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The conference will deal with the following topics:

 Geometric Structures of Statistical Physics and Information
o Statistical Mechanics and Geometric Mechanics

o Thermodynamics, Symplectic and Contact Geometries

o Lie groups Thermodynamics

o Relativistic and continuous media Thermodynamics

o Symplectic Integrators

 Physical structures of inference and learning
o Stochastic gradient of Langevin's dynamics

o Information geometry, Fisher metric and natural gradient

o Monte-Carlo Hamiltonian methods

o Varational inference and Hamiltonian controls

o Boltzmann machine
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Poster Authors Poster Title
Timothee Pouchon, Benedict Leimkuhler, Charles Matthews and Tiffany Vlaar Constraint-Based Regularization of Neural Networks

Kevin Grosvenor Information Geometry and the Effective Field Theory of Flocking

Rita Fioresi A geometric interpretation of stochastic gradient descent in Deep Learning and Restricted Boltzmann Machines

Anis Fradi and Chafik Samir Bayesian Inference on Local Distributions of Functions and Multi-dimensional Curves with Spherical HMC Sampling

Carlos Couto, José Mourão, João P. Nunes and Pedro Ribeiro Connecting Stochastic Optimization with Schrödinger evolution with respect to non Hermitian Hamiltonians

Emmanuel Chevallier and Nicolas Guigui Warped statistical models on SE(n): motivation, challenges and generalization on symmetric spaces

Sébastien Boyaval Viscoelastic flows with conservation laws

Filippo Masi, Ioannis Stefanou, Paolo Vannucci and Victor Maffi-Berthier Material modeling via Thermodynamics-based Artificial Neural Networks
Nicolas Guigui, Nina Miolane and Alice le Brigant Geomstats: a Python package for Geometric Learning and Information Geometry

Hatem Hajri, Thomas Gerald and Hadi Zaatiti Hyperbolic learning of communities on graphs

Goffredo Chirco, Luigi Malagò and Giovanni Pistone Lagrangian and Hamiltonian Dynamics on the Simplex
Héctor Javier Hortúa, Luigi Malagò and Riccardo Volpi Calibrating Bayesian Neural Networks with Alpha-divergences and Normalizing Flows

Avetik Karagulyan and Arnak Dalalyan Bounding the error of discretized Langevin algorithms fornon-strongly log-concave targets

Elvis Dohmatob Universal Lower-Bounds on Classification Error under Adversarial Attacks and Random Corruption

Pierre-Cyril Aubin-Frankowski and Zoltan Szabo Hard Shape-Constrained Kernel Regression

Bruno Sauvalle Unsupervised object detection for traffic scene analysis

Paul Ferrand, Alexis Decurninge, Luis Garcia Ordonez and Maxime Guillaud Learning the low-dimensional geometry of the wireless channel

Ouafae Karmouda, Remy Boyer and J.Boulanger Fast High-order Tensor Learning Based on Grassmann Manifold
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SPIGL’20 PROCEEDINGS
Main Discipline: Mathematics and Statistics
Editorial Contact: Rémi Lodh
with long papers from keynotes and short papers 
from posters



Langevin Dynamics : Old and News

Eric Moulines

Abstract:

In this keynote, we study a method to sample from a target distribution having a positive density with

respect to the Lebesgue measure, known up to a normalization factor. This method is based on the

Euler discretization of the overdamped Langevin stochastic differential equation associated with the

target distribution. For both constant and decreasing step sizes in the Euler discretization, we obtain

non-asymptotic bounds for the convergence to the target distribution in Wasserstein and total

variation distance. A particular attention is paid to the dependency on the dimension d, to

demonstrate the applicability of this method in the high dimensional setting.

References: 

[1] A. Durmus, E. Moulines , Non asymptotic convergence analysis for the unadjusted Langevin

algorithm, the Annals of Applied Probability, 2017

[2] Cheng, X., Chatterji, N. S., Bartlett, P. L., & Jordan, M. I. (2018), Underdamped Langevin MCMC:

A non-asymptotic analysis, In Conference on Learning Theory (pp. 300-323).

[3] Cheng, X., Chatterji, N. S., Abbasi-Yadkri, Y., Bartlett, P. L., & Jordan, M. I. (2018). Sharp

convergence rates for Langevin dynamics in the nonconvex setting. arXiv preprint

arXiv:1805.01648.

