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Context and motivation

Use physical invariants and couplings in the :
1 physically-based modelling making use of physical invariants

and port (conjugated interface) variables
2 physically-based simulation making use of physical invariants
3 physically-based control design : design control Lyapunov

functions using physical invariants
4 simultaneous design and control using physical analogy of the

controller or the closed-loop system

In this talk we use Hamiltonian control systems for these objectives !
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Port Hamiltonian systems for a robotic system playing
trombone [N. Lopes, IRCAM, 2016].
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Structure-preserving control of dissipative Hamiltonian
systems

Assigning the Hamiltonian function for input-output
Hamiltonian systems on symplectic manifolds.
[van der Schaft, in Theory and Applications of Nonlinear Control
Systems, 1986]

Assigning the structure matrices, Hamiltonian of port
Hamiltonian systems
[R. Ortega et al., IEEE Control Systems Magazine, 2001]
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Structure preserving control of controlled Hamiltonian
systems

For Hamiltonian control systems defined on symplectic manifolds
T ∗Q where Q is the configuration space :

ẋ = XH0−uXHc

with XHi
=

(
0n In
−In 0n

)
∂Hi
∂x (x)

there exists structure preserving state feedback : u = f (Hc )
where Hc is the control Hamiltonian
with closed-loop Hamiltonian Hcl = H0 + Φ(Hc ) .
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Structure preserving control for port Hamiltonian systems

For Port Hamiltonian systems

ẋ = [J(x)−R (x)]
∂H0

∂x
+u g(x) and y = g (x)

∂H0

∂x

the Interconnexion and Damping Assignment method assigns
modified structure matrices Jcl , Rcl and Hamiltonian Hcl in closed
loop for state-feedback u (x) solution of a matching equation

−(Ja−Ra)
∂H0

∂x
(x) +g (x)u (x) = [(J (x) +Ja (x))− (R (x) +Ra (x))]

∂Ha

∂x
(x)

with design parameters
Ja(x) = Jcl−J(x), Ra(x) = Rcl−R(x) and Ha(x) = Hcl−H0(x) .
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Model of a loudspeaker with internal energy balance

32 modèle non linéaire passif : approche multiphysique par composant

1.3.3 Macro-composants, couplages et phénomènes associés

1.3.3.1 Description

A partir des considérations multiphysiques en § 1.3.1 et des développements sur les
échanges thermiques en § 1.3.2, nous établissons en Figure 1.8 une description du haut-
parleur à partir de composants macroscopiques, connectés via des couplages multiphysiques
et des échanges de température. Cette description s’appuie sur l’hypothèse que les états sont
homogènes dans chacun des macro-composants, permettant de caractériser leurs comporte-
ments par des lois macroscopiques.
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Figure 1.8 – Macro-composants considérés du haut-parleur et connexions par couplage (trait plein)
ou par échange thermique (trait discontinu).

On distingue

• le fil constituant la bobine B , dont l’état est décrit par un flux magnétique �f et une
entropie sf.

• le circuit magnétique, composé de l’aimant A , des pièces polaires P et de l’entrefer

E , dont l’état est décrit par un flux magnétique (par spire) 'cm et une entropie scm.

• l’équipage mobile formé par la bobine B , la membrane M et les suspensions S ,
dont l’état est décrit par une élongation `m, une quantité de mouvement pm et une
entropie sm.

• l’environnement extérieur acoustique et thermique, incluant les charges acoustiques
avant/arrière et les températures extérieures et dans l’enceinte.

Ces macro-composants sont connectés via des couplages multiphysiques :

— Ce/m : couplage entre le courant if circulant dans le fil et le mouvement de la partie
mécanique. Dépend du flux 'cm du circuit magnétique et du déplacement `m de l’équi-
page mobile.

— Ce/cm : couplage entre le flux magnétique �f créé par l’enroulement du fil et celui circuit
magnétique 'cm, dépendant également du déplacement de la bobine `m.

