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Main standard models of hyperbolic geometry
Conformal Poincaré model:

Lesser known non-conformal Klein model:

Hyperbolic Voronoi diagrams 
in 5 models

Straight geodesics

https://www.youtube.com/watch?v=i9IUzNxeH4o&t=3s

Hyperbolic Voronoi diagram

Hyperbolic Voronoi diagram

Hyperbolic Voronoi diagrams made easy, IEEE ICCSA 2010

Metric tensor
(Tissot indicatrix)

https://www.youtube.com/watch?v=i9IUzNxeH4o&t=3s


Siegel upper space
Birth of symplectic geometry (complex matrix groups, Siegel & Hua, 1940’s)
Generalization of the Poincaré upper plane to complex matrix domains:

PD: Positive-definite cone 

Infinitesimal length element:

Geodesic length distance:

with the i-th real eigenvalue
Matrix cross-ratio:

Spectral
decomposition

R: Not Hermitian, but all real eigenvalues!



Siegel upper space: Generalize PD matrix cone

Siegel upper space: Generalize Poincaré upper plane
When complex dimension is 1, recover the Poincaré upper plane

PD: Positive-definite cone 

several equivalent formulas…



Generalized linear fractional transformations

Real symplectic group Sp(d,R):

Siegel upper space metric is invariant under generalized
Moebius transformations called (biholomorphic) symplectic maps:

Group inverse:

Group action is transitive:
(→ homogeneous space)

(matrix
group 

representation)

(translation Z=A+iB)



Orientation-preserving isometry in the Siegel upper space

When complex dimension is 1 (Poincaré upper plane), recover PSL(2,R)

Stabilizer group of Z=iI: The symplectic orthogonal matrices:
(informally, play the role of “rotations” in the Siegel geometry)

Orientation preserving isometry: PSL(2,R)



Siegel disk domain

Or equivalently
A generalization of Poincaré conformal disk:

Disk domain: PSL(2,R)

Partial Loewner ordering

Spectral/operator norm:

(= Maximum  singular value >=0)

PSL(2,R)

PSL(2,R)

Siegel disk domain:
Shilov boundary
Stratified space (by matrix rank)



Siegel disk distance:

Siegel translation of W1 to the origin matrix 0 (= Siegel translation):

Distance in the Siegel disk domain

Costly to calculate because we need square root and inverse matrices

PSL(2,R)

When complex dimension is 1, recover the Poincaré disk metric:

PSL(2,R)
Siegel metric 

in the disk domain:



Complex symplectic group (for Siegel disk)

Equivalent to

Orientation-preserving isometry in the Siegel disk:

PSL(2,C) in 1D



Conversions Siegel upper space <-> Siegel disk

Moebius transformations
(generalized linear fractional transformations)



Some applications of Siegel symplectic geometry
• Radar signal processing:
• Frederic Barbaresco. Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, 

Mostow/Berger bration and Frechet median. 
In Matrix information geometry, pages 199-255. Springer, 2013.
• Ben Jeuris and Raf Vandebril. The Kahler mean of block-Toeplitz matrices with Toeplitz structured blocks. 
SIAM Journal on Matrix Analysis and Applications, 37(3):1151-1175, 2016.
• Congwen Liu and Jiajia Si. Positive Toeplitz operators on the Bergman spaces of the Siegel upper half-space. 

Communications in Mathematics and Statistics, pages 1-22, 2019.

• Image processing:
Reiner Lenz. Siegel descriptors for image processing. IEEE Signal Processing Letters, 23(5):625-628, 2016.

• Statistics:
• Miquel Calvo and Josep M Oller. A distance between elliptical distributions based in an embedding into the Siegel group. 

Journal of Computational and Applied Mathematics, 145(2):319-334, 2002.
• Emmanuel Chevallier, Thibault Forget, Frederic Barbaresco, and Jesus Angulo. Kernel density estimation on the Siegel 

space with an application to radar processing. Entropy, 18(11):396, 2016.



Poincaré conformal disk vs Klein non-conformal disk
• Klein disk is non-conformal with geodesics straight Euclidean lines
• Klein mode well-suited for computational geometry: Eg., Voronoi diagram

Q: What is the equivalent  of Klein geometry for the  Siegel disk domain?

