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In this paper, we introduce a differential geometric framework that
incorporates in a very natural way fundamental thermodynamical
concepts as the free energy and the rate of entropy production.
Typically, in the previous literature, this description needs to introduce
appropriate Poisson and dissipation brackets with combined properties
that allows the two laws of thermodynamics to be satisfied.
One of the most successful methods are based on the introduction of
metriplectic structures:

Allan N. Kaufman. Dissipative Hamiltonian systems: a unifying principle.
Phys. Lett. A, 100(8):419–422, 1984.
Philip J. Morrison. A paradigm for joined Hamiltonian and dissipative
systems. volume 18, pages 410–419. 1986. Solitons and coherent
structures (Santa Barbara, Calif., 1985).

coupling a Poisson and a gradient structure, where the entropy S is now
constructed from a Casimir function of the Poisson structure.
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Other approaches like in

B. J. Edwards and A. N. Beris. Noncanonical Poisson bracket for
nonlinear elasticity with extensions to viscoelasticity. J. Phys. A,
24(11):2461–2480, 1991.
B. J. Edwards and A. N. Beris. Noncanonical Poisson bracket for
nonlinear elasticity with extensions to viscoelasticity. J. Phys. A,
24(11):2461–2480, 1991.

use similar techniques, called single generation formalism introducing a
generalized bracket which is naturally divided into two parts: a
non-canonical Poisson bracket and a new dissipation bracket. The
derived structures are capable of reproducing both reversible and
irreversible evolutions providing a unifying formalism for many systems
ruled by the laws of thermodynamics.

These approaches have proved to be very useful for the description of
complex thermodynamical systems and also facilitate their numerical
integration.
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Recently, Gay-Balmaz and Yoshimura

F. Gay-Balmaz and H. Yoshimura. A Lagrangian variational formulation
for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of
Geometry and Physics, 111:169–193, January 2017.
F. Gay-Balmaz and H. Yoshimura. From Lagrangian Mechanics to
Nonequilibrium Thermodynamics: A Variational Perspective. Entropy,
21(1):8, January 2019.

have introduced a variational principle for the description of
thermodynamical systems.

Their formulation extends the Hamilton principle of classical mechanics
to include irreversible processes by introducing additional
phenomenological and variational constraints.
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A more geometrical approach is based on the use of contact geometry.
In this approach, it is proposed that the thermodynamical phase space is
equipped with a contact structure.

Using the contact structure, it is possible to associate to each
function f , a Hamiltonian vector field Xf which is the infinitesimal
generator of a contact transformation.

In this framework, the manifold of equilibrium states is represented
by a Legendre submanifold N and the Hamiltonian vector field Xf is
tangent to N if and only if the function f vanishes on N, that is, the
Legendre submanifold is contained on the zero level set of the
Hamiltonian function.

The flow of Xf restricted to the Legendrian submanifold is
interpreted as thermodynamical processes.

R. Mrugala, J. D. Nulton, J. Ch. Schon, and P. Salamon. Contact
structure in thermodynamic theory. Reports on Mathematical Physics,
29(1):109–121, February 1991.
R. Mrugala. Continuous contact transformations in thermodynamics. In
Proceedings of the XXV Symposium on Mathematical Physics (Torun,
1992), vol. 33, pages 149–154, 1993.
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Another approach to the dynamics of thermodynamical processes is the
one used in

R. Balian and P. Valentin. Hamiltonian structure of thermodynamics
with gauge. The European Physical Journal B-Condensed Matter and
Complex Systems, 21(2):269–282, 2001.
A. Van der Schaft and B. Maschke. Geometry of thermodynamic
processes. Entropy, 20(12):925, 2018.

which is based on homogeneous symplectic Hamiltonian systems, and is
completely equivalent to the contact Hamiltonian vector field approach.