— Cm/ac : couplage entre le mouvement de la membrane et la pression acoustique pac

générée. Le déplacement `m étant supposé homogène, on néglige ici le comportement

[T. Lebrun, Ph.D. thesis IRCAM, 2019].
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Ionic polymer metal composite (IPMC)

A polyelectrolyte gel (electro-active polymers (EAPs)) between
metal electrodes

Yamaue et al., 2005) and ion migration (Tadokoro, Yamagami,
Takamori, and Oguro, 2000; Nemat-Nasser and Yu Li, 2000;
Wallmersperger, Leo, and Kothera, 2007) and black-box models for
the purpose of control, e.g., linear-quadratic regulator (LQR) control
with a linear model (Mallavarapu and Leo, 2001), proportional-
integral-derivative (PID) impedance control (Richardson et al.,
2003), a control for a nonlinear Hammerstein model with subspace
identification (Yamakita, Kamamichi, Kneda, Asaka, and Luo, 2004),
and linear robust control (Kang, Shin, Kim, Kim, and Kim, 2007).
Moreover, a number of gray-box models, which are intermediates
between system identification and theoretical models, including an
electrical andmechanicalmodel (Kanno, Tadokoro, Takamori, Hattori,
and Oguro, 1996), an electro-mechanically coupled model (Newbury
and Leo, 2003), and a distributed electrical model (Takagi, Nakabo,
Luo, andAsaka, 2007). In particular,Yi andVishniac (2006)proposeda
bond graph representation of conjugate polymers in the conventional
way (Karnopp, Margolis, and Rosenberg, 2006) of describing dis-
tributed parameter systems by using a great number of infinitesimal
lumped parameter systems.

However, for the design of actuators and further, the design of
complete actuated robots, it is crucial to handle this complexity
while retaining the physical structure of the model: this cannot be
done by using black-boxmodeling. Moreover, the model should be
versatile; it should be adaptable to designs using different approx-
imations: i.e., linearization, discretization, and finite-dimensional
reduction for numerical analysis and control designs. This paper is
aimed at describing the system as a set of partial differential
equations which both retains the physical structure and suits for
simulations and controls.

1.3. Contributions of this paper

This paper presents a multi-scale coupling model of an IPMC
expressed in terms of a distributed port-Hamiltonian (DPH) system

(Macchelli and Maschke, 2009, Chapter 4; van der Schaft and
Maschke, 2002). The model’s subsystems, taken from Bar-Cohen
(2004), Yamaue et al. (2005) and Simo and Vu-Quoc (1986), are
connected to each boundary with boundary multi-scale couplings,
which are the enhanced versions of the original boundary connec-
tions for DPH systems (Baaiu et al., 2009).

DPH systems represent systems of conservation laws in a
canonical way. Their representations are defined in terms of an
interconnected structure, resembling a network, and a storage
function, called a Hamiltonian, that represents the total energy of
the system. More precisely, the system is described by effort
variables and flow variables called port variable pairswhose product
has the dimension of power. Furthermore, the port variable pairs
defined in a domain with a boundary are related to the boundary
port variable pairs defined on the boundary. This relation ensures
that the energy change of the internal domains equals that of the
boundaries. In other words, the energy change of the internal
domains can be found by calculating the energy flux through the
boundaries. Because of this, a DPH systemcan be used for boundary
controls using passivity-based methods (Ortega, Loriá, Nichlasson,
and Sira-Ramı́rez, 1998, 2002) for instance (although this paper
does not discuss controls). Boundary multi-scale couplings inherit
this boundary energy integrability of DPH systems. Therefore,
boundary multi-scale couplings can describe a coupling model of
IPMC that is consistent with respect to energy flows without
calculating analytic solutions.

The important idea is that the port variable pairs of the detailed
system can be used as boundary connections of various reduced
models, even if the port variable pairs already exist or canbe calculated
fromothervariables. Inparticular, sinceconsiderablysimplifiedmodels
must be used in numerical calculations, more detailed control systems
couldbedesignedbyusing theboundarymulti-scale couplingsderived
fromthe theoreticalmodels. In the last section, this fact is confirmedby
the comparison with that of the coupled linearized subsystems and
experimental measurements.

Fig. 1. IPMC (left: actuation with power supply, right: dimensions).