[4] Mou, W., Ma, Y. A., Wainwright, M. J., Bartlett, P. L., & Jordan, M. I. (2019). High-order Langevin

diffusion yields an accelerated MCMC algorithm. arXiv preprint arXiv:1908.10859.

[5] Durmus, A., & Moulines, E. (2019). High-dimensional Bayesian inference via the unadjusted

Langevin algorithm. Bernoulli, 25(4A), 2854-2882.



Learning Physics from Data

Francisco Chinesta

Abstract:

Acquiring knowledge from data can be performed in a supervised or an unsupervised way. Particular

and still open difficulties concern the data themselves: useful, useless, …; their completeness with

respect to the phenomena that we are trying to mode (explain), the discovering of the particular form

that variables combine to act on the targeted output. Modelling in form of more or less complex

regressions can be performed from panoply of techniques, however, in physics first principles must be

preserved, fact the enforce constraints but at the same time reduces the amount of need data to

perform the learning. Finally, learning will be thermodynamically approached.

References:

[1] F. Chinesta, E. Cueto, E. Abisset-Chavanne, J.L. Duval, F. El Khaldi, Virtual, Digital and Hybrid

Twins: A New Paradigm in Data-Based Engineering and Engineered Data, Archives of Computational

Methods in Engineering, 27, 105-134, 2020.

[2] A. Reille, N. Hascoet, C. Ghnatios, A. Ammar, E. Cueto, J.L. Duval, F. Chinesta, R. Keunings,

Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit, C.

R. Mecanique, 347, 780-792, 2019.

[3] J.A. Lee, M. Verleysen. Nonlinear dimensionality reduction. Springer, New York, 2007.

[4] D. Gonzalez, F. Chinesta, E. Cueto. Thermodynamically consistent data-driven computational

mechanics. Continuum Mech. Thermodynamics, https://doi.org/10.1007/s00161-018-0677-z, 2018.

[5] D. Gonzalez, F. Chinesta, E. Cueto. Learning corrections for hyperelastic models from data. 

Frontiers in Materials - section Computational Materials Science, In press



Information Geometry and Integrable Systems

Jean-Pierre Françoise

Abstract:

We analyze in parallel the (open) Toda-Lattice and the finite Peakons\anti-Peakons system. Their

scattering theory relies on a theorem of Stieljes as shown by J. Moser (1975) and R. Beals; D. Sattinger;

J. Szmigielski (1999, 01,05,07). We show that both these systems linearize in the setting of Information

Geometry. This can be seen as revisiting of previous works of Nakamura, Nakamura and Kodama

(1994-1995) where the tau-function of the Toda-Lattice was discovered using Information Geometry.

References:

[1] Beals, Richard; Sattinger, David H.; Szmigielski, Jacek, Multipeakons and the classical moment

problem. Adv. Math. 154 (2000), no. 2, 229–257.

[2] Beals, Richard; Sattinger, David H.; Szmigielski, Jacek, Peakons, strings, and the finite Toda lattice.

Comm. Pure Appl. Math. 54 (2001), no. 1, 91–106.

[3] S.I. Amari, Information Geometry and its Applications, Applied Mathematical Sciences, vol. 194,

Springer Japan (2016).

[4] Nakamura, Yoshimasa, A tau-function for the finite Toda molecule, and information spaces.

Symplectic geometry and quantization (Sanda and Yokohama, 1993), 205–211, Contemp. Math., 179,

Amer. Math. Soc., Providence, RI, 1994.

[5] Nakamura, Yoshimasa; Kodama, Yuji, Moment problem of Hamburger, hierarchies of integrable

systems, and the positivity of tau-functions. KdV '95 (Amsterdam, 1995). Acta Appl. Math. 39 (1995), no.

1-3, 435–443.

[6] A Series of Modern Surveys in Mathematics, 64. Springer, Cham, 2017.



Schroedinger's problem, HJB equations 

Jean-Claude Zambrini

Abstract:

In 1931-2 Schrödinger formulated an unorthodox problem of classical statistical physics, motivated by his

worries about the interpretation of quantum theory.The framework founded on the solution of his problem

is a curious anticipation of Feynman's path integral approach (but probabilistically sound) where Hamilton-

Jacobi-Bellman equations are central.We shall describe the connections between these ideas.And why

Schrödinger's problem is regarded today as a regularized Monge – Kantorovich problem, at the

foundation of Mass transportation theory.