More recently, there has been a resurgence of interest in the study of
contact dynamics, mainly for the applications in the study of dissipative
systems and their geometric properties. We will reviews some of that
results and their applications to thermodynamical systems.
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Contact geometry and contact dynamics

We will consider some ingredients of contact geometry that we will need
in the sequel.
Let M be a differentiable manifold of dimension 2n + 1 and a 1-form η
on M. We say that η is a contact 1-form if η ∧ (dη)n 6= 0 at every point.
Then, we call (M, η) a contact manifold. A distinguished vector field for
a contact manifold is the Reeb vector field R ∈ X(M) univocally
characterized by

iRη = 1 and iRdη = 0 .

We can define also an isomorphism of C∞(M,R) modules by

[ : X(M) −→ Ω1(M)
X 7−→ iXdη + η(X )η

Observe that [−1(η) = R.
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Using the generalized Darboux theorem, we have canonical coordinates
(qi , pi ,S), 1 ≤ i ≤ n in a neighborhooh of every point x ∈ M, such that
the contact 1-form η and the Reeb vector field are:

η = dS − pi dq
i and R =

∂

∂S
.

Define the bi-vector Λ on M by

Λ(α, β) = −dη([−1(α), [−1(β)), α, β ∈ Ω1(M) . (1)

In canonical coordinates,

Λ =
∂

∂pi
∧
(
∂

∂qi
+ pi

∂

∂S

)
(2)

Define the C∞(M,R)-linear mapping

]Λ : Ω1(M)→ X(M)

by 〈β, ](α)〉 = Λ(α, β) with α, β ∈ Ω1(M).
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Given a function f ∈ C∞(M,R) we will define the following vector fields

Hamiltonian or contact vector field Xf defined by

Xf = ]Λ(df )− fR

or in other terms, Xf is the unique vector field such that

[(Xf ) = df − (R(f ) + f ) η .

In canonical coordinates:

Xf =
∂f

∂pi

∂

∂qi
−
(
∂f

∂qi
+ pi

∂f

∂S

)
∂

∂pi
+

(
pi
∂f

∂pi
− f

)
∂

∂S

The evolution or horizontal vector field

Ef = ]Λ(df ) = Xf + fR

or
[(Ef ) = df − R(f ) η .

In canonical coordinates:

Ef =
∂f

∂pi

∂

∂qi
−
(
∂f

∂qi
+ pi

∂f

∂S

)
∂

∂pi
+ pi

∂f

∂pi

∂

∂S

10 / 45



Remarks

1 We will see that the evolution vector field will be useful to describe
some simple isolated thermodynamical systems with friction, where
the variable S will play the role of the entropy of the system.

2 The interpretation of the variable S as being the entropy of the
system excludes the possibility of using cosymplectic geometry to
describe thermodynamical systems. Indeed, if the thermodynamical
equations were the integral curves of the cosymplectic Hamiltonian
vector field, then the entropy production would be constant, which is
not the general situation.
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Jacobi and Cartan brackets

The pair (Λ,E = −R) is a particular case of Jacobi structure since it
satisfies

[Λ,Λ] = 2E ∧ Λ and [Λ,E ] = 0 .

From this Jacobi structure we can define the Jacobi bracket as follows:

{f , g} = Λ(df , dg) + fE (g)− gE (f ), f , g ∈ C∞(M,R)

The mapping { , } : C∞(M,R)× C∞(M,R) −→ C∞(M,R) is bilinear,
skew-symmetric and satisfies the Jacobi‘s identity but, in general, it does
not satisfy the Leibniz rule; this last property is replaced by a weaker
condition:

Supp {f , g} ⊂ Supp f ∩ Supp g .