Fig. 2. Physical structure of IPMC.
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Structure-preserving control of dissipative Hamiltonian
systems

Assigning the structure matrices, Hamiltonian and irreversible
entropy creation of Irreversible port Hamiltonian systems
[Ramırez Estay et al., Automatica, 2016]

Assigning the contact form, Hamiltonian and Legendre
submanifold of control contact Hamiltonian systems
[Ramırez Estay et al., Systems and Control Letters, 2013 ; IEEE TAC, 2017]
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Irreversible Port Hamiltonian systems
An Irreversible Port Hamiltonian system (IPHS)

ẋ = Jir

(
x , ∂U

∂x ,
∂S
∂x

)
∂U

∂x
(x) + W

(
x , ∂U

∂x

)
+ g

(
x , ∂U

∂x

)
u︸ ︷︷ ︸

input map

, (1)

Jir

(
x , ∂U

∂x ,
∂S
∂x

)
= J0 (x)︸ ︷︷ ︸

reversible

+γ

(
x , ∂U

∂x

)
{S ,U}J J︸ ︷︷ ︸

irreversible coupling

(2)

(i) J0 (x) defines a Poisson bracket and J is a constant skew-symmetric matrix
(ii) γ

(
x , ∂U

∂x

)
> 0 is a positive function (second principle !)

(iii) U (x) is the Hamiltonian and S (x) the entropy function which is a Casimir
function of the Poisson structure matrix J0 (x)

(iii) W
(

x , ∂U
∂x

)
, g
(

x , ∂U
∂x

)
are vector fields associated with the port.

In closed loop with M (x)≥ 0 and availability function (Bregman)
A(x ,x∗) = U (x)−U (x∗)− ∂U

∂x (x∗)> (x−x∗)

ẋ =
(
−σdM+ γd {S ,A}Jd

Jd

) ∂A

∂x
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Structure preserving control for port Thermodynamic
systems

We have seen the definition of Port Thermodynamic systems this
morning and shall now answer the question of preserving feedback
of Port Thermodynamic system .

for which class of state-feedback u (x) is the closed-loop
system again a Port Thermodynamic system ?

In fact , the question may also be stated :
when are 2 Port Thermodynamic systems state-feedback
equivalent ?
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Homogeneous Control Hamiltonian systems
Port Thermodynamical systems

Port Thermodynamical systems

Port Thermodynamical systems on the symplectized
Thermodynamic Phase Space
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Homogeneous Control Hamiltonian systems
Port Thermodynamical systems

The symplectization of the Thermodynamic Phase Space
x ∈ T ∗X ∼ R2n (P. Valentin and R. Balian)

Gibbs’ relations written with respect to energy or entropy :

energy form d U = T d S−P d V + µ d N

entropy form d S = 1
T d U + P

T d V − µ

T d N

which is rendered symmetric pU d U +pS d S +pV d V +pN d N = 0

Consider the symplectic manifold T ∗X equiped with the canonical
Liouville 1-form α = ∑

n−1
i=0 pidqi and symplectic 2-form ω = dα

The thermodynamic phase space P(T ∗X ) is obtained as the
projectivization of T ∗X (the cotangent bundle T ∗X without its
zero-section) with contact form θ such that
α = pj θ , j ∈ {0, . . . , n−1}

B. Maschke and A.J. van der Schaft Port-thermodynamic systems’ control
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Homogeneous Control Hamiltonian systems
Port Thermodynamical systems

Homogeneous Control Hamiltonian systems on T ∗X

Symplectic Space: T ∗X with canonical Liouville 1-form
α = ∑

n−1
i=0 pidqi

State space: Homogeneous Lagrange submanifold L : α|L = 0

A Homogeneous control Hamiltonian system is defined by:
homogeneous in p H0 internal and Hj interaction Hamiltonian
: Ki |L = 0

the differential equation: ˙̃x = XH0+∑
m
j=1 uj XHj

with XK a

homogeneous symplectic Hamiltonian vector field: LXHj
α = 0 .

The physically relevant dynamics is the restriction to the Lagrangian
invariant homogeneous submanifold of T ∗X or equivalently on the
projection to a Legendre submanifold of P(T ∗X ).