References:

[1] E. Schrödinger, Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique, Ann.

Inst. H. Poincaré 2 (1932),269

[2] J. C Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Physics, 27(9)

,Sept 1986, p 2307

[3] J.C. Zambrini, On the geometry of the Hamilton-Jacobi-Bellman equation, Journal of Geometric

Mechanics 1(3), Sept 2009,p369

[4] C. Leonard, A survey of Schrödinger's problem and some of its connections with optimal transport,

Discrete and continuous dynamical systems A-34(4) ,2014, p1533-74. Special issue on Optimal transport

and applications.

[5] J.C. Zambrini, The research program of Stochastic Deformation (with a view toward Geometric 

Mechanics), in Stochastic Analysis : A Series of Lectures, Editors R.C. Dalang, M. Dozzi, F. Flandoli, F. 

Russo. Progress in Probability Vol 68,359-393, Springer Basel 2015



The Bracket Geometry of Measure-Preserving Flows and Diffusions 

Alessandro Barp

Abstract:

Following ideas from Koszul, de Rham, and Weinstein, we discuss the canonical geometry generated

by a target measure [1-2], and derive characterisations of measure-preserving flows that allows us to

extend the complete recipe of stochastic gradient MCMC to manifolds [3].

References:

[1] Weinstein, Alan. The modular automorphism group of a Poisson manifold. Journal of Geometry and

Physics 23.3-4 (1997): 379-394.

[2] Koszul, Jean-Louis. Crochet de Schouten-Nijenhuis et cohomologie. Astérisque 137 (1985): 257-

271.

[3] Ma, Yi-An, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient MCMC. Advances 

in Neural Information Processing Systems. 2015



Sampling and statistical physics via symmetry

Steve Huntsman

Abstract:

In the first part of the talk, we describe how elementary considerations of symmetry (viz., the Lie group

preserving a probability measure) lead to a unifying picture of Markov chain Monte Carlo algorithms,

including an apparently new parallel MCMC algorithm that converges faster than state-of-the-art

techniques. In the second part of the talk, we use basic physical symmetries to parsimoniously derive

an effective temperature for steady-state systems with finitely many states. We then show how this

construction can be adapted to archetypal physical systems (viz., Anosov flows) and produce results

suggesting how it may ultimately be used to recover physics from data as well as for more conceptually

straightforward descriptive tasks.

References:

[1] Huntsman, S. Fast Markov chain Monte Carlo algorithms via Lie groups. AISTATS (2020). 

https://arxiv.org/abs/1901.08606

[2] Huntsman, S. Effective statistical physics of Anosov systems. https://arxiv.org/abs/1009.2127

https://arxiv.org/abs/1901.08606
https://arxiv.org/abs/1009.2127


Geometric Mechanics: 

Gallilean Mechanics & Thermodynamics of Continua

Géry de Saxcé

Abstract:

Inspired from the relativistic approaches by Souriau [1] and Vallée [2], we propose a geometrization of

the thermodynamics of dissipative continua compatible with the Galilean physics [3]. With this aim in

view, we emphasize the role of Bargmann’s group [4], a central extension of Galileo’s one [5]. Originally

introduced for applications to quantum mechanics, it turns out to be also very useful in thermodynamics.

References:

[1] Souriau, J.-M., 1978. Thermodynamique relativiste des fluides. Rendiconti del Seminario Matematico

Università e Politecnico di Torino. 35, 21–34.

[2] Vallée, C., 1981. Relativistic thermodynamics of continua, International Journal of Engineering

Science, 19, 589–601.

[3] de Saxcé, G., Vallée, C., 2012. Bargmann Group, Momentum Tensor and Galilean invariance of

Clausius-Duhem Inequality. International Journal of Engineering Science. 50, 216–232.

[4] Bargmann, V.,1954. On unitary representation of continuous groups. Annals of Mathematics, 59(1),

1–46.

