(p:q) + K_{\frac{1}{2}}(q:p) \right)$

Jensen-Shannon divergences are f-divergences

f-divergences for convex generator f, strictly convex at 1 with f(1)=0

(standard when f'(1)=0, f''(1)=1)

$$I_f(p:q) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) \mathrm{d}x \ge f(1) = 0.$$

f-divergences satisfy **information monotonicity** (= data processing inequality) $D(\theta_{\bar{A}} : \theta'_{\bar{A}}) \leq D(\theta : \theta')$

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 & p \\ \hline & & & & \\ \hline & & & \\ \hline p_1 + p_2 & p_3 + p_4 + p_5 & p_6 & p_7 + p_8 & p_{\mathcal{A}} \end{array}$$

coarse binning, lumping

f-divergences **upper bounded** by $f(0) + f^*(0)$

Skewed Jensen-Shannon divergences are f-divergences for the generator:

$$f_{\alpha}(x) = -\log((1-\alpha) + \alpha x) - x\log((1-\alpha) + \frac{\alpha}{x})$$

Extending Jensen-Shannon divergences: Vector skewed Jensen-Bregman Divergences

<u>Vector-skewed</u> α-Jensen–Bregman divergence (α-JBD):

$$\operatorname{JB}_{F}^{\alpha,\gamma,w}(\theta_{1}:\theta_{2}):=\sum_{i=1}^{k}w_{i}B_{F}\left((\theta_{1}\theta_{2})_{\alpha_{i}}:(\theta_{1}\theta_{2})_{\gamma}\right)\geq0,$$

Skewing vector : $\alpha \in [0, 1]^k$

Weight vector belongs to Δ_k (standard k-simplex)

Notation for linear interpolation: $(ab)_{\alpha} := (1 - \alpha)a + \alpha b$

Bregman divergence:

$$B_F(\theta_1:\theta_2):=F(\theta_1)-F(\theta_2)-\langle \theta_1-\theta_2,\nabla F(\theta_2)\rangle.$$

Rewriting the vector skewed Jensen–Bregman divergences Notation: $(ab)_{\alpha} := (1 - \alpha)a + \alpha b$ We have: $(\theta_1\theta_2)_{\alpha_i} - (\theta_1\theta_2)_{\gamma} = (\gamma - \alpha_i)(\theta_1 - \theta_2),$ Therefore $JB_F^{\alpha,\gamma,w}(\theta_1:\theta_2) := \sum_{i=1}^k w_i B_F((\theta_1\theta_2)_{\alpha_i}:(\theta_1\theta_2)_{\gamma}) \ge 0$, Rewrites as $JB_{F}^{\alpha,\gamma,w}(\theta_{1}:\theta_{2}) = \left(\sum_{i=1}^{k} w_{i}F\left((\theta_{1}\theta_{2})_{\alpha_{i}}\right)\right) - F\left((\theta_{1}\theta_{2})_{\gamma}\right) - \left\langle\sum_{i=1}^{k} w_{i}(\gamma-\alpha_{i})(\theta_{1}-\theta_{2}), \nabla F\left((\theta_{1}\theta_{2})_{\gamma}\right)\right\rangle.$ The inner product vanishes when we choose $\gamma = \sum_{i=1}^{k} w_i \alpha_i := \bar{\alpha}$

And we get the **vector-skew** α -JBD:

$$JB_{F}^{\alpha,w}(\theta_{1}:\theta_{2}) = \left(\sum_{i=1}^{k} w_{i}F\left((\theta_{1}\theta_{2})_{\alpha_{i}}\right)\right) - F\left((\theta_{1}\theta_{2})_{\bar{\alpha}}\right)$$

Vector-skew Jensen–Shannon divergences

Definition 1 (Weighted vector-skew (α, w) -Jensen–Shannon divergence). For a vector $\alpha \in [0, 1]^k$ and a unit positive weight vector $w \in \Delta_k$, the (α, w) -Jensen–Shannon divergence between two densities $p, q \in \overline{P}_1$ is defined by:

$$JS^{\alpha,w}(p:q) := \sum_{i=1}^{k} w_i KL((pq)_{\alpha_i}:(pq)_{\bar{\alpha}}) = h((pq)_{\bar{\alpha}}) - \sum_{i=1}^{k} w_i h((pq)_{\alpha_i}),$$

with $\bar{\alpha} = \sum_{i=1}^{k} w_i \alpha_i$, where $h(p) = -\int p(x) \log p(x) d\mu(x)$ denotes the Shannon entropy [4] (i.e., -h is strictly convex).