B. Maschke and A.J. van der Schaft Port-thermodynamic systems’ control
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Homogeneous Control Hamiltonian systems
Port Thermodynamical systems

Port Thermodynamic system on T ∗X (van der Schaft and

Maschke, 2018)

Homogeneous Hamiltonian control system for which
coordinate qe

0 corresponds to the total energy of the system
coordinate qe

1 corresponds to the total entropy of the system
the autonomous Hamiltonian satisfies

∂K a

∂pe
0

∣∣∣∣
L

= 0 and
∂K a

∂pe
1

∣∣∣∣
L

≥ 0, (3)

augmented with the power-conjugated output yp = ∂K c

∂pe
0

∣∣∣
L

and the entropy-conjuguated output yp = ∂K c

∂pe
1

∣∣∣
L
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Feedback preserving the Liouville form
Assigning a Pfaffian form
Illustration on a model of CSTR

Structure preserving feedback

Structure preserving feedback
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Feedback preserving the Liouville form
Assigning a Pfaffian form
Illustration on a model of CSTR

Characterization of Homogeneous Hamiltonian vector fields

Theorem
If the Hamiltonian function K : T ∗Qe → R is homogeneous of
degree 1 in pe , then the Hamiltonian vector field X = XK satisfies

LX α = 0 (4)

where LX denotes the Lie derivative with respect to the vector field
X and α is the Liouville form. Conversely, if a vector field X
satisfies (4) then X = XK for some locally defined Hamiltonian K
that is homogeneous of degree 1 in pe .

This is a stronger condition that the condition that the vector field
X is (locally) Hamiltonian, consisting in leaving the symplectic form
invariant LX ω = 0
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Feedback preserving the Liouville form
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Feedback preserving the Liouville form

Theorem
Consider a homogeneous Hamiltonian control system and assume
that the control Hamiltonian K c ∈ C∞(M ) is zero on a
submanifold of T ∗Qe with measure zero. Consider the feedback
u = ũ(qe , pe) ∈ C∞ (T ∗Qe) .
The closed-loop vector field

X = XK a + ũXK c (5)

is a Homogeneous Hamiltonian vector field if and only if the state
feedback is constant, i.e., ũ(qe , pe) = u0 ∈ R.
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Feedback preserving the Liouville form
Assigning a Pfaffian form
Illustration on a model of CSTR

Proof

Recall that a Homogeneous Hamiltonian vector field X satisfies

−iX ω = dK and iX α = K (6)

Then using Cartan’s formula one computes

LX α = L(XKa +ũXKc )α

= LXKa α︸ ︷︷ ︸
=0

+ũ
(
iXKc dα

)︸ ︷︷ ︸
=−dK c

+d (ũ Kc )

= K cdũ

Hence the closed-loop vector field is again a homogeneous
Hamiltonian vector field,implies that ũ is a constant function.

B. Maschke and A.J. van der Schaft Port-thermodynamic systems’ control
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Feedback preserving the Liouville form
Assigning a Pfaffian form
Illustration on a model of CSTR

Assigning a Pfaffian form in closed-loop

Theorem
The closed-loop vector field X = XK a + ũXK c with feedback
u = ũ(qe , pe) is a homogeneous Hamiltonian vector field on T ∗Qe

with respect to the Pfaffian form the added Pfaffian form α̃

αcl = α+α̃

if and only if
(i) the 2-form ωcl = dαcl is of rank 2(n+1) (hence it is a
symplectic form)
(ii) the following matching equation is satisfied(

LXKa α̃
)

+ ũ
(
LXKc α̃

)
+
(
iXKc α̃ +K c

)
dũ = 0 (7)
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Proof

Let us check the closed-loop vector field satisfies LX α = 0
Compute

LX αcl = LX (α + α̃) = K cdũ+LX α̃

and

LX α̃ = L(XKa +ũXKc )α̃

= LXKa α̃ + ũ
(
iXKc d α̃

)
+d

(
ũ iXKc α̃

)
= LXKa α̃ + ũ

(
iXKc d α̃ +d

(
iXKc α̃

))
+
(
iXKc α̃

)
dũ

= LXKa α̃ + ũ
(
LXKc α̃

)
+
(
iXKc α̃

)
dũ

(8)

leading to the matching equation (7).
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Necessary matching equation

