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1. Introduction
Support Vector Machines (SVMs) are a powerful tool for different classification tasks. In order to use SVMs when input data are multidimensional,
recently, several works aim to represent data with Canonical Polyadic Decomposition (CPD) and express the kernel between tensors in terms of kernels
between their CP factors. However, the CPD ambiguities affects severely the performance of classification. Moreover, the factor estimation algorithm
associated to the CPD suffers from the curse of dimensionality. In fact, the part of time spent to compute the CPD with the well known algorithm
Alternated Least Squares (ALS) is approximatively 80% of the of the total running time of the method in the state of the art. In this work, we show that
the use of kernel between tensors on Grassmann manifold is able to cirumvent the scaling ambiguity of the CPD decomposition. Next, the complexity
problem is addressed by using the equivalent algebraic representation of the CP model into a Tensor Train (TT) model.

2. Tensor Factorizations
CP Decomposition (3rd tensor)

x(i, j, k) ≈ m(i, j, k) =
r∑

l=1
a(i, l)b(j, l)c(k, l).

Tensor Notation : [Kolda et Bader, SIAM 2009]

X ≈M =
r∑

l=1
al ◦ bl ◦ cl = JA,B,CK .

• Fitting CP: FindingM that best approxi-
mates X by solving the optimization prob-
lem:

min
M
||X −M|| with M =

R∑
r=1

ar ◦ br ◦ cr.

The ALS algorithm is the well known al-
gorithm for fitting CP.

• CP ambiguities:

– Permutation ambiguity :

X = JA,B,CK = JAΠ, BΠ, CΠK

for any R×R permutation matrix Π.
– Scaling ambiguity :

X =
R∑

r=1
(αrar) ◦ (βrbr) ◦ (γrcr)

as long as αrβrγr = 1 for r = 1, ..., R

Tensor Train Model [Oseledets, SIAM 2011]

X (i1, . . . , iQ) =
∑

r1,...,rQ−1

G1(i1, r1)G2(r1, i2, r2)

. . .GQ−1(rQ−2, iQ−1, rQ−1)GQ(rQ−1, iQ),

JIRAFE method is an alternative method
of the ALS algorithm, faster and don’t suf-
fer from the curse of dimensionality. If
JP1, P2..., PQ−1, PQK is the CPD of X , JIRAFE
method consists on optimizing the following cri-
terion :[Zniyed, Boyer et al. LAA 2019 ]

min
M,P
{||G1 − P1M

−1
1 ||F + ||GQ −MQ−1P

T
Q ||F

+
Q−2∑
q=2
||Gq − JMq−1, Pq,M

−T
q ||F K}.

3. Kernel-based classification of high-order tensors
• Given a binary classification problem where data is composed of M tensors Xi ∈ RN1×...×NQ

of rank R labeled with yi ∈ {−1, 1}, we look for a hyperplane to discrimate the classes.
Applying SVM for vectorized tensors leads to a prohibtive computational cost and destroys the
multidimensional structure of data.

• In order to compte the kernel between a couple of data (Xi,Xj) , the idea of [Dusk, SIAM 2014]
is to compute their CPD and then compute kernels between the CP factors using :

kdusk(Xi,Xj) :=
R∑

r=1

R∑
r′=1

Q∏
q=1

kgauss(x(q)
r ,x′(q)

r′ ),

where x(q)
r ,x′(q)

r′ are respectively the CP factors of Xi and Xj .

• The decision function for a new point X to classify is given by:

f(X ) = sgn(
M∑

i=1
αiyik(Xi,X ) + b),

where b and (αi)i are parameters of SVM.

Due to the scaling ambiguity, we can prove the two following results:

• Two identical tensors are viewed as two distinct objects for the classification

• The decision function may become data-invariant.

4.Tensor Learning on a Grassmann manifold
For integers n ≥ k > 0, a Grassmann Manifold is defined as the set of subspaces of dimension k
embeded on a space of dimension n. Mathematically, G(n, k) is given by:

G(n, k) = {span(N) : N ∈ Rn×kNTN = Ik}.

Figure 1: G(3, 1) with two
classes.

A suitable distance between X,Y ∈ G(n, k) that gives rise to a
positive definite gaussian kernel on Gn,k is the projection Frobenius
norm:

dc(X,Y ) := ||ΠX −ΠY ||2 =
√

2|| sin(θ)||,

where θ = {(θi)}k
i=1 is a vector of principle angles between X and

Y .
The kernel that we propose to use is then:

kgrass(Xi,Xj) :=
R∑

r=1

R∑
r′=1

Q∏
q=1

exp
(
−
dc(span(x(q)

r ), span(x′(q)
r′ ))2

2σ2

)
,

5. Numerical Experiments
In the figure at the top left: Accuracy score for different methods to discriminate 3 classess in the
Extended Yale dataset. [A. Georghiades, P. Belhumeur, and D. Kriegman, IEEE 2001]
In the figure at the top right:Accuracy score for different methods to discriminate 3 classess in the
UCF11 dataset [J. Liu, Jiebo Luo, and M. Shah, SIAM 2009].
In the figure at the bottom in the middle : Gain in time when computing CPD with ALS vs JIRAFE.


