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MCMC builds Xt ∼ p in the limit of large t

• Sampling from pj := exp(−βEj)/Z is generally hard

• MCMC: build a nice Markov chain with invariant measure p

• Epf (X ) = limt→∞
1
t

∑t
j=1 f (Xj)

• Even though Xj are correlated!

• The price: slow convergence (and no good way to track it)

• Typically decompose into proposal and acceptance steps

• Proposal probability: qjk := P(X ′ = k|Xt = j)
• Acceptance probability: αjk := P(Xt+1 = k |X ′ = k ,Xt = j)
• Chain transition matrix: Pjk := P(Xt+1 = k |Xt = j) = qjkαjk

• Most attention in the literature is devoted to proposals, but
we will only be concerned with acceptances
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The typical MCMC algorithm has a simple form

Input: Runtime T and Pjk = qjkαjk with pP = p
Initialize t = 0 and X0

repeat
for each state k do

Propose k with probability qjk
end for
Accept Xt+1 = k with probability αjk

Set t = t + 1
until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)
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The Hastings algorithm is an acceptance specification

• Hastings: accept proposal with probability αjk = sjk/(1 + tjk)
• tjk := pjqjk/pkqkj

• Requirements on s:
• sjk = skj
• sjk ≤ 1 + min(tjk , tkj)

• sjk = 1: Barker sampler

• sjk = 1 + min(tjk , tkj): Metropolis-Hastings sampler
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Lie groups and algebras might seem unrelated . . .

• A Lie group is a group and manifold with smooth group ops

• Classical real matrix examples sit inside GL(n,R):
• E.g., O(n) := {A ∈ GL(n,R) : AAT = I}
• “Special” (det = 1) subgroups, e.g., SL(n,R), SO(n), . . .

• Tangent space at the identity of a Lie group is a Lie algebra

• Echoes Lie group structure via bilinear bracket satisfying the
Jacobi identity [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0

• Ado’s theorem: a real finite-dimensional Lie group is
isomorphic to a subgroup of GL(n,R)

• Corresponding Lie algebra isomorphic to a subalgebra of Mn(R)
• Bracket is the matrix commutator: [X ,Y ] := XY − YX
• Matrix exponential gives a map from the Lie algebra to the

corresponding Lie group that respects both structures
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. . . but note that a measure generates a Lie group

• The stochastic group STO(n) := {P ∈ GL(n,R) : P1 = 1}
has a Lie algebra with basis indexed by (j , k) ∈ [n]× [n − 1]:

e(j ,k) := ej(e
T
k − eTn )

• The group generated by p, 〈p〉 := {P ∈ STO(n) : pP = p},
has a Lie algebra with basis indexed by (j , k) ∈ [n − 1]2:

e
(p)
(j ,k) := e(j ,k) − rje(n,k)

= (ej − rjen) (eTk − eTn )

where rj := pj/pn

• If pj ≡ Lj/Z then rj = Lj/Ln does not depend on Z : this is
the fundamental reason why MCMC works
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Our chosen basis yields convenient formulae

• For i ∈ Z+ (
e
(p)
(j ,k)

)i
= (δjk + rj)

i−1 e
(p)
(j ,k)

• It follows that

exp te
(p)
(j ,k) = I +

et(δjk+rj ) − 1

δjk + rj
e
(p)
(j ,k)

:= I + f
(p)
(j ,k)(−t) · e(p)(j ,k)

• The case j = k will be particularly important
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We consider special monoids in STO(n) and 〈p〉

• Define the monoids (i.e., semigroups with identity)

STO+(n) := {P ∈ M(n,R) : P1 = 1 and P ≥ 0}

where P ≥ 0 is interpreted per entry, and

〈p〉+ := {P ∈ STO+(n) : pP = p}

• STO+(n) 6⊂ STO(n) and 〈p〉+ 6⊂ 〈p〉

• The LHSs have noninvertible elements; the RHSs have
matrices with negative entries

• STO+(n) and 〈p〉+ are bounded convex polytopes that
respectively embody bona fide transition and candidate
MCMC matrices



Les Houches 2020 Sampling and statistical physics via symmetry 16

We consider special monoids in STO(n) and 〈p〉

• Define the monoids (i.e., semigroups with identity)

