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Introduction

Context and motivation

Use physical invariants and couplings in the :

@ physically-based modelling making use of physical invariants
and port (conjugated interface) variables

@ physically-based simulation making use of physical invariants

© physically-based control design : design control Lyapunov
functions using physical invariants

@ simultaneous design and control using physical analogy of the
controller or the closed-loop system

In this talk we use Hamiltonian control systems for these objectives !
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Introduction

Port Hamiltonian systems for a robotic system playing
trombone [N. Lopes, IRCAM, 2016].
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Introduction

Structure-preserving control of dissipative Hamiltonian
systems

@ Assigning the Hamiltonian function for input-output
Hamiltonian systems on symplectic manifolds.
[van der Schaft, in Theory and Applications of Nonlinear Control
Systems, 1986]

@ Assigning the structure matrices, Hamiltonian of port

Hamiltonian systems
[R. Ortega et al., IEEE Control Systems Magazine, 2001]
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Introduction

Structure preserving control of controlled Hamiltonian
systems

For Hamiltonian control systems defined on symplectic manifolds
T*Q where Q is the configuration space :

X = XH, — uXp,

: 0, Iy .
with X, :( oo >‘fﬂ' (x)

@ there exists structure preserving state feedback : u=f (H,)
where H. is the control Hamiltonian

e with closed-loop Hamiltonian Hy = Hp+ ® (Hc) .
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Structure preserving control for port Hamiltonian systems

For Port Hamiltonian systems

5= U0~ ROIDD 4 ugl) and y=g() 00

the Interconnexion and Damping Assignment method assigns
modified structure matrices J; , Ry and Hamiltonian H in closed
loop for state-feedback u(x) solution of a matching equation

(0 R) D) 4 g () () = [ 60+ ()~ (R + R GO S (3)

with design parameters
Ja(x) = Ja — J(x), Ra(x) = R — R(x) and H,(x) = He — Ho(x) .
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Model of a loudspeaker with internal energy balance
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[T. Lebrun, Ph.D. thesis IRCAM, 2019].
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lonic polymer metal composite (IPMC)

A polyelectrolyte gel (electro-active polymers (EAPs)) between
metal electrodes

Distributed
elecrical system

Metal electrode
with rough surface

Cation
Voltage supply {\r

Water molecule

Bending @
Fig. 2. Physical structure of IPMC. Fig. 1. IPMC (left:

G. Nishida, K. Takagi, B.M. Maschke and Z. Luo, Multi-Scale Distributed
Parameter Modeling of lonic Polymer-Metal Composite Soft Actuator, Control
Engineering Practice, Vol. 19, n°4, pp.321-334, 2011

Ionic conductive
polymer gel
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Introduction

Structure-preserving control of dissipative Hamiltonian
systems

@ Assigning the structure matrices, Hamiltonian and irreversible

entropy creation of /Irreversible port Hamiltonian systems
[Ramirez Estay et al., Automatica, 2016]

@ Assigning the contact form, Hamiltonian and Legendre

submanifold of control contact Hamiltonian systems
[Ramirez Estay et al., Systems and Control Letters, 2013; IEEE TAC, 2017]
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Irreversible Port Hamiltonian systems

An Irreversible Port Hamiltonian system (IPHS)

5=y (x93 200+ W (% 9) + (x.2) M)
input map
Je (05 52) = do () +y(x 5 ) (.U}, J )
reversible.

irreversible coupling
(i) Jo (x) defines a Poisson bracket and J is a constant skew-symmetric matrix
(i) 7/(x7 S > > 0 is a positive function (second principle !)

iii) U(x) is the Hamiltonian and S (x) the entropy function which is a Casimir
function of the Poisson structure matrix Jy (x)

(iii) w (x,%—g), g (x, ‘3—5) are vector fields associated with the port.

In closed loop with M (x) > 0 and availability function (Bregman)

A(x,x*) = U(x) = U(x*) = 92 (x*) T (x —x*)
A

= (—0gM+74{S,A},, Ja) e
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Structure preserving control for port Thermodynamic
systems

We have seen the definition of Port Thermodynamic systems this
morning and shall now answer the question of preserving feedback
of Port Thermodynamic system .

e for which class of state-feedback u(x) is the closed-loop
system again a Port Thermodynamic system ?