Corollary
The matching equation admits the necessary condition

0 = d
(
iXKad α̃

)
+ ũ d

(
iXKc d α̃

)
+
(
dK c − iXKc d α̃

)
∧ dũ (9)

Proof.
he matching equation (7) is equivalent to

0 = LXKa α̃ + ũ
(
iXKc d α̃

)
+d

(
ũ
(
iXKc α̃

))
+K c dũ

Computing its exterior derivative leads to

0 = d (iXd α̃) +dK c ∧ dũ (10)

where X is the closed-loop vector field
B. Maschke and A.J. van der Schaft Port-thermodynamic systems’ control
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Illustration on the model of a CSTR

Illustration on the model of a CSTR
[Maschke and van der Schaft, IFAC LHMNLC 2018]

Irreversible port Hamiltonian systems (IPHS) The heat exchanger and the CSTR as IPHS

The continuous stirred tank reactor (CSTR)

The chemical reaction is denoted by

ν1A1 + . . . + νm−1Am−1 ! νmAm,
ν1, . . . , νm : stoichiometric coefficients
A1, . . . , Am : chemical species

together with the definition of the reaction rate:

r(A, T ) = rf (Af , T ) − rr (Af , T )

with A the affinity of reaction.

The mathematical model

The balance equations [Aris, 1989],

ṅi = Fei − Fsi + riV︸ ︷︷ ︸
mass

, Ṡ =
m∑

i=1

(Fei sei − Fsi si ) +
u(t)

Tw
+ σ

︸ ︷︷ ︸
entropy

,

with ni number of moles, V volume, Fei , Fsi molar flows, sei , si molar
entropies, Tw jacket temperature and u(t) manipulated heat flux.

H. Raḿırez (DIE, UdeC - LAGEP, UCB) Thesis dissertation 9 March 2012 11 / 36
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Model of a CSTR

Continuous Stirred Tank reactor
a mixture of two species A and B are highly diluted in an inert
I

a single chemical reaction A
 βB where β is a stoichiometric
coefficientof the reaction
a jacket in which a cooling fluid is at the temperature Tw (t)
being the control variable
it is assumed that the inlet stream(with the constant volume
flow rate Ql) contains only the species A and the inert I .
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Thermodynamic properties of the CSTR

The symplectified Thermodynamic Phase Space is

R8 3 x̃ = (qS , qU ,q nA
,q nB

, pS , pU , pnA
, pnB

)>

Thermodynamic properties are defined by the Lagrangian
submanifold generated by the function

G (U, nA, nB , pS ) =−pS S (U, nA, nB) (11)

where S (U, nA, nB) is the total entropy function .
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Definition of Hamiltonian functions for the CSTR (1)

Homogeneous Hamiltonian Control System ˙̃x = XK a +Tw XHjKc

with
drift Hamiltonian function

K a = h0 (U,nA,nB) +hflow (U,nA,nB) Q

−
(
pU +pS

∂S

∂U

)
κT̃ (U,nA,nB)

and control Hamiltonian function

K c =

(
pU +pS

∂S

∂U

)
κ
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Definition of Hamiltonian functions for the CSTR (2)

Internal Hamiltonian function (corresponding to the chemical
reaction)

h0 = Π r (T ,nA,nB ) V

 0
−1
β

 (12)

=

(
−
(

pnA
+ pS

∂S

∂nA

)
+ β

(
pnB

+ pS
∂S

∂nB

))
r (T ,nA,nB ) V (13)

Hamiltonian function associated with constant inlet flow is

hflow = Π

 C in
p

(
T in−T0

)
+
(
C in

A h0A
+ CI h0I

)
− 1

V H̃
1
V

(
C in

A V −nA

)
−nB

 (14)

where

Π =

((
pU + pS

∂S

∂U

)
,

(
pnA

+ pS
∂S

∂nA

)
,

(
pnB

+ pS
∂S

∂nB

))
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The matching eq. for the CSTR with temperature control