Theorem 1. The vector-skew Jensen–Shannon divergences $JS^{\alpha,w}(p:q)$ are *f*-divergences for the generator $f_{\alpha,w}(u) = \sum_{i=1}^{k} w_i(\alpha_i u + (1 - \alpha_i)) \log \frac{(1 - \alpha_i) + \alpha_i u}{(1 - \overline{\alpha}) + \overline{\alpha} u}$ with $\overline{\alpha} = \sum_{i=1}^{k} w_i \alpha_i$.

Invariant information-monotone divergences

Theorem 2 (Separable convexity). *The divergence* $KL_{\alpha,\beta}(p:q)$ *is strictly separable convex for* $\alpha \neq \beta$ *and* $x \in \mathcal{X}_p \cap \mathcal{X}_q$. **Nice for optimization**

Properties of the vector-skew JS divergences

Lemma 1 (KLD between two *w*-mixtures). *For* $\alpha \in [0, 1]$ *and* $\beta \in (0, 1)$ *, we have:*

$$\mathrm{KL}_{\alpha,\beta}(p:q) = \mathrm{KL}\left((pq)_{\alpha}: (pq)_{\beta}\right) \leq \log \max\left\{\frac{1-\alpha}{1-\beta}, \frac{\alpha}{\beta}\right\}.$$

Lemma 2 (Bounded (w, α) -Jensen–Shannon divergence). JS^{α, w} is bounded by $\log \frac{1}{\bar{\alpha}(1-\bar{\alpha})}$ where $\bar{\alpha} = \sum_{i=1}^{k} w_i \alpha_i \in (0, 1)$.

Jensen–Shannon centroids on mixture families

Mixture family in information geometry (w-mixtures)

$$\mathcal{M} := \left\{ m(x;\theta) := \sum_{i=1}^{D} \theta^{i} p_{i}(x) + \left(1 - \sum_{i=1}^{D} \theta^{i} \right) p_{0}(x) : \theta^{i} > 0, \sum_{i=1}^{D} \theta^{i} < 1 \right\}.$$

Example: The *family of categorical distributions* is a mixture family:

 $F(\theta) = -h(m_{\theta})$

$$\mathcal{M} = \left\{ m_{\theta}(x) = \sum_{i=1}^{D} \theta_i \delta(x - x_i) + \left(1 - \sum_{i=1}^{D} \theta_i \right) \delta(x - x_0) \right\}$$

The Kullback-Leibler divergence between two mixture distributions amount to a Bregman divergence for the negentropy generator:

$$\mathrm{KL}(m_{\theta_1}:m_{\theta_2})=B_F(\theta_1:\theta_2)=B_{-h(m_{\theta})}(\theta_1:\theta_2).$$
Jensen–Shannon centroids

Like the **Fréchet mean**, we define the **Jensen-Shannon centroid** as the minimizer(s) of $L(\theta) := \sum_{i=1}^{n} \omega_i JS^{\alpha,w}(m_{\theta_{\mu}} : m_{\theta}),$

$$L(\theta) = \sum_{j=1}^{n} \omega_j \left(\sum_{i=1}^{k} w_i F((\theta_j \theta)_{\alpha_i}) - F\left((\theta_j \theta)_{\bar{\alpha}}\right) \right)$$

This defines a **Difference of Convex (DC) program:** $\min_{\theta} A(\theta) - B(\theta)$ With convex functions: $A(\theta) = \sum_{i=1}^{n} \sum_{j=1}^{\kappa} \omega_{j} w_{i} F((\theta_{j}\theta)_{\alpha_{i}}),$

$$B(\theta) = \sum_{j=1}^{n} \omega_j F\left((\theta_j \theta)_{\bar{\alpha}}\right).$$

Jensen–Shannon centroids: CCCP

Convex-ConCave Procedure (CCCP) is *step-size free* optimization for *smooth* DC programs:

- Initialize $\theta^{(0)}$ arbitrarily (eg, centroid)
- Iteratively update:

$$\theta^{(t+1)} = (\nabla B)^{-1} (\nabla A(\theta^{(t)}))$$

$$A(\theta) = \sum_{j=1}^{n} \sum_{i=1}^{\kappa} \omega_{j} w_{i} F((\theta_{j}\theta)_{\alpha_{i}}), \qquad \nabla A(\theta) = \sum_{j=1}^{n} \sum_{i=1}^{k} \omega_{j} w_{i} \alpha_{i} \nabla F((\theta_{j}\theta)_{\alpha_{i}})$$
$$B(\theta) = \sum_{j=1}^{n} \omega_{j} F((\theta_{j}\theta)_{\bar{\alpha}}), \qquad \nabla B(\theta) = \sum_{j=1}^{n} \omega_{j} \bar{\alpha} \nabla F((\theta_{j}\theta)_{\bar{\alpha}})$$