STO+(n) := {P ∈ M(n,R) : P1 = 1 and P ≥ 0}

where P ≥ 0 is interpreted per entry, and

〈p〉+ := {P ∈ STO+(n) : pP = p}

• STO+(n) 6⊂ STO(n) and 〈p〉+ 6⊂ 〈p〉
• The LHSs have noninvertible elements; the RHSs have

matrices with negative entries

• STO+(n) and 〈p〉+ are bounded convex polytopes that
respectively embody bona fide transition and candidate
MCMC matrices



Les Houches 2020 Sampling and statistical physics via symmetry 17

We can construct a nice element of 〈p〉+

Lemma If tj ≥ 0, then exp
(
−
∑

j tje
(p)
(j ,j)

)
∈ 〈p〉+

Proof −
∑

j tje
(p)
(j,j) is a continuous-time Markov generator matrix. �

• In particular, for t ≥ 0 we get a closed-form element of 〈p〉+:

exp
(
−te(p)(j ,j)

)
= I + f

(p)
(j ,j)(t) · e(p)(j ,j)

• No obvious useful generalization of this expression

• Closed form for exp
(
−t(j,k)e

(p)
(j,k) − t(`,m)e

(p)
(`,m)

)
runs many

pages or has some manifestly negative entries (but wouldn’t
count these out a priori)

• But this is enough to recover classical MCMC samplers!
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We recover classical MCMC samplers

• Relabel current state as n; undo after applying matrix in 〈p〉+
• I.e., transition n→ j is generic

• P = exp
(
−te(p)(j ,j)

)
= I + f

(p)
(j ,j)(t) · e(p)(j ,j) ⇒ Pnj(t) = −f (p)(j ,j)(t)rj

• Maximize Pnj(t) at t =∞: Pnj(∞) = rj/(1 + rj)

• B(p) := P(∞) corresponds to the Barker sampler

• But we can almost trivially do better by optimizing over the
entire line segment in 〈p〉+ that I and B(p) belong to

• I − τe(p)(j,j) ∈ 〈p〉
+ iff 0 ≤ τ ≤ min(1, r−1j )

• Taking the upper limit for τ yields the Metropolis sampler:

M(p) := I −min(1, r−1j ) · e(p)(j,j);
(
M(p)

)
nj

= min(1, rj)
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Barker sampler

Input: Runtime T and and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose j ∈ [n − 1]
Accept Xt+1 = j with probability

(
B(p)

)
nj

= rj/(1 + rj)
Undo relabeling; set t = t + 1

until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)
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Metropolis sampler

Input: Runtime T and and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose j ∈ [n − 1]
Accept Xt+1 = j with probability

(
M(p)

)
nj

= min(1, rj)
Undo relabeling; set t = t + 1

until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)
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What if we are willing to sacrifice some proposal sparsity?

• Barker/Metropolis samplers are the simplest MCMC methods
• Simplicity derives from functional form and sparsity of

corresponding matrices in 〈p〉+

• What if we propose more than one state at a time?
• Anticipates ensemble/multiple-try MCMC methods

• Natural to expect better convergence/higher complexity

• Impractical and degenerate limiting case is the matrix 1p
• Practical starting case is Barker/Metropolis

• Key consideration is how (or if) we can readily construct
suitable elements of 〈p〉+
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Let’s do some algebra aimed at building elements of 〈p〉+

• Define r := (r1, . . . , rn−1, 1) and r− := (r1, . . . , rn−1)

• For J := {j1, . . . , jd} ⊆ [n − 1] and α ∈ Mn−1(R), define
• (α(J ))uv := αju jv

• α
(p)
(J ) :=

∑d
u,v=1 αju jv e

(p)
(ju,jv )

∈ lie(〈p〉)
• r(J ) := (rj1 , . . . , rjd )

Lemma Let J := {j1, . . . , jd} ⊆ [n − 1]. If γ
(p)
(J ) = α

(p)
(J )β

(p)
(J ), then

γ(J ) = α(J )(I + 1r(J ))β(J )

• This is a notational mess but the lemma is worth it

• d = 2 case takes about a page of algebra to check otherwise

• Using this lemma, we can readily construct an analytically
convenient matrix in lie(〈p〉) . . .
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Theorem: we can build a Barker matrix

Let J := {j1, . . . , jd} ⊆ [n − 1], ω ∈ R and

A
(p;ω)
(J ) := ω

∑
u,v

(
δju jv −

1

1 + r(J )1
rjv

)
e
(p)
(ju ,jv )

=
(
ω(I + 1r(J ))

−1)(p)
(J )

.