In fact , the question may also be stated :

@ when are 2 Port Thermodynamic systems state-feedback
equivalent ?
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Port Thermodynamical systems Homogeneous Control Hamiltonian systems

Port Thermodynamical systems

Port Thermodynamical systems

Port Thermodynamical systems on the symplectized
Thermodynamic Phase Space
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Port Thermodynamical systems

The symplectization of the Thermodynamic Phase Space
x € T ~ R?n (P. Valentin and R. Balian)

Gibbs' relations written with respect to energy or entropy :

@ energy fom dU=TdS—PdV+udN

@ entropy form dS=3+dU+5dV-4dN
which is rendered symmetric pyd U+ psdS+pydV +pydN =0
Consider the symplectic manifold T*.2" equiped with the canonical
Liouville 1-form o = 27;01 pidg; and symplectic 2-form 0 = da

The thermodynamic phase space P(T*2") is obtained as the
projectivization of 7* 2" (the cotangent bundle T*.Z" without its
zero-section) with contact form 6 such that
a=p6,jc{0,...,.n—1}
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Port Thermodynamical systems

Homogeneous Control Hamiltonian systems on .7 *.2"

Symplectic Space: .7*%2" with canonical Liouville 1-form
-1
o= Z?:o pidqi _
State space: Homogeneous Lagrange submanifold L : aj¢ =0
A Homogeneous control Hamiltonian system is defined by:
e homogeneous in p Hp internal and H; interaction Hamiltonian
. K,'“_ =0
o the differential equation: X = XHO—i—ZJ-’":l uj X, with Xy a
homogeneous symplectic Hamiltonian vector field: Lx, a=0 .
J
The physically relevant dynamics is the restriction to the Lagrangian

invariant homogeneous submanifold of 7*.%2" or equivalently on the
projection to a Legendre submanifold of P(T*2").
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Y Y Homogeneous Control Hamiltonian systems

Port Thermodynamical systems

Port Thermodynamic system on .7 *.Z" (van der Schaft and
Maschke, 2018)

Homogeneous Hamiltonian control system for which
e coordinate g§ corresponds to the total energy of the system
e coordinate gf corresponds to the total entropy of the system

@ the autonomous Hamiltonian satisfies

aIK? JoK?
-| =0 and -| >0, (3)
PG |, Ipt |,
@ augmented with the power-conjugated output y, = %—gg ,
@ and the entropy-conjuguated output y, = %—';: ,
1
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
Illustration on a model of CSTR

Structure preserving feedback

Structure preserving feedback
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
Illustration on a model of CSTR

Characterization of Homogeneous Hamiltonian vector fields

Theorem

If the Hamiltonian function K : T*Q¢ — R is homogeneous of
degree 1 in p®, then the Hamiltonian vector field X = Xy satisfies

Lxa =0 (4)

where ILx denotes the Lie derivative with respect to the vector field
X and ais the Liouville form. Conversely, if a vector field X
satisfies (4) then X = Xk for some locally defined Hamiltonian K
that is homogeneous of degree 1 in p° .

This is a stronger condition that the condition that the vector field
X is (locally) Hamiltonian, consisting in leaving the symplectic form
invariant Lxw =0
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
Illustration on a model of CSTR

Feedback preserving the Liouville form

Theorem

Consider a homogeneous Hamiltonian control system and assume
that the control Hamiltonian K¢ € C*(.#) is zero on a
submanifold of * Q¢ with measure zero. Consider the feedback
u=ii(q°, p°) € C*(T*Q°) .