Visualization of the CCCP

Interpretation: Support hyperplanes to A graph shall be parallel to B graph

Jensen-Shannon centroid for categorical distributions

Mixture family (mixture of mixtures is a mixture):

$$\mathcal{M} = \left\{ m_{\theta}(x) = \sum_{i=1}^{D} \theta_i \delta(x - x_i) + \left(1 - \sum_{i=1}^{D} \theta_i \right) \delta(x - x_0) \right\}$$

Shannon neg-entropy is a strictly convex and differentiable **Bregman generator**:

$$F(\theta) = -h(m_{\theta}) = \sum_{i=1}^{D} \theta_i \log \theta_i + \left(1 - \sum_{i=1}^{D} \theta_i\right) \log \left(1 - \sum_{i=1}^{D} \theta_i\right).$$
$$KL(m_{\theta_1} : m_{\theta_2}) = B_F(\theta_1 : \theta_2) = B_{-h(m_{\theta})}(\theta_1 : \theta_2).$$

$$\nabla F(\theta) = \left[\frac{\partial}{\partial \theta_i}\right]_i, \quad \frac{\partial}{\partial \theta_i} F(\theta) = \log \frac{\theta_i}{1 - \sum_{j=1}^D \theta_j}. \qquad \nabla F(\theta) = \eta$$

$$\nabla F^*(\eta) = (\nabla F)^{-1}(\eta) = \frac{1}{1 + \sum_{j=1}^D \exp(\eta_j)} [\exp(\eta_i)]_i, \qquad \theta_i = (\nabla F^{-1}(\eta))_i = \frac{\exp(\eta_i)}{1 + \sum_{j=1}^D \exp(\eta_j)}.$$

Jensen-Shannon centroid: Implementing CCCP

Initialize:
$$\theta^{(0)} = \frac{1}{n} \sum_{i} \theta_{i}$$

Iterate: $\theta^{(t+1)} = (\nabla F)^{-1} \left(\frac{1}{n} \sum_{i} \nabla F \left(\frac{\theta_{i} + \theta^{(t)}}{2} \right) \right)$
 $\nabla F(\theta) = \left[\frac{\partial}{\partial \theta_{i}} \right]_{i}, \quad \frac{\partial}{\partial \theta_{i}} F(\theta) = \log \frac{\theta_{i}}{1 - \sum_{j=1}^{D} \theta_{j}}$
 $\nabla F^{*}(\eta) = (\nabla F)^{-1}(\eta) = \frac{1}{1 + \sum_{j=1}^{D} \exp(\eta_{j})} [\exp(\eta_{i})]_{i},$

Experiments:

Jeffreys centroid (grey histogram) Jensen–Shannon centroid (black histogram) Lena image (red histogram) Barbara image (blue histogram)

Jeffreys vs Jensen-Shannon histogram centroids

Jensen-Shannon histogram centroids

grey intensity value Barbara (red)/invert Barbara (blue) histograms

JSD always bounded even on different supports

partially zero-clamped Barbara/Lena grey histograms

Percentage

partially zero-clamped Barbara/Lena grey histograms

Summary: Vector-skewed Jensen-Shannon divergence

- Jensen-Shannon divergence is a bounded symmetrization of the Kullback-Leibler divergence (KLD) which allows to measure the distance between distributions with potentially different supports (useful in ML like GANs)
- Jensen-Shannon divergence is a f-divergence which satisfies the data processing inequality
- Generalize the weighted skewed Jensen-Shannon divergence by using a skew vector parameter $\alpha \in [0,1]^k$: $\bar{\alpha} = \sum_{i=1}^{\kappa} w_i \alpha_i$ $h(p) = -\int p(x) \log p(x) d\mu(x)$ $JS^{\alpha,w}(p:q) := \sum_{i=1}^{k} w_i KL((pq)_{\alpha_i}:(pq)_{\bar{\alpha}}) = h((pq)_{\bar{\alpha}}) - \sum_{i=1}^{k} w_i h((pq)_{\alpha_i})$
- The vector-skewed Jensen-Shannon divergence is an information monotone fdivergence
- The (vector-skewed) Jensen-Shannon centroids can be modeled using a smooth Difference of Convex (DC) program and solved using
- the Convex-ConCave Procedure (CCCP)

On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means

Frank Nielsen

Sony Computer Science Laboratories, Inc

On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means Entropy 2019, 21(5), 485; https://doi.org/10.3390/e21050485 <u>https://www.mdpi.com/1099-4300/21/5/485</u> Code: https://franknielsen.github.io/M-JS/

Unbounded Kullback-Leibler divergence (KLD)

$$\mathsf{KL} \,:\, \mathcal{P} \times \mathcal{P} \,\to\, [0,\infty]$$

$$\mathrm{KL}(P:Q) := \int p \log \frac{p}{q} \mathrm{d}\mu$$

$$P,Q \ll \mu$$

Also called **relative entropy**:

Cross-entropy:

Shannon's entropy: (self cross-entropy) Reverse KLD: (KLD=forward KLD)

$$KL(p:q) = h_{\times}(p:q) - h(p)$$
$$h_{\times}(p:q) := \int p \log \frac{1}{q} d\mu,$$
$$h(p) := \int p \log \frac{1}{p} d\mu = h_{\times}(p:p),$$
$$KL^{*}(P:Q) := KL(Q:P) = \int q \log \frac{q}{p} d\mu.$$

Symmetrizations of the Kullback-Leibler divergence

Jeffreys' divergence (twice the arithmetic mean of oriented KLDs):

$$J(p;q) := \mathrm{KL}(p:q) + \mathrm{KL}(q:p) = \int (p-q)\log\frac{p}{q}\mathrm{d}\mu = J(q;p)$$

Resistor average divergence (harmonic mean of forward+reverse KLD)

$$\frac{1}{R(p;q)} = \frac{1}{2} \left(\frac{1}{\mathrm{KL}(p:q)} + \frac{1}{\mathrm{KL}(q:p)} \right)$$

Question: Role and extensions of the mean in symmetrization ?

Bounded Jensen-Shannon divergence (JSD)

$$JS(p;q) := \frac{1}{2} \left(KL\left(p:\frac{p+q}{2}\right) + KL\left(q:\frac{p+q}{2}\right) \right)$$

$$= \frac{1}{2} \int \left(p \log \frac{2p}{p+q} + q \log \frac{2q}{p+q} \right) d\mu.$$

$$JS(p;q) = h\left(\frac{p+q}{2}\right) - \frac{h(p) + h(q)}{2} \quad \text{(Shannon entropy h is strictly concave, JSD>=0)}$$

$$JSD \text{ is bounded:} \quad 0 \le JS(p:q) \le \log 2 \quad Proof: KL\left(p:\frac{p+q}{2}\right) = \int p \log \frac{2p}{p+q} d\mu \le \int p \log \frac{2p}{p} d\mu = \log 2.$$

$$\sqrt{JS} : \text{Square root of the JSD is a metric distance (moreover Hilbertian)}$$

Invariant f-divergences, symmetrized f-divergences

Convex generator f, strictly convex at 1 with f(1)=0 (standard when f'(1)=0, f''(1)=1)

$$I_f(p:q) = \int pf\left(\frac{q}{p}\right) \mathrm{d}\mu$$

f-divergences are said **invariant** in *information geometry* because they satisfy **coarse-graining** (data processing inequality)

$$D(heta_{ar{\mathcal{A}}}: heta_{ar{\mathcal{A}}}') \leq D(heta: heta')$$

f-divergences can always be symmetrized: **Reverse f-divergence** for $f^*(x) = xf(\frac{1}{x})$

Jeffreys f-generator: $f_J(u) := (u-1)\log u$, Jensen-Shannon f-generator: $f_{JS}(u) := -(u+1)\log \frac{1+u}{2} + u\log u$.

Statistical distances vs parameter vector distances

A <u>statistical distance D</u> between two parametric distributions of a same family (eg., Gaussian family) amount to a <u>parameter distance</u> P:

$$P(\theta:\theta'):=D(p_{\theta}:p_{\theta'})$$

For example, the KLD between two densities of a same exponential family amounts to a **reverse Bregman divergence** for the *Bregman cumulant generator*:

$$\operatorname{KL}(p_{\theta}:p_{\theta'})=B_F^*(\theta:\theta')=B_F(\theta':\theta).$$

$$B_F(\theta:\theta'):=F(\theta)-F(\theta')-\langle\theta-\theta',\nabla F(\theta')\rangle$$

From a smooth C3 parameter distance (= *contrast function*), we can build a dualistic information-geometric structure

Skewed Jensen-Bregman divergences

JS-kind symmetrization of the *parameter Bregman divergence*:

$$\begin{aligned} \mathsf{JB}_F(\theta:\theta') &:= \quad \frac{1}{2} \left(B_F\left(\theta:\frac{\theta+\theta'}{2}\right) + B_F\left(\theta':\frac{\theta+\theta'}{2}\right) \right) \\ &= \quad \frac{F(\theta) + F(\theta')}{2} - F\left(\frac{\theta+\theta'}{2}\right) =: J_F(\theta:\theta') \end{aligned}$$

Notation for the linear interpolation: $(\theta_p \theta_q)_{\alpha} := (1 - \alpha)\theta_p + \alpha \theta_q$

$$JB_{F}^{\alpha}(\theta:\theta') := (1-\alpha)B_{F}(\theta:(\theta\theta')_{\alpha}) + \alpha B_{F}(\theta':(\theta\theta')_{\alpha}))$$

