
“Metode de optimizare Riemanniene pentru învăţare profundă”
Proiect cofinanţat din Fondul European de Dezvoltare Regională prin

Programul Operaţional Competitivitate 2014-2020

Mechanics over the Probability Simplex

Goffredo Chirco1, Luigi Malagò1, Giovanni Pistone2

1 Romanian Institute of Science and Technology
2 Collegio Carlo Alberto

SPIG’20 July 28, 2020



1/41



2/41

Outline of the Talk
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Presentation based on a work-in-progress paper

G. Chirco, L. Malagò, and G. Pistone.
Lagrangian and Hamiltonian Mechanics for Probabilities on the Statistical
Manifold, 2020. To appear on the arXiv (soon).
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Introduction 1/2
The framework of classical Mechanics is a finite-dimensional
Riemannian manifold, e.g. L.D. Landau and E.M. Lifshits (1976),
V.I. Arnold (1989), R. Abraham and J.E. Mardsen (1978) and by
J.E. Marsden and T.S. Ratiu (1999).

Information Geometry (IG), as firstly defined by S.-I Amari (1982,
2000, 2016), views parametric statistical models as Riemannian
manifolds, at the same time described as affine manifolds endowed
with a dually-flat connection. See also the monograph by N. Ay,
J. Jost, H.V. Lê, and L. Schwachhöfer (2017).

Recently, some authors have started to inquire about the relation
between the geometry of classical Mechanics and Information
Geometry (Leok and Zhang, 2017, Lods and Pistone, 2015, and
Pistone, 2018).
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Introduction 2/2
We use an approach based on non-parametric Information
Geometry developed by Pistone and collaborators (P. and Sempi,
1995, Gibilisco and P., 1998, P. and Rogantin 1999, P. 2013, 2020)

We restrict our analysis to a finite dimensional state space, in order
to avoid technical issues related to the infinite dimensional space
modelization

We aim to study the relation between the geometry of Classical
Mechanics and Information Geometry, with an emphasis on
providing a statistical intuition of the geometric quantities involved.

The continuous evolution of probability functions has been growing
a great interest in several areas, such as Population Dynamics,
Differential Games, Optimization Methods and Machine Learning
and more recently.
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Maximal Exponential Family

We consider a finite sample space Ω with cardinality N .

Let ∆(Ω) be the probability simplex, and ∆○(Ω) its interior.

We denote with µ the uniform probability function 1/N .

The maximal exponential family E(µ) is the set of densities which
can be written as p∝ ef , where f is defined up to a constant

Given a reference density p ∈ E(µ), we have

q(x) = exp(v(x) +H(v)) ⋅ p(x), E[v(x)] = 0,

H(v) = − logEq[ev] = D (p ∥ q)

with
v = log

q

p
−Eq [log

q

p
] .
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Statistical Bundle

The exponential statistical bundle with base Ω is defined as

SE (µ) = {(q, v) ∣ q ∈ E (µ) ,Eq [v] = 0} ,

we denote with ∗Sq E (µ) the dual statistical bundle. For finite Ω,
Sq E (µ) and ∗Sq E (µ) coincide.

A duality mapping between the statistical bundle and its dual the
can be defined at the fiber at q by

∗Sq E (µ) × Sq E (µ) ∋ (η, v)↦ ⟨η, v⟩q = Eq [ηv] .

Two different affine geometries can be define for Sq E (µ) and
∗Sq E (µ)., by defining two different transports for each
p, q ∈ E (µ), i.e.,

Exponential transport: eUqp∶Sp E (µ)→ Sq E (µ) , eUqpv = v −Eq [v]

Mixture transport: mUqp∶ ∗Sp E (µ)→ ∗Sq E (µ) , mUqpη =
p

q
η.
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Duality Between Transports
The two transports defined above are conjugate with respect to the
duality pairing,

⟨mUqpη, v⟩q = ⟨η, eUpqv⟩p , η ∈ ∗Sp E (µ) , v ∈ Sq E (µ) .

Moreover, it holds

⟨mUqpη, eUqpv⟩q = ⟨η, v⟩p , η ∈ ∗Sp E (µ) , v ∈ Sp E (µ) .
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Exponential Atlas
The exponential atlas of the exponential statistical bundle SE (µ)
is the collection of charts given for each p ∈ E (µ) by

sp∶SE (µ) ∋ (q, v)↦ (sp(q), eUpqv) ∈ Sp E (µ) × Sp E (µ) ,

where
sp(q) = log

q

p
−Ep [log

q

p
] .