[5] de Saxcé, G., Vallée, C., 2010. Construction of a central extension of a Lie group from its class of 

symplectic cohomology. Journal of Geometry and Physics. 60, 165–174



Geometric Mechanics: 

Souriau-Casimir Lie Groups Thermodynamics  & Machine Learning

Frédéric Barbaresco

Abstract:

50 years ago, Jean‐Marie Souriau invented a “Lie Groups Thermodynamics” model in Statistical Mechanics in

his book on Geometric Mechanics, entitled “Structure des systèmes dynamiques”

(http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm) and in [1]. We will extend this model in

the framework of Information Geometry for Lie Group Statistics and Lie Group Machine Learning. Based on

this Symplectic model of Statistical Physics, we can define a Souriau-Koszul-Fisher Metric elaborated on

covariant Souriau Gibbs density. Finally, we will propose a new geometric definition of Entropy as a

generalized Casimir invariant function in coadjoint representation where Souriau cocycle is a measure of the

lack of equivariance of the moment mapping. Lie algebra cohomology, coadjoint orbit methods, and affine

representation of Lie Group and Lie Algebra are the main structures used for this elaboration.

References:

[1] Jean-Marie Souriau, Mécanique statistique, groupes de Lie et cosmologie, Colloques int. du CNRS numéro

237. Aix-en-Provence, France, 24–28, pp. 59–113, 1974 (English translation:

https://www.academia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_Symplect

ic_Model_of_Statistical_Mechanics )

[2] Frédéric Barbaresco; François Gay-Balmaz, F. Lie Group Cohomology and (Multi)Symplectic Integrators:

New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics.

Entropy 2020, 22, 498.

https://www.mdpi.com/1099-4300/22/5/498

[3] Frédéric Barbaresco; Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups

Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant

Function in Coadjoint Representation. Entropy 2020, 22, 642. https://www.mdpi.com/1099-4300/22/6/642

[4] Charles-Michel Marle. From Tools in Symplectic and Poisson Geometry to J.-M. Souriau’s Theories of

Statistical Mechanics and Thermodynamics. MDPI Entropy, 18, 370, 2016

https://www.mdpi.com/1099-4300/18/10/370

[5] Jean-Louis Koszul, Introduction to Symplectic Geometry, SPRINGER, 2019

https://link.springer.com/book/10.1007%2F978-981-13-3987-5

http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm
https://www.academia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_Symplectic_Model_of_Statistical_Mechanics
https://www.mdpi.com/1099-4300/22/5/498
https://www.mdpi.com/1099-4300/22/6/642
https://www.mdpi.com/1099-4300/18/10/370
https://link.springer.com/book/10.1007%2F978-981-13-3987-5


Covariant Momentum Map Thermodynamics for Parametrized Field Theories

Goffredo Chirco

Abstract:

Inspired by Souriau's symplectic generalization of Gibbs equilibrium in Lie group thermodynamics, we

define a general-covariant notion of Gibbs state for parametrised field theories, in terms of the covariant

momentum map associated with the lifted action of the diffeomorphisms group on the extended multi-

symplectic phase space. The equilibrium entangles gauge and dynamic information carried by the

theory. We investigate how physical equilibrium, hence time evolution, emerges from such a state and

the role of the gauge symmetry in the thermodynamic description.

References:

[1] J.-M. Souriau, Structure des Systèmes Dynamiques, ; Dunod: Malakoff, France (1969).

[2] M. J. Gotay, J. Isenberg, J. E. Marsden, and R. Montgomery, Momentum Maps and Classical

Relativistic Fields. Part I-II-III, arXiv:physics/9801019 [math-ph].

[3] C. J. Isham and K. V. Kuchaˇr, Representations of Spacetime Diffeomorphisms. I. Canonical

Parametrized Field Theories, Ann. Phys.164, 288-315, (1985).

[4] G. Chirco, T. Josset, C. Rovelli, Statistical mechanics of reparametrization-invariant systems. It

takes three to tango. Class. Quantum Gravity 2016, 33, 045005.

[5] A. Connes, C. Rovelli, Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation in

General Covariant Quantum Theories, Class. Quant. Grav. 11, 2899 - 2918 (1994).