= $(F(\theta)F(\theta'))_{\alpha} - F((\theta\theta')_{\alpha}) =: J_{F}^{\alpha}(\theta:\theta'),$

J-Symmetrization and JS-Symmetrization

J-symmetrization of a statistical/parameter distance D:

$$J_D^{\alpha}(p:q) := (1-\alpha)D\left(p:q\right) + \alpha D\left(q:p\right)$$

JS-symmetrization of a statistical/parameter distance D:

$$JS_D^{\alpha}(p:q) := (1-\alpha)D(p:(1-\alpha)p + \alpha q) + \alpha D(q:(1-\alpha)p + \alpha q)$$

= $(1-\alpha)D(p:(pq)_{\alpha}) + \alpha D(q:(pq)_{\alpha}).$

 $\alpha \in [0,1]$

 $\begin{array}{l} \underline{\text{Example: J-symmetrization and JS-symmetrization of f-divergences:}} \\ f_{\alpha}^{J}(u) = (1-\alpha)f(u) + \alpha f^{\diamond}(u), & I_{f^{\diamond}}(p:q) = I_{f}^{*}(p:q) = I_{f}(q:p) \\ I_{f}^{\alpha}(p:q) := (1-\alpha)I_{f}(p:(pq)_{\alpha}) + \alpha I_{f}(q:(pq)_{\alpha}) \\ f_{\alpha}^{\text{IS}}(u) := (1-\alpha)f(\alpha u + 1 - \alpha) + \alpha f\left(\alpha + \frac{1-\alpha}{u}\right). \end{array}$

Generalized Jensen-Shannon divergences: Role of abstract weighted means, generalized mixtures

Quasi-arithmetic weighted means for a strictly increasing function h:

$$M^{h}_{\alpha}(x,y) := h^{-1} \left((1-\alpha)h(x) + \alpha h(y) \right)$$

Definition 1 (*M*-mixture). *The* M_{α} -interpolation $(pq)^{M}_{\alpha}$ (*with* $\alpha \in [0,1]$) *of densities p and q with respect to a mean M is a* α -*weighted M*-*mixture defined by:*

$$(pq)^{M}_{\alpha}(x) := \frac{M_{\alpha}(p(x), q(x))}{Z^{M}_{\alpha}(p:q)}$$

When M=A arithmetic mean, normalizer Z is 1

where

$$Z^{M}_{\alpha}(p:q) = \int_{t \in \mathcal{X}} M_{\alpha}(p(t),q(t)) d\mu(t) =: \langle M_{\alpha}(p,q) \rangle.$$

is the normalizer function (or scaling factor) ensuring that $(pq)^M_{\alpha} \in \mathcal{P}$ *. (The bracket notation* $\langle f \rangle$ *denotes the integral of f over* \mathcal{X} *.)*

Definitions: M-JSD and M-JS symmetrizations

Definition 2 (*M*-Jensen–Shannon divergence). *For a mean M, the skew M-Jensen–Shannon divergence* (*for* $\alpha \in [0, 1]$) *is defined by*

$$JS^{M_{\alpha}}(p:q) := (1-\alpha)KL\left(p:(pq)^{M}_{\alpha}\right) + \alpha KL\left(q:(pq)^{M}_{\alpha}\right)$$
(48)

When $M_{\alpha} = A_{\alpha}$, we recover the ordinary Jensen–Shannon divergence since $A_{\alpha}(p:q) = (pq)_{\alpha}$ (and $Z_{\alpha}^{A}(p:q) = 1$).

We can extend the definition to the JS-symmetrization of any distance:

Definition extended for generic distance D (not necessarily KLD):

Definition 3 (*M*-JS symmetrization). *For a mean M and a distance D, the skew M*-JS symmetrization of D (for $\alpha \in [0, 1]$) is defined by

$$JS_D^{M_{\alpha}}(p:q) := (1-\alpha)D\left(p:(pq)_{\alpha}^M\right) + \alpha D\left(q:(pq)_{\alpha}^M\right)$$

Generic definition: (M,N)-JS symmetrization

Consider two **abstract means** M and N (eg, N harmonic as in resistor average distortion):

Definition 5 (Skew (M, N)-D divergence). *The skew* (M, N)-*divergence with respect to weighted means* M_{α} and N_{β} as follows:

$$JS_D^{M_{\alpha},N_{\beta}}(p:q):=N_{\beta}\left(D\left(p:(pq)_{\alpha}^M\right),D\left(q:(pq)_{\alpha}^M\right)\right)$$

(61)

The main advantage of (M,N)-JSD is to get **closed-form formula** for distributions belonging to given parametric families by carefully choosing the M-mean.

For example, *geometric mean* for exponential families, or the *harmonic mean* for Cauchy or t-Student families, etc.