In this sense, this bracket generalizes the well-known Poisson brackets.
Indeed, a Poisson manifold is a particular case of Jacobi manifold.
In local coordinates

{f , g} =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
− ∂f

∂S

(
pi
∂g

∂pi
− g

)
+
∂g

∂S

(
pi
∂f

∂pi
− f

)
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It is also interesting for us to introduce the bracket (Cartan bracket) that
does not obey the Jacobi identity

[f , g ] = Λ(df , dg)

=
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
− ∂f

∂S

(
pi
∂g

∂pi

)
+
∂g

∂S

(
pi
∂f

∂pi

)
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Mechanics

Our main example of contact manifold along this talk will be T ∗Q × R,
where Q is n-dimensional manifold, with contact structure defined by

η = pr∗2 (dS)− pr∗1 (θQ) ≡ dS − θQ
where pr1 : T ∗Q ×R→ T ∗Q and pr2 : T ∗Q ×R→ R are the canonical
projections and θQ is the Liouville 1-form on the cotangent bundle
defined by

ΘQ(Xµq ) = 〈µq,TµqπQXµq 〉
being Xµq ∈ TµqT

∗Q. Taking bundle coordinates (qi , pi ) on T ∗Q we
have that η = dS − pidq

i .
On such a manifold we can define the bi-vector

Λ0 = Λ + ]Λ(dS) ∧ R

which is Poisson, that is [Λ0,Λ0] = 0. In coordinates,

Λ0 =
∂

∂pi
∧ ∂

∂qi

is like the canonical Poisson bracket on T ∗Q but now applied to
functions on T ∗Q × R. 14 / 45



Observe that in this case the Cartan bracket can be rewritten in terms of
the Poisson bracket induced by Λ0 and an extra term that describe the
thermodynamical behaviour. That is,

[f , g ] = {f , g}Λ0 −
∂f

∂S
∆g +

∂g

∂S
∆f

where ∆ = −]Λ(dS) is the Liouville vector field:

∆ = pi
∂

∂pi

We will denote by

{f , g}∆ =
∂g

∂S
∆f − ∂f

∂S
∆g

then the Cartan bracket is written as in the single generation formalism as

[f , g ] = {f , g}Λ0 + {f , g}∆ (3)
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Now, we will discuss some interesting properties of the qualitative
behaviour of the evolution vector field Ef .

Proposition The Lie derivative of the contact form η with respect to the
evolution vector field Ef associated to the Hamiltonian function f
satisfies the following relation

LEf η = −R(f )η + df .

Proof:
The proof is a trivial consequence of the properties of the Lie derivative
and the properties of the Hamiltonian vector field:

LEf η = LXf +fRη = LXf
η + LfRη

= −R(f )η + (iRη)df = −R(f )η + df
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Theorem

Let Lc(f ) = f −1(c) be a level set of f : M → R where c ∈ R. We
assume that Lc(f ) 6= 0 and R(f )(x) 6= 0 for all x ∈ Lc(f ). Then

1 The 2-form ωc ∈ Ω2(Lc(f )) defined by

ωc = −di∗c η

is an exact symplectic structure. Here ic : Lc f ↪→ M denotes the
canonical inclusion

2 If ∆c is the Liouville vector field, that is,

i∆cωc = i∗c η

then the restriction of Ef to Lc(f ) verifies that

Ef
∣∣
Lc (f )

= R(f )
∣∣
Lc (f )

∆c
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Proof:
The form ωc is trivially closed. To see that it is a symplectic form, we
just need to check that is non degenerate. Let p ∈ Lc(f ). Notice that, at
that point, ωc = −dη|TpLc (f ). By the condition R(f ) 6= 0, we have that
Rp (and, hence ker η = span 〈R〉) is transverse to TpLc(f ). But since
ηp ∧ dηnp 6= 0,then dη|V is non-degenerate for every subspace V
transverse to ker η. Therefore, ωc is also non-degenerated.
For the second part, we first remark that Ef (f ) = 0, hence
(ic)∗Ef = Ef |Lc (f ) is a well-defined vector field. By the above Proposition
and Cartan’s identity

iEf dη = −R(f )η + df .

Pulling back by ic , we get

i(ic )∗Ef i
∗
c dη = −(R(f ) ◦ ic)i∗c η + di∗c f = −(R(f ) ◦ ic)i∗c η,

dividing by −(R(f ) ◦ ic),

−i(ic )∗Ef /R(f )i
∗
c dη = i(ic )∗Ef /R(f )ωc = i∗c η.