Clipped
affine diagram

(power diagram)

Hyperbolic Voronoi diagram



Hilbert (projective) geometry
Normed vector space
Bounded open convex domain Ω

Define Hilbert distance:
Cross-ratio:

Related to Birkhoff geometry on (d+1)-dimensional cones



Rewriting the Hilbert distance

Or equivalently (p,q expressed from linear interpolations of boundary points):



Siegel-Klein disk model

In complex dimension 1, 
recover the  Klein disk:

Choose constant ½ to match Klein disk geometry



Calculating the Siegel-Klein distance
Line passing through two matrix points:

Calculate  the two α values on Shilov boundary

In practice, perform bisection search for the α values… 

Siegel-Klein distance:



Siegel-Klein distance to the origin (zero matrix 0)
Solve for

and

Special case I

Siegel disk distance:

Exact



Siegel-Klein distance: Line passing  through the origin
Line (K1K2) passing through the origin:

Special case II

Siegel-Klein
distance:

Exact



Siegel-Klein distance between diagonal matrices

Solve d quadratic systems for getting two α values:

Special case III

Siegel-Klein distance:
Exact



Approximating Hilbert geometry with nested domains 

Enough to check in 1D:



Guaranteed approximation of the Siegel-Klein distance



Converting Siegel-Poincaré (W) to/from Siegel-Klein (K)

Radial contraction to the origin:

Radial expansion to the origin:

Siegel-Klein-> Siegel-Poincaré

Siegel-Poincaré-> Siegel-Klein-



Siegel-Klein geodesics are unique Euclidean straight

Main advantage of the Siegel-Klein model is that geodesics are straight
Many computational geometric techniques thus apply:

For example: Smallest Enclosing Balls, etc. 

Follow from the definition of the Hilbert distance and the cross-ratio properties:



Geodesics in Hilbert geometry may not be unique

https://www.youtube.com/watch?v=Gz0Vjk5quQE

Hexagonal 
ball shapes

Geodesics in Cayley-Klein geometry are unique.
(= Hilbert geometry for ellipsoidal domains)

Hilbert simplex geometry
(isometric to a normed space)

Clustering in Hilbert’s projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices

Hilbert geometry of elliptope
(space of correlation matrices)

https://franknielsen.github.io/elliptope/index.html

https://www.youtube.com/watch?v=Gz0Vjk5quQE
https://franknielsen.github.io/elliptope/index.html


Summary of Siegel-Klein geometry:
• Siegel and Hua studied in the 1940’s  the geometry of bounded complex matrix 

domains (= birth of symplectic geometry not directly related to symplectic
manifolds equipped with a closed non-degenerate 2-form)

• The Siegel upper space generalizes the Poincaré upper plane, and the Siegel disk
generalizes the Poincaré disk. Siegel upper space further includes in the cone of 
symmetric positive definite (SPD) matrices on the imaginary i-axis

• Orientation-preserving isometry group of the Siegel upper space is the projective 
real symplectic group. PSL(2,R) when complex dimension is 1. Orientation-
preserving isometry group of the Siegel disk is the projective complex symplectic
group. PSL(2,C) when complex dimension is 1.

• Hilbert geometry on the Siegel disk ensures straight line geodesics. Well-suited to 
computational geometry in the Siegel-Klein disk (eg, smallest enclosing ball)

• Siegel-Klein distance between two matrices can be calculated exactly when the 
line passing through the two matrices goes through the origin, or for diagonal 
matrices. Otherwise, guaranteed approximations of the Siegel-Klein distance by 
considering nested Hilbert geometries (require maximum singular values only). 

https://arxiv.org/abs/2004.08160

https://arxiv.org/abs/2004.08160


Thank you!
https://arxiv.org/abs/2004.08160

Carl Ludwig Siegel
1896 - 1981

Hua Luogeng Hua Loo-Keng
华罗庚

1910-1985

Henri Poincaré
1854-1912

Felix Klein
1849 – 1925

David Hilbert
1862-1943

https://arxiv.org/abs/2004.08160


Some references: 