(We pick this matrix precisely because we can exponentiate it in
closed form easily using the preceding lemma.) Then

exp tA
(p;ω)
(J ) = I +

eωt − 1

ω
A
(p;ω)
(J ) .

Moreover, exp
(
−tA(p;ω)

(J )

)
∈ 〈p〉+ ∩ GL(n,R) if t ≥ 0. So the

Barker matrix
B(p)(J ) := I − ω−1A(p;ω)

(J )

is in 〈p〉+, and does not depend on ω.
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Lemma: we can build a Metropolis matrix

Let ∆ denote the map that takes a matrix to the vector of its
diagonal entries, and indicate the boundary of a nice subset of
Euclidean space using ∂.

The Metropolis matrix

M(p)
(J ) := I − 1

max ∆
(
A
(p;ω)
(J )

)A(p;ω)
(J )

is in ∂〈p〉+ and does not depend on ω.
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Example: p = (1, 2, 3, 4, 10)/20 and J = {1, 2, 3}

A
(p;ω)
(J ) =

ω

16

( 15 −2 −3 0 −10
−1 14 −3 0 −10
−1 −2 13 0 −10
0 0 0 0 0
−1 −2 −3 0 6

)
For ω = 1 and t = − log 2,

exp
(

log 2 · A(p;1)
(J )

)
=

1

32

(
17 2 3 0 10
1 18 3 0 10
1 2 19 0 10
0 0 0 32 0
1 2 3 0 26

)

Finally,

B(p)(J ) =
1

16

(
1 2 3 0 10
1 2 3 0 10
1 2 3 0 10
0 0 0 16 0
1 2 3 0 10

)
; M(p)

(J ) =
1

15

(
0 2 3 0 10
1 1 3 0 10
1 2 2 0 10
0 0 0 15 0
1 2 3 0 9

)
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1
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Algebra yields higher-order Barker sampler

• Key idea: let n→ j ∈ J correspond to a generic transition
• We do not specify or constrain a proposal that produces J

• Get matrix entries

1

ω

(
A
(p;ω)
(J )

)
ju ju

= 1−
rju

1 + r(J )1

1

ω

(
A
(p;ω)
(J )

)
nju

= −
rju

1 + r(J )1

1

ω

(
A
(p;ω)
(J )

)
nn

=
r(J )1

1 + r(J )1

• This yields the higher-order Barker sampler (HOBS):(
B(p)(J )

)
nju

=
rju

1 + r(J )1
;
(
B(p)(J )

)
nn

=
1

1 + r(J )1
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Algebra yields higher-order Metropolis sampler

• Meanwhile

1

ω
max ∆

(
A
(p;ω)
(J )

)
=

1 + r(J )1−min{1,min r(J )}
1 + r(J )1

• This yields the higher-order Metropolis sampler (HOMS):(
M(p)

(J )

)
nju

=
rju

1 + r(J )1−min{1,min r(J )}(
M(p)

(J )

)
nn

= 1−
r(J )1

1 + r(J )1−min{1,min r(J )}
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Higher-order Barker sampler (HOBS)

Input: Runtime T and and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose J = {j1, . . . , jd} ⊆ [n − 1]

Accept Xt+1 = ju with probability
(
B(p)(J )

)
nju

Undo relabeling; set t = t + 1
until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)

Ensemble MCMC algorithm of (Neal, 2011) as in (Martino, 2018)
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Higher-order Metropolis sampler (HOMS)

Input: Runtime T and and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose J = {j1, . . . , jd} ⊆ [n − 1]

Accept Xt+1 = ju with probability
(
M(p)

(J )

)
nju

Undo relabeling; set t = t + 1
until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)

Slight specialization of construction in (Delmas & Jourdain, 2009)
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Look at behavior on a Sherrington-Kirkpatrick spin glass

• Sherrington-Kirkpatrick spin glass at inverse temperature β is

p(s) := Z−1 exp
(
− β√

N

∑
jk Jjksjsk

)
where s ∈ {±1}N ; Jjk ∼ N (0, 1) are IID with Jkj = Jjk

• We use the same PRNG initial state for each run
• β low enough (1/4 and 1) so single runs are representative
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We can still do better than the preceding algorithms