(A,G)-Jensen-Shannon divergence for exponential families

Exponential family:
$$\mathcal{E}_F = \left\{ p_{\theta}(x) d\mu = \exp(\theta^{\top} x - F(\theta)) d\mu : \theta \in \Theta \right\}$$

Natural parameter space: $\Theta = \left\{ \theta : \int_{\mathcal{X}} \exp(\theta^{\top} x) d\mu < \infty \right\}$

Geometric statistical mixture:

$$\forall x \in \mathcal{X}, \quad (p_{\theta_1} p_{\theta_2})^G_{\alpha}(x) := \frac{G_{\alpha}(p_{\theta_1}(x), p_{\theta_2}(x))}{\int G_{\alpha}(p_{\theta_1}(t), p_{\theta_2}(t)) d\mu(t)} = \frac{p_{\theta_1}^{1-\alpha}(x) p_{\theta_2}^{\alpha}(x)}{Z^G_{\alpha}(p:q)},$$

Normalization coefficient:

$$Z^G_{\alpha}(p:q) = \exp(-J^{\alpha}_F(\theta_1:\theta_2)),$$

Jensen parameter divergence: $J_F^{\alpha}(\theta_1:\theta_2):=(F(\theta_1)F(\theta_2))_{\alpha}-F((\theta_1\theta_2)_{\alpha}).$

(A,G)-Jensen-Shannon divergence for exponential families

Closed-form formula the KLD between two geometric mixtures in term of a Bregman divergence between interpolated parameters: $KL\left(p_{\theta}:(p_{\theta_1}p_{\theta_2})^G_{\alpha}\right) = KL\left(p_{\theta}:p_{(\theta_1\theta_2)_{\alpha}}\right),$ $= B_F((\theta_1\theta_2)_{\alpha}:\theta).$

$$\begin{aligned} \mathsf{JS}^G_\alpha(p_{\theta_1}:p_{\theta_2}) &:= & (1-\alpha)\mathsf{KL}(p_{\theta_1}:(p_{\theta_1}p_{\theta_2})^G_\alpha) + \alpha\mathsf{KL}(p_{\theta_2}:(p_{\theta_1}p_{\theta_2})^G_\alpha), \\ &= & (1-\alpha)B_F((\theta_1\theta_2)_\alpha:\theta_1) + \alpha B_F((\theta_1\theta_2)_\alpha:\theta_2). \end{aligned}$$

Theorem 2 (*G*-JSD and its dual JS-symmetrization in exponential families). The α -skew *G*-Jensen–Shannon divergence JS^{G_{\alpha}} between two distributions p_{θ_1} and p_{θ_2} of the same exponential family \mathcal{E}_F is expressed in closed form for $\alpha \in (0, 1)$ as:

$$JS^{G_{\alpha}}(p_{\theta_{1}}:p_{\theta_{2}}) = (1-\alpha)B_{F}((\theta_{1}\theta_{2})_{\alpha}:\theta_{1}) + \alpha B_{F}((\theta_{1}\theta_{2})_{\alpha}:\theta_{2})$$

$$JS^{G_{\alpha}}_{KL^{*}}(p_{\theta_{1}}:p_{\theta_{2}}) = JB^{\alpha}_{F}(\theta_{1}:\theta_{2}) = J^{\alpha}_{F}(\theta_{1}:\theta_{2}).$$

$$(80)$$

$$(81)$$

Example: Multivariate Gaussian exponential family

Family of Normal distributions: $\{N(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \succ 0\}$. $\lambda := (\lambda_v, \lambda_M) = (\mu, \Sigma)$

$$p_{\lambda}(x;\lambda) := \frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\lambda_M|}} \exp\left(-\frac{1}{2}(x-\lambda_v)^{\top}\lambda_M^{-1}(x-\lambda_v)\right),$$

Canonical factorization: $p_{\theta}(x; \theta) := \exp(\langle t(x), \theta \rangle - F_{\theta}(\theta)) = p_{\lambda}(x; \lambda(\theta)),$

$$\theta = (\theta_v, \theta_M) = \left(\Sigma^{-1}\mu, -\frac{1}{2}\Sigma^{-1}\right) = \theta(\lambda) = \left(\lambda_M^{-1}\lambda_v, -\frac{1}{2}\lambda_M^{-1}\right)$$

Sufficient statistics: $t(x) = (x, -xx^{\top})$

Cumulant function/log-normalizer: $F_{\theta}(\theta) = \frac{1}{2} \left(d \log \pi - \log |\theta_M| + \frac{1}{2} \theta_v^{\top} \theta_M^{-1} \theta_v \right)$

$$F_{\lambda}(\lambda) = \frac{1}{2} \left(\lambda_v^{\top} \lambda_M^{-1} \lambda_v + \log |\lambda_M| + d \log 2\pi \right) = \frac{1}{2} \left(\mu^{\top} \Sigma^{-1} \mu + \log |\Sigma| + d \log 2\pi \right).$$