The closed-loop vector field

X :XKa+ﬁXKc (5)

is a Homogeneous Hamiltonian vector field if and only if the state
feedback is constant, i.e., ii(q¢, p¢) = up € R.
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
Illustration on a model of CSTR

Recall that a Homogeneous Hamiltonian vector field X satisfies
—ixa):dK and ixo = K (6)
Then using Cartan's formula one computes

Lx ot = Lxataxyc)®
= Lx,. @+ (ix,. da) +d (i Kc)
S—— ——
=0 =—dK¢
= Kdi

Hence the closed-loop vector field is again a homogeneous
Hamiltonian vector field,implies that i is a constant function.
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

Assigning a Pfaffian form in closed-loop

Theorem

The closed-loop vector field X = Xka + iiXke with feedback
u=i(q®, p¢) is a homogeneous Hamiltonian vector field on 7 * Q¢
with respect to the Pfaffian form the added Pfaffian form &

Oy = O+

if and only if

(i) the 2-form w, = day; is of rank 2(n+1) (hence it is a
symplectic form)

(i) the following matching equation is satisfied

(Lo @) + @i (Lx,c 0) 4 (ixye G+ K€) dii =0 (7)
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Feedback preserving the Liouville form

Structure preserving feedback Assigning a Pfaffian form
Illustration on a model of CSTR

Let us check the closed-loop vector field satisfies Lxo =0

Compute
Lxoe = Lx((x—l—&) =Kdi+Lxé

and

LxG = Lxya+ixee)
= LXK2&+u(lchda)+d(u1XKCOC) (8)
= LXK3&+ u (’XKc da+d (/XKCOC)) + (iXKc 56) dii
= Lx. 0+ 10 (LXKC ) (’XKC OC) dii

leading to the matching equation (7).
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form

lllustration on a model of CSTR

Necessary matching equation

Corollary

The matching equation admits the necessary condition

0=d (ix.db) 4+ id (ix.da) + (dK —ix, . dd) A di (9)

Proof.
he matching equation (7) is equivalent to

0 = Lxu0+d(ixedd)+d (i (ix.0))+Kdi
Computing its exterior derivative leads to

0 = d(ixdd)+dK A di (10)

where X is the closed-loop vector field ]
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

[llustration on the model of a CSTR

Illustration on the model of a CSTR
[Maschke and van der Schaft, IFAC LHMNLC 2018]

d
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

Model of a CSTR

Continuous Stirred Tank reactor

@ a mixture of two species A and B are highly diluted in an inert
/

@ a single chemical reaction A= BB where 3 is a stoichiometric
coefficientof the reaction

@ a jacket in which a cooling fluid is at the temperature T,, (t)
being the control variable

@ it is assumed that the inlet stream(with the constant volume
flow rate ;) contains only the species A and the inert /.
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

Thermodynamic properties of the CSTR

The symplectified Thermodynamic Phase Space is

~ T
R8> % = (ds, GUs > Tngs PSs PUs Prgs Prg)

Thermodynamic properties are defined by the Lagrangian
submanifold generated by the function

G(U7 nAunB7p5):_p55(U7 nAvnB) (11)

where S(U, na, ng) is the total entropy function .
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

Definition of Hamiltonian functions for the CSTR (1)

Homogeneous Hamiltonian Control System X = Xya+ T, XHje
with

o drift Hamiltonian function
K? = ho(U,na,ng)+ haow (U,na,ng) Q

) ~
— <Pu+P5 8U> KT (U,na,ng)

@ and control Hamiltonian function

5
K® = <pu+psau> K
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

Definition of Hamiltonian functions for the CSTR (2)

@ Internal Hamiltonian function (corresponding to the chemical

reaction)
0
ho Nr(T,na,ng) V| -1 (12)

B
d2S d2S
(* (pnA +ps m) +B (pnB +ps R)) r(T,na,ng) V (13)
@ Hamiltonian function associated with constant inlet flow is

( G (T~ To) + (Citho, + Crho,) — )
hf/oW:rI v

v (CAV —na) (14)

—ng
where
(s S\ (SN (s
- PU T Ps oU )’ Pnp T PS anA y\ Png TPS anB
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

The matching eq. for the CSTR with temperature control

As an example let us choose as added Pfaffian form
o = @dgs

where ¢ € C (T Q°).