• I − τ (p)(J ) ∈ 〈p〉
+ iff τ satisfies various linear constraints

• τ
(p)
(J ) :=

(
In−1
−r−J

)
τ
(
In−1 −1−J

)
• τ is a generic parameter matrix
• See paper for exact/simple definitions of r−J and 1−J

• Optimize via linear program

• Generic objective xT τ
(p)
(J )y for fixed x , y

• There is a natural choice of x , y that yields an optimal
Frobenius norm approximation of (the appropriately sparse
submatrix of) the “ultimate” transition matrix 1p

• Detailed in paper
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Example: p = (1, 2, 3, 4, 10)/20 and J = {1, 2, 3}

B(p)(J ) =
1

16

(
1 2 3 0 10
1 2 3 0 10
1 2 3 0 10
0 0 0 16 0
1 2 3 0 10

)

M(p)
(J ) =

1

15

(
0 2 3 0 10
1 1 3 0 10
1 2 2 0 10
0 0 0 15 0
1 2 3 0 9

)

opt =
1

10

(
0 0 0 0 10
0 0 0 0 10
0 0 0 0 10
0 0 0 10 0
1 2 3 0 4

)
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Higher-order programming sampler (HOPS)

Input: Runtime T and and oracle for r
Initialize t = 0 and X0

repeat
Relabel states so that Xt = n
Propose J = {j1, . . . , jd} ⊆ [n − 1]
Compute optimal τ via linear program

Set P = I − τ (p)(J )
Accept Xt+1 = ju with probability Pnju

Undo relabeling; set t = t + 1
until t = T
Output: {Xt}Tt=0 ∼ p×(T+1) (approximately)

This algorithm appears to be new
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The HOPS outperforms the HOMS
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Symmetry unifies MCMC algorithms and gives new ones

• HOPS may be useful for Bayesian inverse problems

• Not tried yet:
• Continuous variables (would be much more technical)
• Incorporating proposal mechanism into HOPS objective
• Generalizing HOPS using convex optimization
• Determining if HOPS is reversible

• It is possible to produce transiton matrices (even in closed
form) with nonnegative nth row but negative entries
elsewhere. Not clear if this actually breaks MCMC, though
initial experiments in this direction were not encouraging

• Would be nice to sample vertices of 〈p〉+, but it’s NP-hard to
sample even approximately uniformly (Khachiyan, 2001)
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Part 2: statistical physics from symmetry
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We will derive β from data

• There is a unique effective temperature β−1 for finite systems
consistent both with Gibbs relation in equilibrium and physical
scaling requirements

• Immediately yields an effective energy function
• Form suggests application to nonequilibrium steady states

• β and derived quantities useful for data analysis

• We will exhibit an application to Anosov systems

• Gallavotti-Cohen chaotic hypothesis: generic systems are
morally Anosov
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The Gibbs distribution can be derived from symmetry (1)

Ansatz The probability of a state depends only on its energy
• Akin to Faddeev characterization of entropy

Energy only defined up to additive constant ε, so ∃f s.t.

P(Ek) =
f (Ek)∑
j f (Ej)

=
f (Ek + ε)∑
j f (Ej + ε)

Define

gE (ε) :=

∑
j f (Ej + ε)∑

j f (Ej)

Now gE (0) = 1 and

P(Ek) =
f (Ek)∑

j f (Ej + ε)
gE (ε) =

f (Ek + ε)∑
j f (Ej + ε)
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The Gibbs distribution can be derived from symmetry (2)

• From preceding slide: gE (0) = 1 and

P(Ek) =
f (Ek)∑

j f (Ej + ε)
gE (ε) =

f (Ek + ε)∑
j f (Ej + ε)

⇒ f (Ek) · gE (ε) = f (Ek + ε)

⇒ f (Ek + ε)− f (Ek) = (gE (ε)− 1) · f (Ek)

⇒ f ′(Ek) = g ′E (0) · f (Ek) since gE (0) = 1

⇒ f (Ek) = C exp(g ′E (0)Ek)