As sp(p, v) = (0, v), we say that sp is the chart centered at p. The
cumulant function Kp is defined on Sp E (µ) by

Kp(u) = logEp [eu] = Ep [log
p

q
] = D (p ∥ q) ,

that is, Kp(u) is the expression in the chart at p of
Kullback-Leibler divergence of q ↦ D (p ∥ q), and we can write

q = eu−Kp(u) ⋅ p = ep(u) .
The patch centered at p is

s−1p = ep∶ (Sp E (µ))2 ∋ (u, v)↦ (ep(u), eUep(u)
p v) ∈ SE (µ) .
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Dual Atlas
The dual atlas of the mixture statistical bundle SE (µ) is the
collection of charts given for each p ∈ E (µ) by

ηp∶ ∗SE (µ) ∋ (q,w)↦ (sp(q),mUpqw) ∈ Sp E (µ) × ∗Sp E (µ) .

We say that ηp is the chart centered at p. The patch centered at p
is

η−1p ∶Sp E (µ) × × ∗Sp E (µ) ∋ (u, v)↦ (ep(u),mUep(u)p v) ∈ ∗SE (µ) .
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Statistical Manifolds are Hessian Manifolds
The base manifold E (µ) is actually an Hessian manifold with
respect to any of the convex functions Kp(u) = logEp [eu],
u ∈ Sp E (µ), see H. Shima’s (2007) monograph.

Some properties which can be easily checked

Eep(u) [h] = dKp(u)[h]
eUep(u)

p h = h − dKp(u)[h]

d2Kp(u)[h1, h2] = ⟨eUep(u)
p h1,

eUep(u)
p h2⟩

ep(u)

d3Kp(u)[h1, h2, h3] = Eep(u) [(
eUep(u)

p h1)(eUep(u)
p h2)(eUep(u)

p h3)]
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Velocities to a Curve 1/2
Let us compute the expression of the velocity at time t of a smooth
curve

t↦ γ(t) = (q(t),w(t)) ∈ SE (µ)
in the exponential chart centered at p. The expression of the curve
is

γp(t) = (sp(q(t)), eUpq(t)w(t)) ,

and hence we have, by denoting the ordinary derivative of a curve
in RN by the dot,

d

dt
sp(q(t)) =

d

dt
(log

q(t)
p

−Ep [log
q(t)
p

]) = q̇(t)
q(t) −Ep [

q̇(t)
q(t)] =

eUp
q(t)

q̇(t)
q(t) = eUp

q(t)

d

dt
log q(t) ,

and
d

dt
eUp

q(t)
w(t) = d

dt
(w(t) −Ep [w(t)]) = ẇ(t) −Ep [ẇ(t)] .
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Velocities to a Curve 2/2
We express the tangent at each time t in the moving frame
centered at the position q(t) of the curve itself. Because of that,
we define the velocity of the curve

t↦ q(t) = eu(t)−Kp(u(t)) ⋅ p , u(t) = sp(q(t)) ,

to be

⋆
q(t) = eUq(t)p

d

dt
sp(q(t)) = u̇(t) −Eq(t) [u̇(t)] =

d

dt
log q(t) = q̇(t)

q(t) .

It follows that t↦ (q(t), ⋆q(t)) is a curve in the statistical bundle
whose expression in the chart centered at p is t↦ (u(t), u̇(t)). In
fact,

eUp
q(t)

(u̇(t) − dKp(u(t))[u̇(t)]) = u̇(t) .

The mapping q ↦ (q, ⋆q) is a lift of the curve to the statistical
bundle.
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Covariant Derivatives
Given the exponential parallel transport, we define a covariant
derivative by setting

D

dt
w(t) = eUq(t)p

d

dt
eUp

q(t)
w(t) = eUq(t)p (ẇ(t) −Ep [ẇ(t)] )

= ẇ(t) −Eq(t) [ẇ(t)] .

The notation D
dt denotes the covariant time derivative

In the dual bundle, the curve is ζ(t) = (q(t), η(t)) and the
expression of the second component is mUp

q(t)
η(t) = q(t)

p η(t). Then

d

dt
mUp

q(t)
η(t) = d

dt

q(t)
p
η(t) = 1

p
(q̇(t)η(t) + q(t)η̇(t)) ,

which, in turn, gives the dual covariant derivative

D

dt
η(t) = mUq(t)p

d

dt
mUp

q(t)
η(t) = ⋆

q(t)η(t) + η̇(t) .
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Second Statistical Bundle
We define the second statistical bundle to be

S2 E (µ) = {(q,w1,w2,w3) ∣ (q ∈ E (µ) ,w1,w2,w3 ∈ Sq E (µ)} ,

with charts centered at each p ∈ E (µ) defined by

sp(q,w1,w2,w3) = (sp(q), eUpqw1,
eUpqw2,

eUpqw3) .