As an example let us choose as added Pfaffian form

α̃ = ϕ dqS

where ϕ ∈ C∞ (T ∗Qe).
The matching equation (7) is equivalent to

0 = [1+ κ ũ]
(
iXKc dϕ

)
dqS

+ϕ

[
d

(
∂h0
∂pS

+
∂hflow

∂pS

)
+ ũκd

(
∂S

∂U

)]
+κ

(
∂S

∂U
ϕ +

(
pU +pS

∂S

∂U

))
dũ
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The matching eq. for the CSTR with temperature control

Nullify the factor of dqS , with functions ϕ satisfying
(
iXKc dϕ

)
= 0

Choosing

ϕ =−
((

∂S

∂U

)−1
pU +pS

)
,

which ensures that the 2-form ωcl = dαcl is of full rank.
The matching equation reduces to

d

(
∂h0
∂pS

+
∂hflow

∂pS

)
+ ũκd

(
∂S

∂U

)
= 0 (15)

By taking the exterior derivative one obtains the condition
dũ∧d

(
∂S
∂U

)
= 0, which implies that the control ũ is a function of

the reciprocal temperature ∂S
∂U which is a common assumption.
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Case when the added 1-form is exact: αcl = α +dF

Consider the particular case, when the added 1-form α̃ is exact;

α̃ = dF

with F ∈ C∞ (T ∗Qe) being a a (smooth) real-valued function.
Then the closed-loop 1-form is changed to αcl = α +dF but the
closed-loop symplectic form is invariant ωcl = ω .
Then the necessary matching equation (9) reduces to

dK c ∧ dũ = 0

hence the state feedback is a function of the control Hamiltonian
function

ũ (qe , pe) = φ (K c (qe , pe))

with φ ∈ C∞ (R) . Very similar to input-output Hamiltonian
systems !
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Assigning a Pfaffian form in closed-loop with exact addded
form

Proposition

The closed-loop vector field XK a + ũXK c , with ũ ∈ C∞(T ∗Qe), is a
homogeneous Hamiltonian vector field with 1-form αcl and
Hamiltonian Kcl,

αcl = α+dF and Kcl = K a+Φ(K c) + κ,

where F ∈ C∞ (T ∗Qe) and Φ ∈ C∞(R) and control ũ = Φ′ (K c ) ,, if
and only if F and Φsatisfy the matching equation

dF (XK a ) + Φ′ (K c) [K c +dF (XK c )]−Φ(K c) = κ (16)
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Proof

Using again Cartan’s formula and d α̃ = 0, the matching equation
(7) becomes

0 = d
[
iXKadF + φ (K c )

(
iXKc dF

)]
+K c

φ
′ (K c)dK c

By integration, there exist Ψ ∈ C∞ (R) and κ ∈ R such that

iXKadF + φ (K c )
(
iXKc dF

)
= Ψ(K c ) + κ

with Ψ′ (x) =−x φ ′ (x)
Then,one derives the closed-loop Hamiltonian function

Kcl = iX αcl = i(XKa +ũXKc ) (α +dF )

= K a + φ (K c )K c + Ψ(K c ) + κ

= K a + Φ(K c ) + κ

with Φ is a primitive function of φ .
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Non-isothermal mass-spring-damper system

Non isothermal mass-spring-damper system

48 modèle non linéaire passif : approche multiphysique par composant
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Figure 1.18 – Schéma électronique équivalent du modèle (M1).
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Figure 1.19 – Schéma électronique équivalent du modèle (M2).
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Figure 1.20 – Schéma électronique équivalent du modèle (M3).

Figure: Model of loudspeaker [T. Lebrun, Thèse doctorat , IRCAM, Paris,

2019]
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Model: state space

Consider Qe with coordinates z (extension of the spring), π

(momentum of the mass), E (total energy of the system) and S (
the entropy of the system). The state space is the homogeneous
Lagrangian submanifold L ⊂ T ∗Qe

L = {(z ,π,S ,E ,pz ,pπ ,pS ,pE ) |
E = 1

2kz
2 + π2

2m +U(S),
pz =−pEkz ,pπ =−pE

π

m ,pS =−pEU
′(S)}

(17)

with spring constant k , mass m, and internal energy U(S) and
generating function

G =−pE

(
1
2
kz2 +

π2

2m
+U(S)

)
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Model: state space and Hamiltonian