Thus, (ic)∗ (Ef /R(f )) = ∆c , as we wanted to show.
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Remarks

1 Observe that since

Ef
∣∣
Lc (f )

= R(f )
∣∣
Lc (f )

∆c

then the dynamics on each energy level is like a Liouville dynamics
after a time reparametrization

dt =
1

R(f )
dτ .

2 It is interesting to note that T ∗Q × R is also the phase space for
time-dependent dynamics. In this case, the appropriate formalism is
the cosymplectic formalism where the canonical cosymplectic
structure is given by (dt, ωQ)
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A. Bravetti, M. de León, J. C. Marrero, E. Padrón: Invariant measures for
contact Hamiltonian systems: symplectic sandwiches with contact bread
arXiv:2006.15123

We prove that, under some natural conditions, Hamiltonian systems
on a contact manifold C can be split into a Reeb dynamics on an
open subset of C and a Liouville dynamics on a submanifold of C of
codimension 1.

For the Reeb dynamics we find an invariant measure.

Moreover, we show that, under certain completeness conditions, the
existence of an invariant measure for the Liouville dynamics can be
characterized using the notion of a symplectic sandwich with contact
bread.
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Simple mechanical systems with friction

We will use the evolution vector field to describe simple thermodynamical
systems, that is, thermodynamical systems whose configuration space is
composed by just one scalar thermal variable (in our case the entropy)
and a finite set of mechanical variables (position and momenta). We will
assume that the system is isolated, that is, there is not any transfer of
work, matter or heat.
The isolated simple thermodynamical systems are described by a
Lagrangian function:

L : TQ × R −→ R
(vq,S) 7−→ L(vq,S)

where Q is the configuration manifold describing the mechanical part of
the thermodynamical system, TQ is the tangent bundle with canonical
projection τQ : TQ → Q given by τQ(vq) = q. The entropy of the system
is described by the real variable S ∈ R. If we consider coordinates (qi ) on
Q and induced coordinates (qi , q̇i ) on TQ, then τQ(qi , q̇i ) = (qi ).
We will see that the Lagrangian function itself will produce a friction
force satisfying naturally the two laws of thermodynamics.
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We will assume that the Lagrangian system is regular, that is, the matrix

(Wij) =

(
∂2L

∂q̇i∂q̇j

)
is regular or, equivalently, the mapping FL : TQ × R→ T ∗Q × R is a
local diffeomorphism, where:

FL(qi , q̇i ,S) =

(
qi ,

∂L

∂q̇i
,S

)
is the Legendre transform. For simplicity, we will assume that the
Legendre transform is a global diffeomorphism, since if it was only a local
diffeomorphism we could proceed analogously by restricting to a
neighbourhood. Then, we may define a Hamiltonian function
H : T ∗Q × R→ R given by

H(qi , pi ,S) = pi q̇
i − L(qi , q̇i ,S)

where now the coordinates q̇i are implicitly defined by the relations
pj = ∂L

∂q̇j (q
i , q̇i ,S).
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The equations of motion defined by the evolution vector field EH are

dqi

dt
=

∂H

∂pi
,

dpi
dt

= −∂H
∂pi
− pi

∂H

∂S

dS

dt
= pi

∂H

∂pi
.

The vector field EH satisfies the following two properties that correspond
to the first and second laws of thermodynamics: conservation of the
energy of an isolated system and irreversibility of the processes, that is,
non-decreasing entropy production.
Proposition The integral curves of EH satisfies the following properties:

1 EH(H) = 0, that is, dH
dt = 0;

2 EH(S) = ∆(H), that is, dS
dt = ∆H.

Proof Both are a direct consequence of the definition of the evolution
vector field EH = ]Λ(dH).
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Assume that the Hamiltonian H is given by

H(qi , pi ,S) =
1

2
g ijpipj + V (q,S) (4)

where (g ij) is positive semi-definite (for instance, it is associated to a
Riemannian metric on Q). Then, the vector field EH describes an isolated
simple thermodynamical system with friction satisfying the first and
second laws of thermodynamics:
Proposition The integral curves of EH satisfies the following properties:

1 First law of Thermodynamics:

dH

dt
= 0 (preservation of the total energy);

2 Second law of Thermodynamics:

dS

dt
= ∆H ≥ 0 (total entropy of an isolated system never decreases).