The second bundle is an expression of the tangent bundle of the
exponential bundle. For each curve t↦ γ(t) = (q(t),w(t)) in the
statistical bundle, we define its velocity at t to be

⋆
γ(t) = (q(t),w(t), ⋆q(t), D

dt
w(t))
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Accelerations
In particular, for each smooth curve t↦ q(t), the velocity of the lift
t↦ γ(t) = (q(t), ⋆q(t)) is

⋆
χ(t) = (q(t), ⋆q(t), ⋆q(t), ∗∗q(t)) ,

where the acceleration at t ∗∗
q(t) is

∗∗
q(t) = D

dt

⋆
q(t) = d

dt

q̇(t)
q(t)−Eq(t) [

d

dt

q̇(t)
q(t)] =

q̈(t)
q(t)−(

⋆
q(t)2−Eq(t) [

⋆
q(t)2] ) .

We have three different interpretation of the lifted curve, namely,
we can consider t↦ (q(t), ⋆q(t)) as a curve in the statistical bundle
SE (µ), or, a curve in the dual bundle ∗SE (µ). Each of these
frameworks provides a different derivation, hence, a different
acceleration.

We have the already defined exponential acceleration
eD2q(t) = ∗∗

q(t), and we can define, the mixture acceleration as

mD2q(t) = D
m

dt

⋆
q(t) = mUq(t)p

d

dt
mUp

q(t)

⋆
q(t) = q̈(t)/q(t)
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Total Derivative
Let be given a scalar field F ∶ 1S1 E (µ)×D → R, D a domain of Rk,
and a generic smooth curve

t↦ (q(t), η(t),w(t), c(t)) ∈ 1S1 E (µ) ×D .

The total derivative can be computed by

d

dt
F(q(t),η(t),w(t), c(t)) =

⟨gradF(q(t), η(t),w(t), c(t)), ⋆q(t)⟩
q(t)

+

⟨D
dt
η(t),gradm F(q(t), η(t),w(t), c(t))⟩

q(t)
+

⟨grade F(q(t), η(t),w(t), c(t)), D
dt
w(t)⟩

q(t)
+

∇F(q(t), η(t),w(t), c(t)) ⋅ ċ(t)
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Action Integral
If q∶ [0,1] ∋ t↦ q(t) is a smooth curve in the exponential manifold
E (µ) and t↦ (q(t), ⋆q(t)), ⋆

q(t) = d
dt log q(t), is its lift to the

statistical bundle SE (µ), an action integral is

q ↦ A(q) = ∫
1

0
L(q(t), ⋆q(t), t) dt ,

where L∶SE (µ) × [0,1]→ R is a smooth Lagrangian function.

Let us express the action integral in the exponential chart sp
centered at p. If q(t) = eu(t)−Kp(u(t)) ⋅ p, with t↦ u(t) ∈ Sp E (µ),
we have

sp(q(t), ⋆q(t)) = (u(t), u̇(t)) ,

hence,

L(q(t), ⋆q(t), t) = L (ep(u(t)), eUep(u(t))p u̇(t), t) = Lp(u(t), u̇(t), t) ,

so that the expression of the action integral is

u↦ Ap(u) = ∫
1

0
Lp(u(t), u̇(t), t) dt .



18/41

Euler Lagrange Equation
The Euler-Lagrange equation, written with partial derivatives, that
is, without the gradients to be computed below, is

d1Lp(u(t), u̇(t), t)[h] =
d

dt
d2Lp(u(t), u̇(t), t)[h]

with t ∈ [0,1] , h ∈ Sp E (µ)

If q is an extremal of the action integral, then

D

dt
gradeL(q(t),

⋆
q(t), t) = gradL(q(t), ⋆q(t), t) .
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Legendre Transform 1/2
At each fixed density q ∈ E (µ), and each time t, the mapping

Sq E (µ) ∋ w ↦ Lq,t(w) = L(q,w, t)

is defined on the vector space Sq E (µ), and its gradient mapping in
the duality of ∗Sq E (µ) × Sq E (µ) is the mapping
w ↦ gradeL(q,w, t).