• Set (w.l.o.g.) β := −g ′E (0) and C ≡ 1 for Gibbs distribution

• Self-consistent argument since gE (ε) = exp(−βε)⇒ gE ≡ g
• Derivation is for the canonical ensemble (fixed β)
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The Gibbs relation defines coordinates (1)

• We consider a stationary system with
• n <∞ states
• Probability distribution p = (p1, . . . , pn) > 0
• Characteristic timescale t∞ (think mixing time or similar)

• t ≡ (t1, . . . , tn) := t∞p

⇒ tj/t∞ = pj
⇒ t∞ =

∑
k tj

• H := (E1, . . . ,En, β
−1)

• Want coordinate map t 7→ H vs. more common map H 7→ p

• e−βEj/Z = p
(H)
j = p

(t)
j = tj/t∞

• W.l.o.g., set
∑

j Ej = 0

• Not fixing U or anything physical
• Can later redefine zero point if desired, e.g.

∑
j Ej = nβ−1
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The Gibbs relation defines coordinates (2)

• A line of algebra yields

γj := βEj =
1

n

n∑
k=1

log pk − log pj

• β = ‖βH‖/‖H‖ =
√
‖γ‖2 + 1/‖H‖

• We will get ‖H‖ from symmetry and scaling considerations

• This will immediately yield β
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β scales as t∞

• A physically reasonable t 7→ H must depend on some constant
governing parameter x , i.e. β ≡ f (x , t) ≡ f (x , t∞, p)

• Π-theorem: β = xξtω∞Ψ(p) for non-dimensional Ψ

• Dilating time by C in a system with Hamiltonian H induces
t∞ 7→ t ′∞ = t∞/C and the extended canonical transformation

X 7→ X ′ = X , P 7→ P ′ = CP, H 7→ H′ = CH

• Since this is a change of units, it leaves e−βH invariant

• I.e., β′ = β/C , so ω = 1 and β scales as t∞
• Other arguments (classical gas, KMS, etc.) give same result

• Take x = ~ so ξ = −1 and β = ~−1t∞Ψ(p)

• Work in natural units and suppress ~
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Rays and radii are preserved by t 7→ H

• p is invariant under t 7→ t/C , so γ is also invariant

• Ansatz β ≡ β(t): t 7→ t/C ⇒ H = 1
β(t)(γ, 1) 7→ 1

β(t/C)(γ, 1)

• So p is constant on rays in both t and H coordinates

Lemma A smooth map between t 7→ H respecting the Gibbs relation
and

∑
j Ej = 0 sends rays and sphere orthants in t coordinates

to rays and hemispheres in H coordinates, respectively
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The effective temperature has a simple closed form

• u := 1 · ‖t‖/
√
n⇒ ‖u‖ = ‖t‖; lemma ⇒ ‖H(t)‖ = ‖H(u)‖

• H(u) = (0, . . . , 0, 1/β(u))⇒ ‖H(t)‖ = 1/β(u)

• Follows that β(t) = β(u) ·
√
‖γ‖2 + 1

• β(u) = K‖t‖ = Kt∞‖p‖ (K = constant) since β scales as t∞

• Taking K ≡ ~−1 = 1 yields

β(t) = t∞‖p‖ ·
√
‖γ‖2 + 1

• Using γj := βEj = 1
n

∑n
k=1 log pk − log pj gives β explicitly in

terms of p and t∞

• Ideas behind derivation of β mostly due to David Ford
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Summarizing the bijection t ↔ H

Level curves of β−1 = 1, 2 (solid contours) and of t∞ = 1,
√

2
(dashed contours) are shown in both coordinate systems.
The bijection is also shown explicitly for circular arcs and rays.
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To review: we got here with just a few symmetries

Axiom Zero point of energy is physically irrelevant

Axiom The probability of a state depends only on its energy

Derived Changing unit of time leaves βH invariant

Derived Any physically nice bijection t ↔ H preserves rays and radii
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What is t∞? How can we use β?