• Carl Ludwig Siegel. Symplectic geometry. American Journal of Mathematics, 65(1):1-86, 1943.
• Loo-Keng Hua. On the theory of automorphic functions of a matrix variable I: Geometrical 

basis. American Journal of Mathematics, 66(3):470-488, 1944.
• Loo-Keng Hua. Geometries of matrices. II. study of involutions in the geometry of symmetric 

matrices. Transactions of the American Mathematical Society, 61(2):193-228, 1947.
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Voronoi diagrams: Voronoi proximity cells
Given a finite point set 

Voronoi cell:

Euclidean distance (norm-induced):

The Voronoi diagram
partitions the space

into Voronoi cells



Dual Voronoi structure is the Delaunay complex
Link adjacent Voronoi generators by a straight (geodesic) edge:

Voronoi Delaunay

Delaunay complex yields the Delaunay triangulation 
when no d+2 cocircular : nice meshing properties

Dual orthogonal structures



Voronoi diagrams for asymmetric dissimilarities
Asymmetric (oriented) distance: 

= Dual bisector is primal bisector for dual dissimilarity

Involution:

Dual Voronoi cells:

Dual distance:



Example: Bregman Voronoi diagrams
Bregman divergence for a convex C2 generator F:

Recover the ordinary Euclidean Voronoi diagram when 

Boissonnat, N,   Nock. "Bregman Voronoi diagrams." Discrete & Computational Geometry 44.2 (2010): 281-307.

Three types of Voronoi diagrams:
Primal (curved)
Dual (always affine)
Symmetrized (curved)



The Cauchy manifold
Manifold of the Cauchy distributions (Lorentzian distributions):

Location-scale family (l,s) with base standard Cauchy distribution:

Several kinds of manifold information-geometric structures induced by:
1. Fisher-Rao geometry: Fisher information metric (+ Levi-Civita metric connection) 
2. α-geometry: Dualistic structure (Amari-Chentsov cubic tensor T), alpha connections
3. D-geometry: Dualistic geometry from  divergence (e.g., Kullback-Leibler divergence)
4. Hessian geometry from Hessian metrics (smooth flat divergence + conformal flattening)



Cauchy manifold: Fisher-Rao Riemannian geometry
Fisher information matrix (FIM) yielding Fisher Riemannian metric (FIm):

Fisher-Rao distance is a geodesic length and metric distance:

Scaled hyperbolic 
Poincaré upper plane

metric

where



Cauchy manifold: Rao’s distance
Fisher-Rao distance between Cauchy distributions:

Extended to multidimensional “isotropic” location-scale families:



Skewness cubic tensor (Amari-Chentsov totally symmetric tensor):

Cauchy manifold: Always curved self-dual structures!

α-geometry:
All α-geometries coincide with the Fisher-Rao geometry for the Cauchy manifold: 

Fisher-Rao geometry is 0-geometry :

Scalar curvature:

No way to choose α so that the α-geometry becomes dually flat
• For the Gaussian distributions, we can choose α=1 or α=-1 
• For the t-Student distributions, we can choose: 



Cauchy manifold: q-Gaussians for q=2

Tsallis’ q-entropy:

q-Gaussians are maximum entropy distributions wrt Tsallis’ q-entropy:

Related to Onicescu’s informational energy:

Shannon entropy

Cauchy distributions are q-Gaussians for q=2:
MaxEnt distributions for Tsallis’ quadratic entropy:



Deformed q=2-exponential families
Deformed exponential function:

Deformed reciprocal logarithm function:

Deformed 2-exponential families (= Cauchy family): 

For Cauchy distributions,
we find:



Cauchy 2-Gaussians: Canonical factorization
Natural parameters:

Log-normalizer:

Natural-to ordinary parameter conversion:

Gradient of the log-normalizer:
yields dual coordinate system eta



Cauchy manifold: Dually flat manifold

Bregman divergence:

called the Bregman-Tsallis q=2-divergence



Dual potential functions of the Hessian structure

Dual to primal conversion:

Dual potential function:

Dual-to-ordinary parameter conversion:

Dual-to-ordinary parameter conversion:



Dually flat divergence (=Bregman divergence)

with the Legendre-Fenchel divergence: 
(non-negativity from Young’s inequality)



Dual Hessians of the potential functions:

Crouzeix identity:

Hessian metrics are conformal to the Fisher information metric:

Dual Hessian metrics



Summary: Cauchy information-geometric structures:



Invariant f-divergences and α-divergences:
f-divergences:
f convex, f(1)=0
Standard f-divergence: f’(1)=0, f’’(1)=1

• Invariant because its satisfies the information monotonicity, and
• Infinitesimal small f-divergence is related to the Fisher information

α-divergences:

Chernoff α-coefficient:



α-divergences are f-divergences:

Kullback-Leibler divergence:
(relative entropy)

Kullback-Leibler divergence between Cauchy distributions is symmetric:

A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions, arXiv:1905.10965



Fisher-Rao distance and chi-squared divergences:

Fisher-Rao distance is a metric distance



Square-root metrization of the KL divergence

The following function is a metric transform (and FR is metric distance):



Scale family case: Hilbertian metric distance

Hilbertian norm

Arithmetic mean:

Geometric mean:

A-G inequality: A>=G 



Cauchy hyperbolic Voronoi diagrams

Voronoi bisectors (dual bisectors coincide for symmetric distances):

Voronoi bisectors are invariant under strictly monotonically increasing functions



Cauchy hyperbolic Voronoi diagrams

Poincaré conformal upper plane



Cauchy hyperbolic Voronoi diagrams

Several models of hyperbolic geometry:
1. Poincaré conformal upper plane
2. Poincaré conformal disk
3. Klein non-conformal disk:



Cauchy hyperbolic Delaunay complex
Dual Delaunay complex by geodesically linking adjacent Voronoi cells
Not necessarily a triangulation but a simplicial complex! 

Hyperbolic geometry
is often used in ML for 

embedding 
hierarchical structures



Hyperbolic Delaunay edges are orthogonal to Voronoi bisectors

Orthogonality with respect
to the Riemannian metric



Cauchy/Hyperbolic Voronoi diagram
s

Poincaré upper plane Poincaré disk Klein disk



Hyperbolic Voronoi diagram with all unbounded Voronoi cells

Klein disk



Hyperbolic Delaunay complex: Empty-sphere property

Generalize the empty sphere property of the ordinary Voronoi diagram

Empty sphere: The ball 
passing through d+1 sites 

is empty of other sites



Dually flat Cauchy Voronoi diagrams
Primal bisector: coincide with the hyperbolic bisector: 

Dual bisector: coincide with the Euclidean bisector:



Summary of Cauchy Voronoi diagrams:



Summary: Information-geometric Cauchy manifolds
• The α-geometries of the Cauchy manifolds all coincide, and yields a hyperbolic 

geometry of constant negative scalar curvature -2.
• By using Tsallis’ quadratic entropy, we can realize Cauchy distributions (q-Gaussians 

for q=2) as maximum entropy distributions.
• The dual potential functions induced by deformed q=2 log-normalizer yields a 

conformal flattening of the curved Fisher-Rao geometry where the Riemannian 
metric is a conformal metric of the Fisher information metric.

• The Kullback-Leibler divergence between two Cauchy distributions is symmetric, and 
its square root yields a metric distance. For scaled Cauchy distributions, the square 
root of the KLD is a Hilbertian metric.

• The Cauchy Voronoi diagrams wrt to the chi-squared, KL, and Fisher-Rao distances 
coincide with a hyperbolic Voronoi diagram. The dual Voronoi diagram for the flat 
divergence coincides with the Euclidean Voronoi diagram.

• The hyperbolic Delaunay complex is orthogonal to the hyperbolic Voronoi diagram, 
and is often not a triangulation, hence its name hyperbolic Delaunay complex. 
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The Jensen-Shannon divergence in a nutshell

Do not require same 
support

require same 
support

Kullback-Leibler divergence:
(asymmetric, unbounded)

Jensen-Shannon divergence:
(symmetric, bounded)

Shannon entropy:

is a Hilbert metric space

JSD (capacitory discrimination) = total KL divergence to the average distribution



The extended Jensen-Shannon divergence

Extended Kullback-Leibler divergence to positive measures:

Extended Jensen-Shannon divergence to positive measures:

Extended Jensen-Shannon divergence upper bounded by 



Skewed Jensen-Shannon divergences
Notation for statistical mixture:

Skewed Jensen-Shannon divergence for 

By introducing the skewed Kullback-Leibler divergence:

Symmetric skewed 
Jensen-Shannon divergence:

… and we recover the JSD for ½:



Jensen-Shannon divergences are f-divergences
f-divergences for convex generator f, strictly convex at 1 with f(1)=0     
(standard when f’(1)=0, f’’(1)=1)

f-divergences satisfy information monotonicity 
(= data processing inequality)

coarse binning, lumping
f-divergences upper bounded by

Skewed Jensen-Shannon divergences are f-divergences for the generator:



Extending Jensen-Shannon divergences: 
Vector skewed Jensen–Bregman Divergences

Bregman divergence:

Skewing vector :

Weight vector belongs to 
(standard k-simplex)

Notation for linear interpolation:

Vector-skewed α-Jensen–Bregman divergence (α-JBD):



Rewriting the vector skewed Jensen–Bregman divergences

We have:

Therefore Rewrites as

The inner product vanishes when we choose  

And we get the vector-skew α-JBD:

Notation:



Vector-skew Jensen–Shannon divergences

Invariant information-monotone divergences

Nice for optimization



Properties of the vector-skew JS divergences



Jensen–Shannon centroids on mixture families
Mixture family in information geometry (w-mixtures)

Example: The family of categorical distributions is a mixture family:

The Kullback-Leibler divergence between two mixture distributions
amount to a Bregman divergence for the negentropy generator:



Jensen–Shannon centroids
Like the Fréchet mean, we define the Jensen-Shannon centroid as the
minimizer(s) of

This defines a Difference of Convex (DC) program: 
With convex functions:



Jensen–Shannon centroids: CCCP 
Convex-ConCave Procedure (CCCP) is step-size free optimization 
for smooth DC programs: 

• Initialize         arbitrarily (eg, centroid)

• Iteratively update:



Visualization of the CCCP 

Interpretation: Support hyperplanes to A graph shall be  parallel to B graph 



Jensen-Shannon centroid for categorical distributions

Shannon neg-entropy is a strictly convex and differentiable Bregman generator:

Mixture family (mixture of mixtures is a mixture):



Jensen-Shannon centroid: Implementing CCCP  

Initialize:

Iterate:



Experiments:

Jeffreys centroid (grey histogram) 
Jensen–Shannon centroid (black histogram) 
Lena image (red histogram) 
Barbara image (blue histogram) 

Close to zero in [0,20] 



negative image histogram

Barbara histogram



JSD always bounded even on different supports



Summary: Vector-skewed Jensen-Shannon divergence
• Jensen-Shannon divergence is a bounded symmetrization of the Kullback-Leibler

divergence (KLD) which allows to measure the distance between distributions with 
potentially different supports (useful in ML like GANs)

• Jensen-Shannon divergence is a f-divergence which satisfies the data processing 
inequality

• Generalize the weighted skewed Jensen-Shannon divergence by using a skew vector 
parameter                    :

• The vector-skewed Jensen-Shannon divergence is an information monotone f-
divergence

• The (vector-skewed) Jensen-Shannon centroids can be modeled using a smooth 
Difference of Convex (DC) program and solved using 

• the Convex-ConCave Procedure (CCCP)
https://www.mdpi.com/1099-4300/22/2/221

https://www.mdpi.com/1099-4300/22/2/221
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Unbounded Kullback-Leibler divergence (KLD)

Also called relative entropy:

Cross-entropy:

Shannon’s entropy:
(self cross-entropy)

Reverse KLD:
(KLD=forward KLD)



Symmetrizations of the Kullback-Leibler divergence

Jeffreys’ divergence (twice the arithmetic mean of oriented KLDs):

Resistor average divergence (harmonic mean of forward+reverse KLD)

Question: Role and extensions of the mean in symmetrization ?