Proof It is a direct consequence of the above Proposition and
∆H = pig

ijpj ≥ 0.
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If we express the dynamics in terms of the brackets defined in (3) we
have that

ḟ = {f ,H}T∗Q + {f ,H}∆. (5)

Obviously,

{H,H}T∗Q = {H,H}∆ = 0 (first law)

and

{S ,H}T∗Q = 0 and {S ,H}∆ = ∆H ≥ 0 (second law).

Observe that in Equation (5) both brackets are using the function H as
“generator”. This is the reason that typically this formalism is known as
single generator formalism.
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Linearly damped systems

Consider a linearly damped system described by coordinates (q, p,S),
where q represents the position, p the momentum of the particle and S is
the entropy of the surrounding thermal bath. We assume that the system
is subjected to a viscous friction force, proportional to the minus velocity
of the particle. The system is described by the Hamiltonian

H(q, p,S) =
p2

2m
+ V (q) + γS , γ > 0.

Therefore, the equations of motion for EH = ]Λ(dH) are: q̇
ṗ

Ṡ

 =

 0 1 0
−1 0 −p

0 p 0

 V ′(q)
p/m
γ


or

q̇ =
p

m
ṗ = −V ′(q)− γp

Ṡ =
p2

m

Obviously Ḣ = 0 and Ṡ ≥ 0.
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In the Lagrangian side we obtain the system given by

mq̈ = −V ′(q)− γmq̇

Ṡ = mq̇2.

Observe that in this system the friction force is given by the map
Ffr : TQ → T ∗Q given by

Ffr (q, q̇) = γq̇idqi .

Therefore, the equation of entropy production can be rewritten in terms
of the friction force as follows

TṠ = −〈Ffr (q, q̇), q̇〉

where T = ∂H
∂S = − ∂L

∂S = γ > 0 represents the temperature of the
thermal bath. These equations coincide with the set of equations
proposed by Gay-Balmaz and Yoshimura for this particular choice of
Lagrangian L and friction force Ffr . Observe that, in this particular
example where the temperature satisfies T = γ, the equations are only
defined for values γ > 0 and thus we are only modelling thermodynamical
systems with non-zero temperature.
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Observe that the two brackets are:

{f , g}Λ0 =
∂f

∂p

∂g

∂q
− ∂g

∂p

∂f

∂q

{f , g}∆ = p
∂g

∂S

∂f

∂p
− p

∂f

∂S

∂g

∂p

In particular

{H, g}Λ0 =
p

m

∂g

∂q
− ∂g

∂p
V ′(q)

{H, g}∆ =
p2

m

∂g

∂S
− γp∂g

∂p

and
EH(g) = ġ = {H, g}Λ0 + {H, g}∆

Therefore it is clear that {H,H}Λ0 = 0 and {H,H}∆ = 0 (by

skew-symmetry) and {H,S}Λ0 = 0 and {H,S}∆ = p2

m ≥ 0.
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The geometric setting

Let L : TQ × R −→ R be a regular Lagrangian function, and introduce
coordinates on TQ × R, denoted by (qi , q̇i ,S), where (qi ) are
coordinates in Q, (qi , q̇i ) are the induced bundle coordinates in TQ and
S is a global coordinate in R. Using the canonical endomorphism S on
TQ locally defined by

S = dqi ⊗ ∂

∂q̇i
,

one can construct a 1-form λL on TQ × R given by

λL = S∗(dL)

where now S and S∗ are the natural extensions of S and its adjoint
operator S∗ to TQ × R. Therefore, we have that

λL =
∂L

∂q̇i
dqi .