Mechanics of the probability simplex 

Luigi Malagò

Abstract:

The framework of classical Mechanics is a finite-dimensional Riemannian manifold. Information Geometry

describes statistical models as manifolds of probability distributions, endowed with a Riemannian metric

given by the Fisher matrix and with a dually flat connection. In this talk we study the mechanic of the

probability simplex using an approach based on non parametric Information Geometry. We start by defining

the statistical bundle as the set of couples of a positive probability density and a random variable centered

in the density, and we express densities in the affine atlases of exponential charts. We compute velocities

and accelerations of a one-dimensional statistical model using the canonical dual pair of parallel transports

and define Lagrangian and Hamiltonian mechanics on the bundle. Following our mechanical approach, we

are able to define a coherent theory of second-order differential equations which can be used to define

different accelerated natural gradient dynamics on the probability simplex.

References:

[1] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, American Mathematical

Society. Translated from the 1993 Japanese original by Daishi Harada.

[2] Lev D. Landau and Eugenij M. Lifshits. Course of theoretical physics. mechanics., 3rd ed., vol. I,

Butterworth-Heinemann, 1976

[3] Giovanni Pistone and Carlo Sempi. An infinite-dimensional geometric structure on the space of all the

probability measures equivalent to a given one. Ann. Statist. 23 (1995), no. 5, 1543–1561

[4] Giovanni Pistone. Lagrangian function on the finite state space statistical bundle, Entropy20 (2018), no.

2, 139

[5] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. A variational perspective on accelerated

methods in optimization, Proceedings of the National Academy of Sciences113 (2016), no. 47



Diffeological Fisher Metric

Hông Vân Lê

Abstract:

Diffeological Fisher metric is a natural generalization of the Fisher metric on parametrized statistical

models to the case of diffeological statistical models, which are statistical models endowed with a

compatible diffeology. In my lecture, I shall discuss properties of the diffeological Fisher metric, in

particular a diffeological version of the Cramér-Rao inequality.

References:

[1] Amari S., and Nagaoka H., Methods of Information Geometry, Translations of Mathematical

Monographs 191, Amer. Math. Soc.: Providence, RI, USA, 2000.

[2] Ay N., Jost J., Lê H.V., Schwachhöfer L., Information geometry, Springer Nature: Cham,

Switzerland, 2017.

[3] Iglesias-Zemmour P., Diffeology, Amer. Math. Soc.: Providence, RI, USA, 2013.

[4] Jost J. , Lê H.V., Luu D.H. and Tran T.D., Probabilistic mappings and Bayesian nonparametrics,

2019, arXiv:1905.11448.

[5] Lê H.V., Diffeological Statistical Models, the Fisher Metric and Probabilistic Mappings, Mathematics 

2020, 8, 167; doi:10.3390/math8020167



Contact geometry and thermodynamical systems

Manuel de León

Abstract:

Using contact geometry we give a new characterization of a simple but important class of

thermodynamical systems which naturally satisfy the first law of thermodynamics (total energy

preservation) and the second law (increase of entropy). We clarify its qualitative dynamics, the underlying

geometrical structures and we show how to use discrete gradient methods. References:

[1] A Bravetti: Contact geometry and thermodynamics. Int. J. Geom. Methods Mod. Phys.,16

(supp01):1940003, October 2018.

[2] F Gay-Balmaz, H Yoshimura: A Lagrangian variational formulation for nonequilibrium thermodynamics.

Part I: Discrete systems. Journal of Geometry and Physics, 111:169–193, January 2017.

[3] M de León, M Lainz Valcázar: Contact Hamiltonian systems. Journal of Mathematical Physics (2019)

60 (10), 102902

[4] AA Simoes, DM de Diego, M de León, ML Valcázar: On the geometry of discrete contact mechanics.

arXiv preprint arXiv:2003.11892

[5] AA Simoes, M de León, ML Valcázar, DM de Diego: Contact geometry for simple thermodynamical

systems with friction. arXiv preprint arXiv:2004.01989



Deep learning as optimal control and structure preserving deep learning

Elena Celledoni

Abstract:

Over the past few years, deep learning has risen to the foreground as a topic of massive interest, mainly

as a result of successes obtained in solving large-scale image processing tasks. There are multiple

challenging mathematical problems involved in applying deep learning.