The dynamics is generated by
the autonomous Hamiltonian function is

K a = pz
π

m
+pπ

(
−kz−ν

π

m

)
+pS

ν( π

m )2

U ′(S)

the control Hamiltonian function is

K c =
(
pπ +pE

π

m

)
which are homogeneous in the co-states !
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Model: dynamics

The dynamics is with homogeneous Hamiltonian drift vector field
and control vector field are

XK a =



π

m
−kz−ν

π

m
ν

π

m
1

U ′(S)

0
k pπ

−pz
m +pπν

1
m

pS ν
(

π

m

)2 U”(S)

U ′(S)2

0


XK c =



0
1
0
π

m
0
−pE

m
0
0
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Matching equation and solution

Considering, as a simple example, Φ(x) = 1
2x

2 , then the matching
equation (16) becomes

κ = dF (XK a ) +Kc [Kc +dF (XKc )]− 1
2
K 2

c

= dF (XK a ) +Kc [
1
2
Kc +dF (XKc )]

It may be seen that there is a simple particular solution (for κ = 0)

F =−1
2

πpπ −EpE −
1
2
zpz (18)
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Sructure preserving control

Equivalently, the nonlinear control ũ (π, pπ , pE ) =
(
pπ +pE

π

m

)
and

the added 1-form

α̃ = dF =−1
2
pzdz−

1
2
pπdπ−pEdE

satisfy the matching equation (7).
Hence the closed-loop 1-form is

α̃ = dF

= −1
2

π dpπ −E dpE −
1
2
z dpz −

1
2
pzdz−

1
2
pπdπ−pEdE

and the closed-loop Hamiltonian is

Kcl = K a + Φ(K c)

= pz
π

m
+pπ

(
−kz−ν

π

m

)
+pS

ν( π

m )2

U ′(S)
+

1
2

(
pπ +pE

π

m

)2
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Conclusion

We have considered Port Thermodynamic systems which are

Homogeneous Hamiltonian systems

defined on the symplectized Thermodynamic Phase Space,
leaving a homogeneous Lagrangian submanifold invariant
augmented with conjugated inputs and outputs: port variables

We have derived conditions for a state feedback to be structure
preserving: matching equation between the added Pfaffian form
and the control
Future work will be devoted to their control:

stabilization
synthesis of controller for particular classes: CSTR, etc..
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Homogeneous Lagrangian submanifolds of T ∗0Q

Definition
A homogeneous Lagrangian submanifold L ⊂ T ∗Qe satisfies the
two conditions
- it is a Lagrangian submanifold L ⊂ T ∗Qe : it satisfies ω|L = 0
and is maximal
- the homogeneity property:
(qe ,pe) ∈L ⇒ (qe ,λpe) ∈L , for every λ ∈ R∗

Alternatively, in [?] homogeneous Lagrangian submanifolds are
geometrically characterized as maximal submanifolds satisfying
α|L = 0.
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Relation between Legendre submanifolds of P(T ∗Q) and
Lagrangian submanifolds of T ∗0Q

Theorem
An integral submanifold N of θ is a Legendre submanifold of
P(T ∗Q)if and only if Ns := π−1N is a Lagrangian submanifold of
T ∗0Q with the projection π : T ∗0Q→ P(T ∗Q).

To every Lagrangian submanifold Ls with homogeneous generating
function of degree 1

G (q0, · · · ,qn,p0, · · · ,pn) =−p0S(q1, · · · ,qn)

there corresponds a Legendre submanifold L with generating
function

G ((q0, · · · ,qn,p0, · · · ,pn) =−p0F (qI ,γJ)

where γJ =−pJ
p0
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Relation between Hamiltonian vector fields of P(T ∗Q) and
of T ∗0Q

The contact vector fieldXK on P(T ∗Q) is the projection of the
ordinary Hamiltonian vector field Xh on T ∗0Q

π ∗Xh = XK

with h the Hamiltonian (homogeneous of degree 1) corresponding
to the contact Hamiltonian K

h
(
q0,q1, · · · ,qn,−1,γ1, ·,γn

)
:= K

(
q0,q1, · · · ,qn,γ1, ·,γn

)
where γJ =−pJ

p0
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