M. de León and M. Lainz. Singular lagrangians and precontact
hamiltonian systems . International Journal of Geometric Methods in
Modern Physics, 2019.
M. de León and M. Lainz. Infinitesimal symmetries in contact
hamiltonian systems. Journal of Geometry and Physics, 2020. 29 / 45



Now, the 1-form on TQ × R given by ηL = dS − λL or, in local
coordinates, by

ηL = dS − ∂L

∂q̇i
dqi

is a contact form on TQ × R if and only if L is regular; indeed, if L is
regular, then we may prove that ηL ∧ (dηL)n 6= 0, and the converse is also
true.
The corresponding Reeb vector field is given in local coordinates by

RL =
∂

∂S
−W ij ∂2L

∂q̇j∂S

∂

∂q̇i
,

where (W ij) is the inverse matrix of the Hessian (Wij).
The energy of the system is defined by

EL = ∆(L)− L

where ∆ = q̇i ∂
∂q̇i is the natural extension of the Liouville vector field on

TQ to TQ × R. Therefore, in local coordinates we have that

EL = q̇i
∂L

∂q̇i
− L
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Denote by [L : T (TQ × R) −→ T ∗(TQ × R) the vector bundle
isomorphism given by

[L(v) = iv (dηL) + (ivηL) ηL

where ηL is the contact form on TQ × R previously defined. We shall
denote its inverse isomorphism by ]L = ([L)−1.
Let ξL be the unique vector field satisfying the equation

[L(ξL) = dEL − (RLEL + EL) ηL. (6)

A direct computation from eq. (6) shows that if (qi (t), q̇i (t),S(t)) is an
integral curve of ξL, then it satisfies the generalized Euler-Lagrange
equations considered by G. Herglotz in 1930:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

∂L

∂q̇i
∂L

∂S
,

Ṡ = L(qi , q̇i ,S) .

(7)

Now, given a regular Lagrangian function L, we may define the bi-vector
ΛL on TQ × R as in (1) associated to the contact form ηL. That is,

ΛL(α, β) = −dηL([−1
L (α), [−1

L (β)), α, β ∈ Ω1(TQ × R) . (8)
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If (qi (t), q̇i (t),S(t)) is an integral curve of the evolution vector field EL
associated to the contact form ηL defined by

EL = ]ΛL
(dEL) or [L(ξL) = dEL − (RLEL) ηL ,

then it satisfies the thermodynamical Herglotz equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

∂L

∂q̇i
∂L

∂S
.

Ṡ = q̇i
∂L

∂q̇i
.

(9)

Moreover, if H is the Hamiltonian function defined by H = EL ◦ (FL)−1,
where FL : TQ × R→ T ∗Q × R is the Legendre transform, then the
evolution vector field EH associated to H is FL-related to EL.
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Variational formulation of contact Lagrangian mechanics

Let L : TQ × R→ R be a Lagrangian function. In this section we will
recall the so-called Herglotz’s principle, a modification of Hamilton’s
principle that allows us to obtain Herglotz’s equations, sometimes called
generalized Euler-Lagrange equations.
Fix q1, q2 ∈ Q and an interval [a, b] ⊂ R. We denote by
Ω(q1, q2, [a, b]) ⊆ (C∞([a, b]→ Q)) the space of smooth curves ξ such
that ξ(a) = q1 and ξ(b) = q2. This space has the structure of an infinite
dimensional smooth manifold whose tangent space at ξ is given by the
set of vector fields over ξ that vanish at the endpoints, that is,

TξΩ(q1, q2, [a, b]) = {vξ ∈ C∞([a, b]→ TQ) |
τQ ◦ vξ = ξ, vξ(a) = 0, vξ(b) = 0}.

