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From data-driven to physics-based neural networks material modeling

• Machine Learning methods and, in particular, Artificial Neural Networks (ANNs) have demonstrated promising capabilities in material con-
stitutive modeling. One of the main drawbacks of such approaches is the lack of a rigorous frame based on the laws of physics.

• We propose a new class of data-driven, physics-based, neural networks for constitutive modeling of strain rate independent processes
at the material point level, which we define as Thermodynamics-based Artificial Neural Networks (TANNs).

Thermodynamics principles

Under isothermal transformations and small
strain regime, the first law of thermodynam-
ics reads Ḟ = σ · ε̇− D,
with F and Ḟ the specific Helmholtz free energy
(per unit volume) and its rate of change; σ the
Cauchy stress tensor; ε and ε̇ the small strain
tensor and its rate of change; D the rate of me-
chanical dissipation. ’·’ denotes contraction of
adjacent indices.
From the second law of thermodynamics the
rate of dissipation must be non-negative,

D ≥ 0.

For strain-rate independent materials

F := F̃ (ε,Z) and D := D̃
(
ε,Z, Ż

)
,

where D is homogeneous of first-order (rate in-
dependency) in Ż and Z = (ζi, . . . , ζN ) denotes
a set of N (additional) internal state variables.
It can be proven that

σ =
∂F
∂ε

, D = −
∑
i

∂F
∂ζi

· ζ̇i =
∑
i

χi · ζ̇i.

Artificial Neural Networks

ANNs can be regarded as non-linear operators,
composed of an assembly of mutually connected
processing units−nodes−, which take an input
signal I and return the output O, namely

O = ANN@I.
The signal flows from layer (l − 1) to layer (l)
according to

p
(l)
k = A(l)(z

(l)
k ),

with
z
(l)
k =

∑
s

(w
(l)
ksp

(l−1)
s ) + b

(l)
k ,

where p
(l)
k is the output of node k, at layer (l);

A(l) is the activation function of layer (l); w(l)
ks is

the weight between the s-th node in layer (l−1)

and the k-th node in layer (l); and b
(l)
k are the

biases of layer (l).

Architecture

sNN
sNN

1. εt+∆t := εt +∆ε

2. ∆ζ = sNNζ@
(
εt+∆t,∆εt, σt, ζt

)
3. ζ̇t+1 ≈ ∆ζ

∆t
, ζt+1 := ζt +∆ζt

4. Ft+∆t = sNNF@(εt+∆t, ζt+∆t)

5. Dt+∆t := −
∂Ft+∆t

∂ζt+∆t
· ζ̇t+∆t

6. ∆σ :=
∂Ft+∆t

∂εt+∆t
− σt

Second-order vanishing gradient
When dealing with TANNs, the issue of second-order vanishing gradients may arise. Similar to
the first-order variant, it involves the second derivatives of the activation functions. Classical
activation functions are not suitable choices.
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Performance of TANNs vs standard ANNs
TANNs display efficient and robust training, and more accurate predictions. More important,
TANNs predictions are always thermodynamically consistent, even for unseen data.
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Concluding remarks

Thermodynamics-based Artificial Neural Networks (TANNs) do not have to identify the underlying pattern of thermodynamic laws during training,
reducing the need of large data-sets and improving the robustness and the performance of predictions. The predictions remain thermody-
namically consistent, even for unseen data. TANNs are excellent candidates for replacing constitutive calculations at Finite Element incremental
formulations in solid mechanics.
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