• Intensivity implies that t∞ must behave roughly–but not
exactly–like a mixing time

• Precise details still unclear but looking at free energy of
discrete memoryless channels offers a possible solution

• Rest of the talk: L2 mixing time is a generic surrogate for t∞

• Obvious applications to time-varying Markov processes

• Original motivation of research (started by David Ford in 1998;
joint circa 2000-2008): analyze Markov processes obtained
from computer network traffic

• What about applications to physics?
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It’s hard to find physically relevant examples

• Obvious (but not good) candidate: equilibrium spin systems
• Single Glauber-Ising spin: β−1 = actual temperature
⇒ t∞ ∝ 1/(largest energy scale)

• Unfortunately, the only point of looking at equilibrium spin
systems would be to help understand t∞ (analytically hard)

• Spin glasses are very nonstationary (“aging”)

• For a continuous example, need well-behaved phase space
discretization where p and | log p| are both in L1 ∩ L2

• No obvious nontrivial examples with physical measure
absolutely continuous w.r.t. phase space volume

• What about scaling limits of discrete systems?

• Naive discretizations of ideal gas with obvious boundary
conditions, UV cutoff, etc. have no reasonable scaling limit
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• Single Glauber-Ising spin: β−1 = actual temperature
⇒ t∞ ∝ 1/(largest energy scale)

• Unfortunately, the only point of looking at equilibrium spin
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It turns out that Anosov systems are very good examples

• Physical relevance from Gallavotti-Cohen chaotic hypothesis:
• “For the purpose of studying macroscopic properties, the time

evolution map [T ] of a many-particle system can be regarded
as a mixing Anosov map”

• Markov partitions are natural discretizations that help with the
fact that the physical (SRB) probability measure is typically
singular w.r.t. phase space volume

• L2 mixing time is a computable proxy for t∞

• We have analyzed archetypal examples

• “Cat map” on the torus
• Free particle on surfaces of constant negative curvature

• Many general implications, not least by thermostatting
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What’s an Anosov system?
• A smooth endomorphism T is an Anosov map if it is both

• Uniformly hyperbolic, i.e. at every point x there are transverse
local stable and unstable surfaces on which points respectively
converge and diverge exponentially at a rate independent of x

• Invariant, i.e. the tangent spaces to these surfaces are mapped
by the derivative of T into the tangent spaces to the
corresponding surfaces at Tx ≡ T (x)

• T is mixing if global stable and unstable surfaces are dense
• Continuous-time notion of Anosov flow is defined similarly
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Anosov systems have Markov partitions

• A rectangle R is a subset of phase space such that the
intersection of a local stable and a local unstable surface
consists of a single point also in R: i.e., there is a local
product structure compatible with T

• Generally not a rectangle in the usual geometrical sense

• A partition R = {Rj}nj=1 of phase space into rectangles is
Markov if (whenever these sets intersect) the images TRj

stretch completely across Rk in the unstable direction and Rk

stretches completely across TRj in the stable direction

T



Les Houches 2020 Sampling and statistical physics via symmetry 85

The Arnol’d-Avez cat map is Anosov

• Anosov map defined by TAx = Ax mod 1, where A = ( 2 1
1 1 )

• More generally, matrices in GL(n,Z) with no eigenvalues in S1

correspond to hyperbolic toral automorphisms (HTAs)
• Rectangles for HTAs are geometrically unions of parallelograms

• Corresponds to unit-frequency projections for Hamiltonian
HA(X ,P) = K (P2 − X 2 + XP) with K = sinh−1(

√
5/2)/

√
5

• Eigenvalues λ± = φ±2, where φ = 1+
√
5

2

• Eigenvectors e− = (s,−c)∗, e+ = (c , s)∗

• c = 1/
√

3− φ and s =
√

1− c2

• Irrational slopes of eigenvectors imply dense stable and
unstable curves on the torus, so cat map is mixing
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There are many Markov partitions for the cat map

• E.g., RA, R′A, R′′A
• 3 rounds of “greedy refinements” [defined later] shown for RA

• Refinements (RA)∨m formed by intersecting images of RA
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Markov partitions induce probability distributions

• Physical/SRB measure µ for any HTA is just area (or volume)

• Given Markov partition R = {Rj}nj=1, form pj := µ(Rj)

• Note that β/t∞ = ‖p‖ ·
√
‖γ‖2 + 1 only depends on p

• Insofar as β is independent of R, so is pointwise E

• For p corresponding to R∨m, β/t∞ converges to finite nonzero
value for generic 2D HTAs

• Key step is to count the number of rectangles in R∨m contained
in Rj and with given extents in stable direction

• However, detailed calculations show limβ/t∞ depends on R

• β/t∞ ≈ 0.3463 for RA and R′′A; β/t∞ ≈ 0.4245 for R′A
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Any finite nonzero limit for β/t∞ is already nontrivial