(10)
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We will consider the following maps. Fix c ∈ R. Let

Z : Ω(q1, q2, [a, b])→ C∞([a, b]→ R) (11)

be the operator that assigns to each curve ξ the curve Z(ξ) that solves
the following ODE:

dZ(ξ)(t)

dt
= L(ξ(t), ξ̇(t),Z(ξ)(t)), Z(ξ)(a) = c . (12)

Now we define the action functional as the map which assigns to each
curve the solution to the previous ODE evaluated at the endpoint:

A : Ω(q1, q2, [a, b])→ R,
ξ 7→ Z(ξ)(b),

(13)

that is, A = evbZ, where evb : ζ 7→ ζ(b) is the evaluation map at b.
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Theorem

(Contact variational principle) Let L : TQ × R→ R be a Lagrangian
function and let ξ ∈ Ω(q1, q2, [a, b]) be a curve in Q. Then, (ξ, ξ̇,Z(ξ))
satisfies the Herglotz’s equations if and only if ξ is a critical point of A.

This theorem generalizes Hamilton’s Variational Principle. In the case
that the Lagrangian is independent of the R coordinate (i.e.,
L(x , y , z) = L̂(x , y)) the contact Lagrange equations reduce to the usual
Euler-Lagrange equations. In this situation, we can integrate the ODE of
(13) and we get

A(ξ) =

∫ b

a

L̂(ξ(t), ξ̇(t))t +
c

b − a
, (14)

that is, the usual Euler-Lagrange action up to a constant.
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Discrete Herglotz equations

Now, we propose to construct a numerical integrator for EL based on a
similar method to the discrete Herglotz principle.
Let Ld : Q × Q × R→ R be a discrete Lagrangian function. Then a
possible integrator for the evolution dynamics is

D1Ld(q1, q2,S1) + (1 + DSLd((q1, q2,S1))D2Ld(q0, q1,S0) = 0 (15)

and the entropy is subjected to

S1 − S0 = (q1 − q0)D2Ld(q0, q1,S0). (16)

M. Vermeeren, A. Bravetti, and M. Seri. Contact variational integrators.
J. Phys. A, 52(44):445206, 28, 2019.
A. Simoes, M. de León, M. Lainz, and D. Mart́ın de Diego. On the
geometry of discrete contact mechanics. arxiv:2003.11892 [math.ph],
2020.
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Example Consider again the Hamiltonian function of the damped
harmonic oscillator. Since H is regular, we may consider the
corresponding Lagrangian function L : TQ × R→ R given by

L(q, q̇,S) =
q̇2

2
− q2

2
− γS .

A standard discretization of this Lagrangian function is given by means of
a quadrature rule like

Ld(q0, q1,S0) =
(q1 − q0)2

2h
− h

(q1 + q0)2

8
− hγS0.

The discrete Herglotz equations (15) together with (16) give the explicit
integrator

q2 =
γh3q0 + γh3q1 + 4γhq0 − 4γhq1 − h2q0 − 2h2q1 − 4q0 + 8q1

h2 + 4

S1 = S0 +
(q1 − q0)2

h
− h

q2
1 − q2

0

4
.

(17)
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In Figure 1 we plot the integrator given by equations (17). We see that
the qualitative behaviour of the integrator is also quite good. In fact, an
open question is whether the error can be improved by considering
discrete Lagrangian functions approximating well enough the exact
discrete Lagrangian function.

Figure: Trajectory of (17): the initial data are q0 = 0, q1 = 1 and S0 = 0; the
step is h = 0.1 and γ = 0.1. We plot the positions qk and compare the
integrator with the integral curve of the evolution dynamics EL. 38 / 45



As a last comment, the entropy for equations (17) is increasing and the
Hamiltonian oscillates before stabilizing around a constant value (cf. Fig
2).

Figure: Hamiltonian of (17): using the same initial data and settings from
Figure 1, we plot the Hamiltonian function along the iterations of the
integrator.
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Conclusions and future work

We have shown the importance of the evolution or horizontal vector
field to describe simple thermodynamical systems.

We have proven that the restriction of this vector field to constant
energy hypersurfaces is a time reparametrization of a Liouville vector
field.

Also, the relation with the single generation formalism is elucidated
and the construction of geometric integrators satisfying the two laws
of thermodynamics.

Moreover, we will study the possibility of introducing the techniques
developed in discrete mechanics, in particular, variational integrators,
to numerically integrate the equations of the evolution vector field
associated to a given Lagrangian function L : TQ × R −→ R.