We consider recent work of Haber and Ruthotto 2017 and Chang et al. 2018, where deep learning

neural networks have been interpreted as discretisations of an optimal control problem subject to an

ordinary differential equation constraint. We review the first order conditions for optimality, and the

conditions ensuring optimality after discretisation. There is a growing effort to mathematically

understand the structure in existing deep learning methods and to systematically design new deep

learning methods to preserve certain types of structure in deep learning. Examples are invertibility,

orthogonality constraints, or group equivariance, and new algorithmic frameworks based on conformal

Hamiltonian systems and Riemannian manifolds.

References:

[1] Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb,

Deep learning as optimal control problems: models and numerical methods,

https://arxiv.org/abs/1904.05657

[2] Elena Celledoni, Matthias J. Ehrhardt, Christian Etmann, Robert I McLachlan, Brynjulf Owren,

Carola-Bibiane Schönlieb, Ferdia Sherry, Structure preserving deep learning,

https://arxiv.org/abs/2006.03364

https://arxiv.org/abs/1904.05657


SSD Jean-Marie Souriau's Book 50th Birthday

Gery de Saxcé & Charles-Michel Marle

Abstract:

« Structure des systèmes dynamiques » [1], now translated into English [2], is a work with an exceptional

wealth which, fifty years after its publication, is still topical. We shall intend to highlight author’s most

creative and promising ideas on the symplectic geometry and its applications: both classical and

relativistic mechanics, geometric quantization and Lie group thermodynamics.

References:

[1] Souriau, J.-M., Structure des systèmes dynamique. Dunod, collection Dunod Université, Paris 1970. 

Réimprimé par les éditions Jacques Gabay, Paris. 

[2] Souriau, J.-M., Structure of Dynamical Systems. A Symplectic View of Physics. Translated by C. H. 

Cushman-de Vries. Translation Editors R. H. Cushman and G. M. Tuynman. Progress in Mathematics

Volume 149, Birkhäuser, Boston, 1997



Thermodynamic efficiency implies predictive inference

Susanne Still

Abstract:

Machine learning is a core ingredient of contemporary statistical data analysis. As with statistics, the

foundations are mathematical in nature, often based on “ad hoc” measures. But learning is a natural

phenomenon occurring in the physical world. Therefore, we would like to have a physics based

explanation. We need to understand how observers choose their strategy for how to represent, and adapt

to, the data they receive. Indulge, for a moment, the following hypothesis: observers choose their strategy

such that the best physical implementation of abstract rules specifying the strategy could come as close as

possible to the physical limits imposed on information processing. This postulate would open a door to

“derive” learning methods from “physics”, simply by minimizing a physical bound over all possible rules,

thereby finding the strategy optimal with respect to the limitation expressed by the bound. Here, I show

that this can be done for thermodynamic limits: energy efficiency implies predictive inference, a strategy

that lies at the heart of machine learning.

References:

[1] S. Still. Thermodynamic cost and benefit of memory. Physical Review Letters, 124(5):050601, 2020

[2] S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks. Thermodynamics of prediction. Physical Review

Letters, 109(12):120604, 2012
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Exponential Family by Representation Theory

Koichi Tojo

Abstract:

Exponential families play an important role in the field of information geometry. By definition, there are

infinitely many exponential families. However, only a small part of them are widely used. We want to give

a framework to deal with these "good" families. In light of the observation that the sample space of most

of them are homogeneous spaces of certain Lie groups, we proposed a method to construct exponential

families on homogeneous spaces by taking advantage of representation theory in [1]. This method

generates widely used exponential families such as normal, gamma, Bernoulli, categorical, Wishart, von

Mises-Fisher, and hyperboloid distributions. In this talk, we will explain the method, its properties and

future works.
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Non-Equilibrium Thermodynamic Geometry:

A variational perspective on nonequilibrium thermodynamics of closed and open systems

François Gay-Balmaz

Abstract:

We survey recent results on the variational formulation of nonequilibrium thermodynamics for finite-

dimensional and continuum systems. We illustrate the theory with closed and open systems experiencing

friction, heat and mass transfer, and chemical reactions. We show how the theory is used for

discretization and as a modeling tool in fluid dynamics.
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Non-Equilibrium Thermodynamic Geometry:   

A Homogeneous Symplectic Approach 

Arjan van der Schaft 

Abstract:

Since the early 1970s contact geometry has been recognized as an appropriate geometric framework for

thermodynamic systems. In the 2001 paper by Balian and Valentin it was shown how the homogeneous

symplectic approach to contact geometry has several advantages, e.g., in switching between energy and

entropy representations. In this talk I will show how this approach leads to a geometric formulation of non-

equilibrium thermodynamic processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions

that are homogeneous of degree one in the co-extensive variables and zero on the homogeneous

Lagrangian submanifold describing the state properties. This culminates in the definition of port-

thermodynamic systems, and the formulation of interconnection ports with the environment or other

systems. This is illustrated on a number of simple examples, indicating its potential for analysis and

control.
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Dirac structures and port-Dirac systems in nonequilibrium thermodynamics

Hiroaki Yoshimura

Abstract:

A Dirac structure is a unifying notion of symplectic and Poisson structures, which has been widely used in

mechanics, in particular, for mechanical systems with nonholonomic constraints. In this talk, we study Dirac

structures in nonequilibrium thermodynamics by extending to a class of nonlinear nonholonomic systems.

We also clarify the associated variational structures together with some examples of open systems as well

as interconnected systems. This is a joint work with Francois Gay-Balmaz.
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Port Thermodynamic Systems Control 

Bernhard Maschke

Abstract:

We consider the feedback control of homogeneous Hamiltonian control systems arising in the Hamiltonian

modelling of open thermodynamic systems and presented in the talk “ Non-Equilibrium Thermodynamic

Geometry: A Homogeneous Symplectic Approach”.

In this talk we characterize classes of state feedbacks for which the closed-loop system is again

Homogeneous Hamiltonian and leaves invariant some closed-loop 1-form and derive some relations with

the closed-loop Hamiltonian function.
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Computational dynamics of reduced coupled multibody-fluid system                                           in Lie 

group setting

Zdravko Terze

Abstract:

We describe a computationally efficient method for simulating dynamics of multibody-fluid system that

utilizes symplectic and Lie-Poisson reductions in order to formulate fully coupled dynamical model of the

multi-physical system by using solid variables only. Multibody system dynamics is formulated in Lie group

setting and integrated with the pertinent integration method, while additional viscous effects are

incorporated in the overall model by numerically enforcing Kutta condition.
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Information Geometry & Quantum Fields 

Kevin Grosvenor

Abstract:

We study the Fisher metrics associated with a variety of simple systems and derive some general lessons

that may have important implications for the application of information geometry in holography. Some

sample systems of interest are the classical 2d Ising model and the corresponding 1d free fermion theory,

massless scalar instantons, and coherent states of free bosons and fermions.
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Learning with Few Labeled Data

Pratik Chaudhari

Abstract:

The relevant limit for machine learning is not N → infinity but instead N → 0, the challenge is to build

systems that do not require N = thousands of labeled data. We will exploit a formal connection of

thermodynamics and machine learning to characterize the limits of representation learning in the low-

data regime. This theory leads to algorithms that can guarantee good classification performance after

the model is transferred onto a new task.
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Computational Information Geometry:

On statistical distances and information geometry for machine learning

Frank Nielsen

Abstract:

We survey recent progress in the construction of divergences and their induced information geometry

with applications to machine learning: First, we provide generalizations of the celebrated Jensen-

Shannon divergence [1,2] that is at the heart of Generative Adversarial Networks. Second, we describe

some statistical divergences on the Cauchy manifold [3] with their information-geometric structures, and

show applications in statistics. Third, we show how to quickly calculate numerically the Siegel distance

on the Siegel disk domain using the novel Siegel-Klein model [4] based on Hilbert geometry, and

discuss applications in machine learning. Last, we show a simple trick to easily calculate statistical

distances between exponential families using legacy software packages [5].
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Computational Non-Parametric Information Geometry

Information Manifold modeled with Orlicz Spaces

Giovanni Pistone

Abstract:

One of the possible non-parametric version of Information Geometry with infinite sample space

assumes strictly positive densities whose logarithm belongs to an Orlicz space. In this way, the full

structure of the affine Hessian statistical manifold can be rigorously derived. After a breaf summary of

this old theory, I will discuss some recent developments:

1. The extension of the Orlicz space modeling to the statistical bundle;

2. The use of Orlicz-Sobolev spaces to allow for smoothness of the densities;

3. The special features of the finite-dimensional Gaussian Space.
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