The matching equation (7) is equivalent to

0 = [1+«d](ix.de)dgs
dhy  Ohfow\ . [0S
w09 (Gpe+ o) +oxd (53

k[ Lor (putps ) di
8U¢ pu PsaU u
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Feedback preserving the Liouville form
Structure preserving feedback Assigning a Pfaffian form
lllustration on a model of CSTR

The matching eq. for the CSTR with temperature control

Nullify the factor of dgs, with functions ¢ satisfying (iXKC d(p) =0

Choosing
([,
(p_ aU pU ,DS,

which ensures that the 2-form @, = doy is of full rank.
The matching equation reduces to

I Ohiow IS\
(oo )rome(Gg) -0 oo

By taking the exterior derivative one obtains the condition
dind <a—5) =0, which implies that the control i is a function of

the reciprocal temperature 35 which is a common assumption.
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State-feedback equivalence for an exact added 1-form

. Example of the non-isothermal mass-spring-damper system
Case when the added 1-form is exact P pring per sy

Case when the added 1-form is exact: o = @+ dF

Consider the particular case, when the added 1-form & is exact;
& =dF

with F € C*(.7*Q°¢) being a a (smooth) real-valued function.
Then the closed-loop 1-form is changed to o = a + dF but the
closed-loop symplectic form is invariant @y = ®.

Then the necessary matching equation (9) reduces to

dK°ANdi=0

hence the state feedback is a function of the control Hamiltonian
function

i(q% p®) = ¢ (K (a%, p%))
with ¢ € C*(R) . Very similar to input-output Hamiltonian
systems |
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State-feedback equivalence for an exact added 1-form

Case when the added 1-form is exact Example of the non-isothermal mass-spring-damper system

Assigning a Pfaffian form in closed-loop with exact addded

form

Proposition

The closed-loop vector field Xya+ iXke, with i € C*(T*Q°), is a
homogeneous Hamiltonian vector field with 1-form o; and
Hamiltonian K,

o = o+dF and Ka= K+ (K) +k,

where F € C*(7*Q¢) and ® € C*(R) and control i = &' (K€),, if
and only if F and ®satisfy the matching equation

dF (Xke)+ ' (K)[KE+ dF (Xke) - D (KS) =K (16)
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State-feedback equivalence for an exact added 1-form
Example of the non-isothermal mass-spring-damper system

Case when the added 1-form is exact

Using again Cartan's formula and d& = 0, the matching equation
(7) becomes

0 = d[ixe.dF+¢(K)(ix.dF)]+K¢'(K)dK®

By integration, there exist ¥ € C*(R) and k € R such that

ixc dF + ¢ (K) (iXchF) =V (K)+x
with V' (x) = —x ¢’ (x)
Then,one derives the closed-loop Hamiltonian function

Ka = ix0d = ixgatixee) (@ +dF)

= K4+ ¢9(K)K+V(K)+x
K+ (K)+x

with @ is a primitive function of ¢.
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State-feedback equivalence for an exact added 1-form
Example of the non-isothermal mass-spring-damper system

Case when the added 1-form is exact

Non-isothermal mass-spring-damper system

Non isothermal mass-spring-damper system

Uiés up, finert fre
—_t — et —

Figure: Model of loudspeaker [T. Lebrun, These doctorat , IRCAM, Paris,
2019]
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State-feedback equivalence for an exact added 1-form

Case when the added 1-form is exact Example of the non-isothermal mass-spring-damper system

Model: state space

Consider Q¢ with coordinates z (extension of the spring), 7
(momentum of the mass), E (total energy of the system) and S (
the entropy of the system). The state space is the homogeneous
Lagrangian submanifold . C T*Q¢

g - {(Zan'/s:EapZapﬁ'?pSva)‘
E=1k2+ 2 1 U(S), (17)
pz = —pekz,pr = —pe ., ps = —peU'(S)}

with spring constant k, mass m, and internal energy U(S) and
generating function

1 2
G=—-pr <2k22+ L + U(S))

2m
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State-feedback equivalence for an exact added 1-form

Case when the added 1-form is exact Example of the non-isothermal mass-spring-damper system

Model: state space and Hamiltonian

The dynamics is generated by

o the autonomous Hamiltonian function is

T T
K=y (ke ™) s B
m m
o the control Hamiltonian function is

T

K= (Pn'f‘PE*)

m

which are homogeneous in the co-states !
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State-feedback equivalence for an exact added 1-form