The Legendre transform Hq,t of Lq,t is defined for each
η ∈ ∗Sq E (µ) of the image of gradeL(q, ⋅, t) by

Hq,t(η) = ⟨η, (gradeLq,t)−1(η)⟩q −Lq((gradeLq,t)−1(η)) ,

which, in turn, defines the Hamiltonian

H(q, η, t) = ⟨η, (gradeLq,t)−1(η)⟩q −L(q, (gradeLq,t)−1(η)) .
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Legendre Transform 2/2
It is a general property of the Legendre transform that

gradmHq,t(η) = (gradeLq,t)−1(η) ,

which, in turn, implies the Young equality

H(q, η, t) +L(q,w, t) = ⟨η,w⟩q

if η = gradeL(q,w, t) or gradmH(q, η, t) = w
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Hamiltonian Equations
For partial mappings w ↦ Lq(w) are strictly convex for each q,
w ↦ η = gradeLq(w) is a 1-to-1 mapping from Sq E (µ) to
∗Sq E (µ) and thus the Euler-Lagrange becomes

D

dt
η(t) = D

dt
gradeL(q(t),

⋆
q(t))

and the Hamilton equations hold, namely,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

D

dt
η(t) = −gradH(q(t), η(t), t)
⋆
q(t) = gradmH(q(t), η(t), t).

For each solution of the Hamilton equations, it holds

d

dt
H(q(t), η(t), t) = ∂

∂t
H(q(t), η(t), t) .
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Free Particle Lagrangian 1/2
Let m be the inertial mass

L(q,w) = m
2
Eq [w2] = m

2
⟨w,w⟩q , m ≥ 0, (q,w) ∈ SE (µ) .

From

d2Kp(u)[h1, h2] = ⟨eUep(u)
p h1,

eUep(u)
p h2⟩

ep(u)

we can obtain an expression in the chart centered in p for the
Lagrangian

Lp(u, v) =
m

2
⟨eUep(u)

p v, eUep(u)
p v⟩

ep(u)
= m

2
d2Kp(u)[v, v] ,

where q = ep(u) and w = eUqpv
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Free Particle Lagrangian 2/2
By computing the total derivative in the chart of L,

dLp(u, v)[h, k] =
m

2
⟨w2 −Eq [w2] , eUqpu⟩q +m ⟨w, eUqpk⟩q .

we can obtain the Euler-Lagrange equation

D

dt

⋆
q(t) = 1

2
( ⋆
q(t)2 −Eq(t) [

⋆
q(t)2]) ,

which can be expressed as a system of N second-order ODEs

q̈j(t) =
q̇j(t)2
2qj(t)

− qj(t)
2N

N

∑
i=1

q̇i(t)2
qi(t)2

, j = 1, . . . ,N .
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Examples of Trajectories: Free Particle
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Motion in Entropic Potential 1/2
Consider the case of a Lagrangian function given by the difference
of the quadratic form and a potential on the bundle,

L(q,w) = m
2

⟨w,w⟩q − κEq [log q] ,

with the negative entropy f(q) = −H (q) playing the role of the
convex potential well, see Pistone (2018)

The Euler-Lagrange equation can be derived as

m
D

dt

⋆
q = m

2
( ⋆
q(t)2 −Eq(t) [

⋆
q(t)2]) + κgradH (q) .
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Motion in Entropic Potential 2/2
Let A(q, v) = v2/2 + κ

m log (q) and B(q, v) = v2/2 − κ
m log (q), the

associated system of first-order ODEs is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
q(x; t) = q(x; t)v(x; t)

d

dt
v(x; t) = −A(q(x; t), v(x; t)) − 1

N
∑
y

q(y; t)B(q(y; t), v(y; t))
,

for x ∈ Ω.
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Examples of Trajectories: Motion in Potential
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Divergence Lagrangian
A divergence is a smooth mapping D∶E (µ) × E (µ)→ R, such that
for all p, q ∈ E (µ) it holds D(p, q) ≥ 0 and D(p, q) = 0 if, and only
if, p = q.

Every divergence can be associated to a Lagrangian by the
canonical mapping

E (µ)2 ∋ (q, r)↦ (q, sq(r)) = (q,w) ∈ SE (µ) ,

with q = ev−Kp(v) ⋅ p, that is, v = sp(q).