• limβ/t∞ =∞ if we start with Y(0) = [0, 1] and form Y(m+1)

by subdividing each interval in Y(m) into two subintervals of
relative length q and 1− q

• q = 1/2⇒ limβ/t∞ = 0

• As mentioned earlier, naive discretization of free particle/ideal
gas has no obvious reasonable scaling limit

• 2D HTA limits indicate that while β = Kn · t∞‖p‖
√
‖γ‖2 + 1

initially appears OK, we should actually enforce Kn ≡ const

• This is not at all obvious: taking Kn =
√
n (so that β(u) does

not depend on n) naively appears to be more appropriate

• Two related issues with Markov partitions of the form R∨m

• limβ/t∞ depends on R
• Phase space volumes (to say nothing of physical measures) of

rectangles vary increasingly more as m increases
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Greedy refinements are physically natural

• Physical intuition suggests dealing with Markov partitions that
have the most uniform possible phase space volumes

• Even for µ 6= phase space volume ν, this will tend to minimize
β and maximize entropy/minimize effective free energy

• First indication of a generalized variational principle
• Can get finite limit for β even as entropy diverges

• For a rectangle Rj ∈ R with ν(Rj) maximal, the intersection
of TRj with rectangles in R determines subrectangles of TR
that in turn determine various refinements of R under T−1

• We call such a refinement of maximal entropy w.r.t. ν greedy

• Generally not unique
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Greedy refinements of R′′A in eigencoordinates

R′′A,0 ≡ R′′A

{(ν/νmin,multiplicity)} =
{(φ2, 1), (1, 1)}

1 GR = 1 round 7→ R′′A,1

{(ν/νmin,multiplicity)} =
{(φ, 1), (1, 2)}

1 GR = 1 round 7→ R′′A,2

{(φ, 3), (1, 1)}

3 GRs = 1 round 7→ R′′A,3

{(φ, 4), (1, 3)}
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Greedy refinements of RA and R′A in eigencoordinates

RA,0 ≡ RA

{(ν/νmin,multiplicity)} =
{(φ2, 2), (φ, 2), (1, 1)}

2 GRs = 1 round 7→ RA,1

{(ν/νmin,multiplicity)} =
{(φ, 4), (1, 3)}

R′A,0 ≡ R′A

{(φ, 3), (1, 1)}

3 GRs = 1 round 7→ R′A,1

{(φ, 4), (1, 3)}
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Greedy refinements stabilize rectangle measures

• For m > 0, both RA,m and R′A,m contain Lm+1 and Lm+2

rectangles of relative measure 1 and φ, respectively
• Lucas numbers obey Lm+2 = Lm+1 + Lm with L1 = 1, L2 = 3

• For m > 1, R′′A,m contains Lm−1 and Lm rectangles of relative
measure 1 and φ, respectively

• Good reason to think that similar results hold more generally

• E.g., the common limit of β/t∞ ≈ 0.2393 for all the cases
above is apparently minimal/universal for the cat map

• Even if this turned out not to hold in other cases, we could still
take an extremum over Markov partitions with diminishing size
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There are two archetypal Anosov flows

• “Suspension” of cat map generated by vector field ez under
twisted periodic boundary condition (TAx , z) ∼ (x , z + 1)

• The cat flow can be analyzed in a manner similar to that of
the cat map, and we get exactly the same limiting behavior

• However unlike the cat map, the cat flow is not mixing, so its
utility as a model physical system is comparatively limited

• Geodesic flow on surface of constant negative curvature

• Corresponds to free particle Hamiltonian H = 1
2m

∑
jk g

jkPjPk

• Geodesic flow is mixing and will give apparently
geometry-independent effective temperature of free particle
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Geodesic flow in Poincaré disk model is tractable

• Differential arclength ds = dr/(1− r2)

• Geodesics correspond to circular arcs
intersecting S1 at right angles

• Surface of constant negative curvature
obtained by identifying pairs of edges sj
of hyperbolic polygon such as shown in
top figure via maps Tj(sj) = s−1σ(j)

• Here s−1j is orientation reversal of sj
• Pairing σ(j) indicated in bottom figure
• Note that the pairing is not “twisted”
• 8g − 4 edges ⇒ genus g = # of holes