Example: Multivariate Gaussian exponential family Dual moment parameterization: $\eta = (\eta_v, \eta_M) = E[t(x)] = \nabla F(\theta)$

Conversions between ordinary/natural/expectation parameters:

$$\begin{cases} \theta_{v}(\lambda) = \lambda_{M}^{-1}\lambda_{v} = \Sigma^{-1}\mu \\ \theta_{M}(\lambda) = \frac{1}{2}\lambda_{M}^{-1} = \frac{1}{2}\Sigma^{-1} \end{cases} \Leftrightarrow \begin{cases} \lambda_{v}(\theta) = \frac{1}{2}\theta_{M}^{-1}\theta_{v} = \mu \\ \lambda_{M}(\theta) = \frac{1}{2}\theta_{M}^{-1} = \Sigma \end{cases}$$
$$\begin{cases} \eta_{v}(\theta) = \frac{1}{2}\theta_{M}^{-1}\theta_{v} \\ \eta_{M}(\theta) = -\frac{1}{2}\theta_{M}^{-1} - \frac{1}{4}(\theta_{M}^{-1}\theta_{v})(\theta_{M}^{-1}\theta_{v})^{\top} \end{cases} \Leftrightarrow \begin{cases} \theta_{v}(\eta) = -(\eta_{M} + \eta_{v}\eta_{v}^{\top})^{-1}\eta_{v} \\ \theta_{M}(\eta) = -\frac{1}{2}(\eta_{M} + \eta_{v}\eta_{v}^{\top})^{-1} \end{cases}$$
$$\begin{cases} \lambda_{v}(\eta) = \eta_{v} = \mu \\ \lambda_{M}(\eta) = -\eta_{M} - \eta_{v}\eta_{v}^{\top} = \Sigma \end{cases} \Leftrightarrow \begin{cases} \eta_{v}(\lambda) = \lambda_{v} = \mu \\ \eta_{M}(\lambda) = -\lambda_{M} - \lambda_{v}\lambda_{v}^{\top} = -\Sigma - \mu\mu^{\top} \end{cases}$$

Dual potential function (=negative differential Shannon entropy):

$$F_{\eta}^{*}(\eta) = -\frac{1}{2} \left(\log(1 + \eta_{v}^{\top} \eta_{M}^{-1} \eta_{v}) + \log|-\eta_{M}| + d(1 + \log 2\pi) \right),$$

Corollary 1 (*G*-JSD between Gaussians). *The skew G-Jensen–Shannon divergence* JS^G_{α} *and the dual skew G-Jensen–Shannon divergence* JS^{*G}_{α} *between two multivariate Gaussians* $N(\mu_1, \Sigma_1)$ *and* $N(\mu_2, \Sigma_2)$ *is*

$$JS^{G_{\alpha}}(p_{(\mu_{1}\Sigma_{1})}:p_{(\mu_{2}\Sigma_{2})}) = (1-\alpha)KL(p_{(\mu_{1}\Sigma_{1})}:p_{(\mu_{\alpha}\Sigma_{\alpha})}) + \alpha KL(p_{(\mu_{2}\Sigma_{2})}:p_{(\mu_{\alpha}\Sigma_{\alpha})}),$$
(106)

$$= (1-\alpha)B_{F}((\theta_{1}\theta_{2})_{\alpha}:\theta_{1}) + \alpha B_{F}((\theta_{1}\theta_{2})_{\alpha}:\theta_{2}),$$
(107)

$$= \frac{1}{2}\left(tr\left(\Sigma_{\alpha}^{-1}((1-\alpha)\Sigma_{1}+\alpha\Sigma_{2})\right) + \log\frac{|\Sigma_{\alpha}|}{|\Sigma_{1}|^{1-\alpha}|\Sigma_{2}|^{\alpha}} + (1-\alpha)(\mu_{\alpha}-\mu_{1})^{\top}\Sigma_{\alpha}^{-1}(\mu_{\alpha}-\mu_{1}) + \alpha(\mu_{\alpha}-\mu_{2})^{\top}\Sigma_{\alpha}^{-1}(\mu_{\alpha}-\mu_{2}) - d\right)$$
(108)

$$JS^{G_{\alpha}}_{*}(p_{(\mu_{1}\Sigma_{1})}:p_{(\mu_{2}\Sigma_{2})}) = (1-\alpha)KL(p_{(\mu_{\alpha}\Sigma_{\alpha})}:p_{(\mu_{1}\Sigma_{1})}) + \alpha KL(p_{(\mu_{\alpha}\Sigma_{\alpha})}:p_{(\mu_{2}\Sigma_{2})}),$$
(109)