We have an equivalence of a couple of a point and a vector and a
couple of points. Every divergence D is mapped into a divergence
Lagrangian, and conversely,

L(q,w) =D(q, eq(w)) , D(q, r) = L(q, sq(r)) .
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Kullback-Leibler Lagrangian
We focus on the case of the Kullback-Leibler divergence (KL),
which lies at the intersection of the family of Csiszár’s
f -divergences and Bregman divergences (Amari, 2016).

Up to second-order approximation the KL provides a locally
quadratic measure, motivating its interpretation as a local,
non-symmetric generalization of the kinetic energy of classical
mechanics.

The Lagrangian

D(q, r) = D (q ∥ r) = Eq [log
q

r
] ,

can be written in chart at q as

D (q ∥ eq(w)) = Eq [log
q

eq(w)] = Eq [−w +Kq(w)] =Kq(w) .
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Kullback-Leibler Lagrangian: Euler-Lagrange
The expression of the divergence Lagrangian in chart at p is

Lp(u, v) = L(ep(u), eUep(u)p v) =D(ep(u), eep(u)(
eUep(u)p v)

=D(ep(u), ep(u + v)) .

The Euler-Lagrange equation is obtained by plugging in
w(t) = ⋆

q(t),

D

dt
(e

⋆
q(t)−Kq(t)(

⋆
q(t)) − 1) = e

⋆
q(t)−Kq(t)(

⋆
q(t)) − 1 − ⋆

q(t) ,

which takes the form of a second-order equation

(e
⋆
q(t)−Kq(t)(

⋆
q(t)))( ⋆

q(t) + ∗∗
q(t) −E

eq(t)(
⋆
q(t))

[ ⋆q(t) + ∗∗
q(t)]) =

= e
⋆
q(t)−Kq(t)(

⋆
q(t)) − 1 .
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Kullback-Leibler Lagrangian: ODE
By using ⋆

q(t) = v(t) we have

d

dt
v(t) = ∗∗

q(t) −Eq(t) [v(t)2] =

− v(t) + e
⋆
q(t)−Kq(t)(

⋆
q(t)) − 1

e
⋆
q(t)−Kq(t)(

⋆
q(t))

−Eq(t)
⎡⎢⎢⎢⎢⎣

e
⋆
q(t)−Kq(t)(

⋆
q(t)) − 1

e
⋆
q(t)−Kq(t)(

⋆
q(t))

⎤⎥⎥⎥⎥⎦
−Eq(t) [v(t)2]

which leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
q(x; t) = q(x; t)v(x; t)

d

dt
v(x; t) = −v(x; t) + ev(x;t)−Kq(t)(v(x;t)) − 1

ev(x;t)−Kq(t)(v(x;t))
− 1

N
∑
x

q(x; t) v(x; t)2

− 1

N
∑
x

q(x; t) ev(x;t)−Kq(t)(v(x;t)) − 1

ev(x;t)−Kq(t)(v(x;t))

,

for x ∈ Ω.
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Kullback-Leibler Lagrangian: Hamiltonian 1/2
The strong convexity of the KL generating function ensures the
existence of an invertible Legendre transform, naturally allowing for
a Hamiltonian formulation.

Using the equation for gradeKq(w) and its inverse the Legendre
transform of w ↦Kq(w) is

Hq(η) = ⟨η, log(1 + η) −Eq [log(1 + η)]⟩q +

−Kq( log(1 + η) −Eq [log(1 + η)] )

= Eq [η log(1 + η)] −Eq [log (1 + η)] = Eq [(1 + η) log(1 + η)] .

In the chart at p, q = ep(u) = eu−Kp(u) ⋅ p,
η = mUep(u)p ζ = e−u+Kp(u)ζ, so that

Hp(u, ζ) = Eep(u) [(1 +
mUep(u)p ζ) log(1 + mUep(u)p ζ)] =

Ep [(eu−Kp(u) + ζ) log (1 + e−u+Kp(u)ζ)] .
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Kullback-Leibler Lagrangian: Hamiltonian 2/2
By taking the derivative wrt u, and going back to the original
variables, the Hamilton equations are

⎧⎪⎪⎪⎨⎪⎪⎪⎩

D

dt
η(t) = η(t) − log(1 + η(t)) +Eq(t) [log(1 + η(t))]
⋆
q(t) = log(1 + η(t)) −Eq(t) [log(1 + η(t))]

The solution curve and its derivatives can be expressed in the
global space in which the dual bundle is embedded by