This would allow us to develop higher order methods in a simple
way. In recent papers a discrete Herglotz principle has been
introduced, allowing to obtain integrators for Lagrangian contact
systems. We think that it is possible to adapt the previous
constructions to the case of evolution vector fields.
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Of course, the techniques developed in this paper were applied to
simple thermodynamical systems but we consider them to be the
building blocks to model more evolved thermodynamical systems
using interconnection of these simple systems or working with other
types of Jacobi manifolds.
In our paper, we have initially started with contact structures but
the proposed framework is also valid for general Jacobi manifolds
which naturally cover other interesting examples of thermodynamical
systems. As an example, consider a Poisson manifold (M,Λ), that
is, a differentiable manifold M equipped with a bivector field Λ with
associated bracket { , } verifying that [Λ,Λ] = 0. Let k ∈ C∞(M)
and consider the corresponding Hamiltonian vector field with respect
to this Poisson structure

Xk = Λ(·, dk) = ]Λ(dk)

Define the conformal Poisson tensor (with conformal factor k)
Λk = kΛ. Then (Λk ,Xk) is a Jacobi manifold. In other words,

[Λk ,Λk ] = 2Xk ∧ Λk , [Xk ,Λk ] = 0.

This structure appears, for instance, on a model with heat exchange
between different subsystems.
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As a simple example, consider two simple thermodynamical subsystems
(for instance, two ideal gases)
H. Raḿırez, B. Maschke, and D. Sbarbaro. Modelling and control of
multi-energy systems: an irreversible port-Hamiltonian approach. Eur. J.
Control, 19(6):513–520, 2013.
which may interact through a conducting wall. The variables are (S1,S2),
representing the entropies of subsystem 1 and 2, respectively. Suppose
that the Hamiltonian function is of the form

H(S1,S2) = U(S1) + U(S2),

where U(Si ) represents the internal energy of each subsystem and
consider the function

k(S1,S2) = λ

(
1
∂U
∂S1

− 1
∂U
∂S2

)
= λ

(
1

T1
− 1

T2

)
where λ > 0 is the Fourier heat conduction coefficient and Ti = ∂U

∂Si
> 0,

i = 1, 2, represents the temperature of each subsystem.
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Taking the canonical Poisson structure on R2

Λ =
∂

∂S1
∧ ∂

∂S2
,

consider the associated Jacobi manifold (Λk ,Xk) and the corresponding
evolution vector field EH :

EH = ]Λk
(dH) = λ

(
∂U
∂S2

∂U
∂S1

− 1

)
∂

∂S1
− λ

(
1−

∂U
∂S1

∂U
∂S2

)
∂

∂S2

= λ

(
T2

T1
− 1

)
∂

∂S1
+ λ

(
T1

T2
− 1

)
∂

∂S2

Obviously EH(H) = 0 and moreover, considering the total entropy
S = S1 + S2

EH(S1 + S2) =
λ

T1T2

(
T 2

2 − 2T1T2 + T 2
1

)
=

λ

T1T2
(T2 − T1)2 ≥ 0 .

It is interesting to study the qualitative geometric properties induced by
different Jacobi structures for the study of systems that couple
mechanical and thermodynamical behaviour.
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Another interesting subject to study consists on applying our theory
to other Jacobi manifolds derived by symmetry reduction. For
instance, we can start with a contact structure on T ∗G × R where
G is a Lie group and assuming invariance under left (or right)
translation of the Hamiltonian function, we obtain a reduced system
with dissipation (for instance, rigid body equations with linear
dissipation defined on T ∗SO(3)×R). If we denote by g∗ the dual of
the Lie algebra of G , then the quotient space g∗ × R inherits a
Jacobi structure.

Moreover, the evolution vector field describes the dynamics of the
reduced system, it is possible to derive the corresponding single
generation formalism in the same way that we have shown and it is
also possible to define the corresponding discretizations.
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Thank you for your attention!
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