Case when the added 1-form is exact Example of the non-isothermal mass-spring-damper system

Model: dynamics

The dynamics is with homogeneous Hamiltonian drift vector field
and control vector field are

T

m 0
—/(Z—V:f7 1

1
m U'(S) 0
XKa == 0 XKL‘ = %
k pr 0

U"(S)

0 0
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State-feedback equivalence for an exact added 1-form

Case when the added 1-form is exact Example of the non-isothermal mass-spring-damper system

Matching equation and solution

Considering, as a simple example, ¢ (x) = %xz , then the matching
equation (16) becomes

1
K = dF(Xks)+ Kc[Ke+dF(Xk.)]— EKE

1
= dF(Xo) + Kel[5 Ko+ dF (X))

It may be seen that there is a simple particular solution (for x = 0)

1 1
F= _Eﬂpﬂ:_EPE_EZPz (18)

B. Maschke and A.J. van der Schaft Port-thermodynamic systems’ control



State-feedback equivalence for an exact added 1-form

Case when the added 1-form is exact Example of the non-isothermal mass-spring-damper system

Sructure preserving control

Equivalently, the nonlinear control i (7, pr, pe) = (pﬂ+pE%) and
the added 1-form

1 1
a = dF:—Epzdz—Ep,rdn'—pEdE

satisfy the matching equation (7).
Hence the closed-loop 1-form is
& = dF
1 1 1 1
= =57 dpr — E dpe — 52 dp, — Epzdz — Epnd” — pedE
and the closed-loop Hamiltonian is

Ka = KP+&(K)

v(£)? 1 T\ 2
U(s) 2 (P e )
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Conclusion

Conclusion

We have considered Port Thermodynamic systems which are

@ Homogeneous Hamiltonian systems

@ defined on the symplectized Thermodynamic Phase Space,

@ leaving a homogeneous Lagrangian submanifold invariant

@ augmented with conjugated inputs and outputs: port variables
We have derived conditions for a state feedback to be structure
preserving: matching equation between the added Pfaffian form

and the control
Future work will be devoted to their control:

o stabilization

@ synthesis of controller for particular classes: CSTR, etc..
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Appendix

Appendix

B. Maschke and A.J. van der Schaft Port-thermodynamic systems’ control



Conclusion

Homogeneous Lagrangian submanifolds of Tj@Q

Definition

A homogeneous Lagrangian submanifold ¥ C T*Q°¢ satisfies the
two conditions

- it is a Lagrangian submanifold .2 C T*Q*¢ : it satisfies ®|, =0
and is maximal

- the homogeneity property:

(g¢,p%) € £ = (q°,Ap°) € Z, for every A € R*

Alternatively, in [?] homogeneous Lagrangian submanifolds are
geometrically characterized as maximal submanifolds satisfying

B. Maschke and A.J. van der Schaft Port-thermodynamic systems’ control



Conclusion

Relation between Legendre submanifolds of P(T*Q) and

Lagrangian submanifolds of Ty Q

An integral submanifold N of 6 is a Legendre submanifold of
P(T*Q)if and only if Ns := n~1N is a Lagrangian submanifold of
T5 Q with the projection w: T;Q — P(T*Q).

To every Lagrangian submanifold L with homogeneous generating
function of degree 1

G(qof" 7qnap07"' 7Pn) — _POS(q17"' 7qn)
there corresponds a Legendre submanifold L with generating
function

G((q07 7qn7p07'” 7pn) — _pOF(qI7YJ)

where v, = — &

Dg
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Conclusion

Relation between Hamiltonian vector fields of P(T*Q) and
of Ty @

The contact vector field Xk on P(T*Q) is the projection of the
ordinary Hamiltonian vector field X, on T5Q

Tx Xy = Xk

with h the Hamiltonian (homogeneous of degree 1) corresponding
to the contact Hamiltonian K

h(qoaqlv'” aqnailv’ylv'v’yn) = K(qoaql"" aqna’}/la'a’yn)

_bs

where y; = o
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