D

dt
η(t) = q̇(t)

q(t)η(t) + η̇(t),
⋆
q(t) = q̇(t)

q(t) ,

so that the resulting system of ODEs becomes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η̇(x; t) = η(x; t) − (1 + η(x; t)) (log(1 + η(x; t))
− 1
N ∑y q(y; t) log(1 + η(y; t))) ,

q̇(x; t) = q(x; t) (log(1 + η(x; t)) − 1
N ∑y q(y; t) log(1 + η(y; t))) .
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Alternative Parameterization 1/2
By writing χ(t) = eq(t)(

⋆
q(t)) = e

⋆
q(t)−Kq(t)(

⋆
q(t)) ⋅ q(t) and ⋆

χ in terms
of ⋆
q and ∗∗

q, the covariant derivative in the lhs of the Euler-Lagrange
becomes

D

dt
(χ(t) − q(t)

q(t) ) = 1

q(t)
d

dt

q(t)
1

(χ(t) − q(t)
q(t) ) = χ̇(t) − q̇(t)

q(t) =

⋆
χ(t)χ(t)
q(t) − ⋆

q(t) =
eUχ(t)

q(t)
(∗∗q(t) + ⋆

q(t))χ(t)
q(t) − ⋆

q(t) ,

while the rhs is
χ(t) − q(t)

q(t) − ⋆
q(t) ,

Finally, the Euler-Lagrange equation can be written as

⋆
χ(t)χ(t) = χ(t) − q(t) .
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Alternative Parameterization 2/2
The introduction of two unknowns q and χ reduces the
Euler-Lagrange equation to a system of evolution equations is the
statistical bundle,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⋆
χ = 1 − qχ−1

⋆
q = log

χ

q
−Eq [log

χ

q
]
,

that is, to a system of replicator equations,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

χ̇ = χ − q

q̇ = q (log
χ

q
−Eq [log

χ

q
])

,

Notice that the vector field is zero if, and only if, χ = q.
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Examples of Trajectories: Free Motion
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Examples of Trajectories: Motion in a Potential
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Time Dependence
We can introduce an explicit time dependence in the Lagrangian.

This choice is motivated by the role time in generating a dissipative
accelerated dynamics, which is of central interest in optimization.

In the exponential map, we consider a time-dependent scaling of
the shift vector, such that χ = eq(e−αtw) and
sp(χ) = u + e−αtv ∈ Sp E (µ), with αt ∶ I → R smooth, I ⊂ R open
time interval. With this choice the KL Lagrangian reads

D∶ I × SE (µ) ∋ (q,w, t)↦ D (q ∥ eq(e−αtw)) ∈ R .

In presence of explicit time-dependence, desirable closure under
time-dilation can be achieved by an overall scaling of the divergence
by a factor eαt , such that the new Lagrangian

L(q,w, t) = eαt D (q ∥ eq(e−αt w)) ,

leads to fully time-reparametrization invariant action.
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Time Dependent KL Lagrangian
We can derive the Euler-Lagrange equation in presence of the
time-scaling for v(t) = u̇(t)), we get

d2Kp(u(t) + e−αt u̇(t))[(eαt − α̇t) u̇(t) + ü(t), h] =
= e2αt (dKp(u(t) + e−αt u̇(t))[h] − dKp(u(t))[h]) ,

We can then transport the equation back on the statistical bundle
to get

eq(e−αt ⋆
q)

q
((eαt − α̇t) ⋆

q(t) + ∗∗
q(t) −Eep(u+e−αtv) [(e

αt − α̇t) ⋆
q(t) + ∗∗

q(t)] )

= e2αt (eq(e
−αt ⋆

q)
q

− 1) ,

with respect to the equation derived for the cumulant Lagrangian,
the time-dependent scaling leads to a extra damping contribution in
the velocity, which redefines the coefficient of ⋆

q.
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Examples of Trajectories: Damped Systems
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Take Home Message and Future Work
We have proposed a new formalism for the study of the evolution
of probability densities on a finite space

A non-parametric presentation of the Lagrangian and Hamiltonian
dynamics on the statistical bundle is feasible

The mechanical formalism acts on the statistical bundle, which has
a natural interpretation in statistical terms

Future works include
Implementation of discretization schemes, compatible with the
geometry of the ODEs, to obtain efficient optimization
algorithms

Define dynamics on submanifolds of the probability simplex

Define dynamics over the manifold of Gaussian measures
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