$$= (1-\alpha)B_{F}(\theta_{1}:(\theta_{1}\theta_{2})_{\alpha}) + \alpha B_{F}(\theta_{2}:(\theta_{1}\theta_{2})_{\alpha}),$$
(110)

$$= J_{F}(\theta_{1}:\theta_{2}),$$
(111)

$$= \frac{1}{2}\left((1-\alpha)\mu_{1}^{\top}\Sigma_{1}^{-1}\mu_{1} + \alpha\mu_{2}^{\top}\Sigma_{2}^{-1}\mu_{2} - \mu_{\alpha}^{\top}\Sigma_{\alpha}^{-1}\mu_{\alpha} + \log\frac{|\Sigma_{1}|^{1-\alpha}|\Sigma_{2}|^{\alpha}}{|\Sigma_{\alpha}|}\right),$$
(112)

where

$$\Sigma_{\alpha} = (\Sigma_1 \Sigma_2)_{\alpha}^{\Sigma} = \left((1 - \alpha) \Sigma_1^{-1} + \alpha \Sigma_2^{-1} \right)^{-1}, \tag{113}$$

(matrix harmonic barycenter) and

$$\mu_{\alpha} = (\mu_{1}\mu_{2})_{\alpha}^{\mu} = \Sigma_{\alpha} \left((1-\alpha)\Sigma_{1}^{-1}\mu_{1} + \alpha\Sigma_{2}^{-1}\mu_{2} \right).$$
(114)

More examples: Abstract means and M-mixtures

Weighted mean	$M_{\alpha}, \alpha \in (0, 1)$
Arithmetic mean	$A_{\alpha}(x,y) = (1-\alpha)x + \alpha y$
Geometric mean	$G_{\alpha}(x,y) = x^{1-\alpha}y^{\alpha}$
Harmonic mean	$H_{\alpha}(x,y) = \frac{xy}{(1-\alpha)y + \alpha x}$
Power mean	$P^p_{\alpha}(x,y) = ((1-\alpha)x^p + \alpha y^p)^{\frac{1}{p}}, p \in \mathbb{R} \setminus \{0\}, \lim_{p \to 0} P^p_{\alpha} = G$
Quasi-arithmetic mean	$M^{f}_{\alpha}(x,y) = f^{-1}((1-\alpha)f(x) + \alpha f(y)), f$ strictly monotonous
<i>M</i> -mixture	$Z^{M}_{\alpha}(p,q) = \int_{t \in \mathcal{X}} M_{\alpha}(p(t),q(t)) d\mu(t)$
	with $Z^M_{\alpha}(p,q) = \int_{t \in \mathcal{X}} M_{\alpha}(p(t),q(t)) d\mu(t)$

$\mathbf{JS}^{M_{\alpha}}$	Mean M	Parametric Family	$Z^M_{\alpha}(p:q)$
$JS^{A_{\alpha}}$	arithmetic A	mixture family	$Z^M_{\alpha}(\theta_1:\theta_2) = 1$
$JS^{G_{\alpha}}$	geometric G	exponential family	$Z^G_{\alpha}(\theta_1:\theta_2) = \exp(-J^{\alpha}_F(\theta_1:\theta_2))$
$JS^{H_{\alpha}}$	harmonic H	Cauchy scale family	$Z^{H}_{\alpha}(\theta_{1}:\theta_{2}) = \sqrt{\frac{\theta_{1}\theta_{2}}{(\theta_{1}\theta_{2})_{\alpha}(\theta_{1}\theta_{2})_{1-\alpha}}}$

Summary: Generalized Jensen-Shannon divergences

- Jensen-Shannon divergence (JSD) is a bounded symmetrization of the Kullback-Leibler divergence (KLD). Jeffreys divergence (JD) is an unbounded symmetrization of KLD. Both JSD and JD are invariant f-divergences.
- Although KLD and JD between Gaussians (or densities of a same exponential family) admits closed-form formulas, the JSD between Gaussians does not have a closed-form expression, and these distances need to be approximated in applications. (machine learning, eg., GANs in deep learning)
- The skewed Jensen-Shannon divergence is based on statistical arithmetic mixtures. We define generic <u>statistical M-mixtures</u> based on an abstract mean, and define accordingly the <u>M-Jensen-Shannon divergence</u>, and further the (M,N)-JSD.
- When M=G is the geometric weighted mean, we obtain closed-form formula for the G-Jensen-Shannon divergence between Gaussian distributions. Applications to machine learning (eg, deep learning GANs) <u>https://arxiv.org/abs/2006.10599</u>

Code: <u>https://franknielsen.github.io/M-JS/</u>