• Hamiltonian H = (1− r2)2 · P2/2m
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Timing map and Markov partition for geodesic flow

• Following Adler and Weiss, we instantiate edge pairing maps
Tj en route to TR = (timing/Poincaré map) ◦ (isometry)

• Isometry ⇒ TR is equivalent to timing map for our purposes

• We also instantiate a Markov partition R for TR

• Tm
R R for g = 2, m = 0, 1, 2: rectangles consistently shaded

• Get R∨m by intersecting rectangles in T 0
RR, . . . ,Tm

R R
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We numerically compute β for geodesic flow

• Unlike the cat map, TR is highly nonlinear

• Rationale of TR vs. timing map: “rectangles are rectangles”

• Although µ = ν in this case (as with HTAs), it is nontrivial:

µ([x1, x2]× [y1, y2]) =

∫ y2

y1

∫ x2

x1

|dx dy |
|e ix − e iy |2

• We exploit a few tricks to numerically compute measures of
rectangles in refinements of R

• First result: β/t∞ diverges nearly exponentially for R∨m

• Difference in behavior vs. TA due to lack of linear structure
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We numerically compute β for geodesic flow

• For greedy refinements, we have strong numerical evidence
that limβ is nonzero, finite, and independent of genus g

• Actually computing limβ/t∞, but in fact mixing time ≡ 1/2

• Copies with different initial conditions give ideal gas
• Weak coupling ⇒ thermometer
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We numerically compute β for geodesic flow
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We numerically compute β for geodesic flow



Les Houches 2020 Sampling and statistical physics via symmetry 110

We numerically compute entropy for geodesic flow
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A conjecture for nonequilibrium statistical physics

• Intrinsic β/t∞ via (extremal limit over?) greedy refinements

• t∞ similar (but not identical) to mixing time

• Conjecture: the effective temperature for classical steady-state
systems satisfying the chaotic hypothesis is well-defined and is
equivalent to physical temperature

• This would extend Ruelle’s thermodynamical formalism to a
more complete theory of statistical physics for nonequilibrium
steady states in which not only entropy production rates but
also temperature and energy could be meaningfully interpreted

• Some major obstructions to any proof
• The simplicial complex of Markov partitions seems complicated
• Hard to develop nonlinear estimates, spectral techniques, etc.
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Thanks
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Physical background for Anosov systems

• Both Anosov and Markov systems obey a fluctuation theorem

• Generic form of FT: P
(
t−1Σt = z

)
= etz · P

(
t−1Σt = −z

)
• t−1Σt is trajectory’s mean entropy production rate to time t

• Generalizes Onsager and Green-Kubo relations linking fluxes
and transport coefficients; gives 2nd law behavior

• Vast majority of work on the chaotic hypothesis concerned
with things like entropy production rate, FT, etc.

• Precise meaning of “Anosov-like” in hypothesis not yet known

• We explore the chaotic hypothesis in an entirely different
direction, providing evidence that reasonable notions of
temperature and energy are defined for systems that obey it
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Comparison with other approaches

• We do everything in terms of time data alone
• That said, physical measures still provide a dynamical basis
• Take seriously: “there is no conceptual difference between

stationary states in equilibrium and out of equilibrium”

• In another approach, dynamical rates of expansion/contraction
“provide an ‘energy function’ that assigns relative probabilistic
weights to the coarse grained cells”

• Define an effective temperature of a thermostat by Ẇ /Σ̇,
where Ẇ is the work rate of external forces on the system and
Σ̇ is the entropy production rate

• This still requires a priori knowledge of an energy function of
some sort in order to define a sensible notion of work rate–but
we don’t need anything like that in our approach
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Towards generalization of these results

• Markov partitions, physical measures, etc. exhibit great
regularity w.r.t. small perturbations of dynamics

• Although perturbed and especially weakly coupled lattices of
cat maps or perturbed geodesic flows are not easily treated
explicitly, they still behave nicely

• Hence while our explicit examples deal with “microcanonical”
ensembles, our results generalize to related systems in what
amount to both canonical and nonequilibrium ensembles

• Relevant ideas: thermostats, weakly coupled map lattices, etc.
• Only case of obvious desired generalization with elusive

approach is coupled geodesic flows (read: interacting gas)