Bounded Jensen-Shannon divergence (JSD)

(Shannon entropy h is 
strictly concave, JSD>=0)

JSD is bounded:
Proof:

: Square root of the JSD is a metric distance (moreover Hilbertian) 

Do not require same 
support



Invariant f-divergences, symmetrized f-divergences
Convex generator f, strictly convex at 1
with f(1)=0     (standard when f’(1)=0, f’’(1)=1)

f-divergences are said invariant in information geometry because they
satisfy coarse-graining (data processing inequality)

f-divergences can always be symmetrized: Reverse f-divergence for 

Jeffreys f-generator:

Jensen-Shannon f-generator:



Statistical distances vs parameter vector distances
A statistical distance D between two parametric distributions of a same
family (eg., Gaussian family) amount to a parameter distance P: 

For example, the KLD between two densities of a same exponential family 
amounts to a reverse Bregman divergence for the Bregman cumulant generator:

From a smooth C3 parameter distance (= contrast function), 
we can build a dualistic information-geometric structure



Skewed Jensen-Bregman divergences
JS-kind symmetrization of the parameter Bregman divergence:

Notation for the linear interpolation:



J-Symmetrization and JS-Symmetrization
J-symmetrization of a statistical/parameter distance D:

JS-symmetrization of a statistical/parameter distance D:

Example: J-symmetrization and JS-symmetrization of f-divergences:

Conjugate f-generator:



Generalized Jensen-Shannon divergences:
Role of abstract weighted means, generalized mixtures

Quasi-arithmetic weighted means for a strictly increasing function h:

When M=A
arithmetic mean,
normalizer Z is 1



Definitions: M-JSD and M-JS symmetrizations

Definition extended for generic distance D (not necessarily KLD): 



Generic definition: (M,N)-JS symmetrization
Consider two abstract means M and N 

(eg, N harmonic as in resistor average distortion):

The main advantage of (M,N)-JSD is to get closed-form formula 
for distributions belonging to given parametric families  by carefully 
choosing the  M-mean.

For example, geometric mean for exponential families, 
or the harmonic mean for Cauchy or t-Student families, etc.



(A,G)-Jensen-Shannon divergence for exponential families

Exponential family:

Natural parameter space:

Geometric statistical mixture:

Normalization coefficient:

Jensen parameter divergence:



(A,G)-Jensen-Shannon divergence for exponential families
Closed-form formula the KLD between two geometric mixtures  in term of a 
Bregman divergence between interpolated parameters:



Example: Multivariate Gaussian exponential family
Family of Normal distributions:

Cumulant function/log-normalizer:

Sufficient statistics:

Canonical factorization:



Example: Multivariate Gaussian exponential family
Dual moment parameterization:

Conversions between ordinary/natural/expectation parameters:

Dual potential function (=negative differential Shannon entropy):





More examples: Abstract means and M-mixtures

https://www.mdpi.com/1099-4300/21/5/485

https://www.mdpi.com/1099-4300/21/5/485


Summary: Generalized Jensen-Shannon divergences
• Jensen-Shannon divergence (JSD) is a bounded symmetrization of the Kullback-

Leibler divergence (KLD). Jeffreys divergence (JD) is an unbounded symmetrization
of KLD. Both JSD and JD are invariant f-divergences.

• Although KLD and JD between Gaussians (or densities of a same exponential 
family) admits closed-form formulas, the JSD between Gaussians does not have a 
closed-form expression, and these distances need to be approximated in 
applications. (machine learning, eg., GANs in deep learning)

• The skewed Jensen-Shannon divergence is based on statistical arithmetic mixtures. 
We define generic statistical M-mixtures based on an abstract mean, and define 
accordingly the M-Jensen-Shannon divergence, and further the (M,N)-JSD. 

• When M=G is the geometric weighted mean, we obtain closed-form formula for 
the G-Jensen-Shannon divergence between Gaussian distributions. Applications 
to machine learning (eg, deep learning GANs)

https://franknielsen.github.io/M-JS/Code:

https://arxiv.org/abs/2006.10599

https://franknielsen.github.io/M-JS/
https://arxiv.org/abs/2006.10599

	Recent contributions to�Distances and information geometry:�A computational viewpoint
	Outline
	Hilbert geometry of the Siegel disk: �The Siegel-Klein disk model
	Main standard models of hyperbolic geometry
	Siegel upper space
	Siegel upper space: Generalize PD matrix cone
	Generalized linear fractional transformations
	Orientation-preserving isometry in the Siegel upper space
	Siegel disk domain
	Distance in the Siegel disk domain
	Complex symplectic group (for Siegel disk)
	Conversions Siegel upper space <-> Siegel disk
	Some applications of Siegel symplectic geometry
	Poincaré conformal disk vs Klein non-conformal disk
	Hilbert (projective) geometry
	Rewriting the Hilbert distance
	Siegel-Klein disk model
	Calculating the Siegel-Klein distance
	Siegel-Klein distance to the origin (zero matrix 0)
	Siegel-Klein distance: Line passing  through the origin
	Slide Number 21
	Approximating Hilbert geometry with nested domains 
	Guaranteed approximation of the Siegel-Klein distance
	Converting Siegel-Poincaré (W) to/from Siegel-Klein (K)
	Siegel-Klein geodesics are unique Euclidean straight
	Geodesics in Hilbert geometry may not be unique
	Summary of Siegel-Klein geometry:
	Thank you!
	Some references: 
	On Voronoi Diagrams on the �Information-Geometric Cauchy Manifolds
	Voronoi diagrams: Voronoi proximity cells
	Dual Voronoi structure is the Delaunay complex
	Voronoi diagrams for asymmetric dissimilarities
	Example: Bregman Voronoi diagrams
	The Cauchy manifold
	Cauchy manifold: Fisher-Rao Riemannian geometry
	Cauchy manifold: Rao’s distance
	Cauchy manifold: Always curved self-dual structures!
	Cauchy manifold: q-Gaussians for q=2
	Deformed q=2-exponential families
	Cauchy 2-Gaussians: Canonical factorization
	Cauchy manifold: Dually flat manifold
	Dual potential functions of the Hessian structure
	Dually flat divergence (=Bregman divergence)
	Dual Hessians of the potential functions:�
	Summary: Cauchy information-geometric structures:
	Invariant f-divergences and α-divergences:
	α-divergences are f-divergences:
	Fisher-Rao distance and chi-squared divergences:
	Square-root metrization of the KL divergence
	Scale family case: Hilbertian metric distance
	Cauchy hyperbolic Voronoi diagrams
	Cauchy hyperbolic Voronoi diagrams
	Cauchy hyperbolic Voronoi diagrams
	Cauchy hyperbolic Delaunay complex
	Hyperbolic Delaunay edges are orthogonal to Voronoi bisectors
	Slide Number 57
	Hyperbolic Voronoi diagram with all unbounded Voronoi cells
	Hyperbolic Delaunay complex: Empty-sphere property
	Dually flat Cauchy Voronoi diagrams
	Summary of Cauchy Voronoi diagrams:
	Summary: Information-geometric Cauchy manifolds
	On a Generalization of the �Jensen–Shannon Divergence and the �Jensen–Shannon Centroid
	The Jensen-Shannon divergence in a nutshell
	The extended Jensen-Shannon divergence
	Skewed Jensen-Shannon divergences
	Jensen-Shannon divergences are f-divergences
	Extending Jensen-Shannon divergences: �	Vector skewed Jensen–Bregman Divergences
	Rewriting the vector skewed Jensen–Bregman divergences
	Vector-skew Jensen–Shannon divergences
	Properties of the vector-skew JS divergences
	Jensen–Shannon centroids on mixture families
	Jensen–Shannon centroids
	Jensen–Shannon centroids: CCCP 
	Visualization of the CCCP 
	Jensen-Shannon centroid for categorical distributions
	Jensen-Shannon centroid: Implementing CCCP  
	Experiments:
	Slide Number 79
	JSD always bounded even on different supports
	Summary: Vector-skewed Jensen-Shannon divergence
	On the Jensen–Shannon Symmetrization �of Distances �Relying on Abstract Means
	Unbounded Kullback-Leibler divergence (KLD)
	Symmetrizations of the Kullback-Leibler divergence
	Bounded Jensen-Shannon divergence (JSD)
	Invariant f-divergences, symmetrized f-divergences
	Statistical distances vs parameter vector distances
	Skewed Jensen-Bregman divergences
	J-Symmetrization and JS-Symmetrization
	Generalized Jensen-Shannon divergences:� 	Role of abstract weighted means, generalized mixtures
	Definitions: M-JSD and M-JS symmetrizations
	Generic definition: (M,N)-JS symmetrization
	(A,G)-Jensen-Shannon divergence for exponential families
	(A,G)-Jensen-Shannon divergence for exponential families
	Example: Multivariate Gaussian exponential family
	Example: Multivariate Gaussian exponential family
	Slide Number 97
	More examples: Abstract means and M-mixtures
	Summary: Generalized Jensen-Shannon divergences

