

Steve Huntsman

FAST Labs / Cyber Technology

27 July 2020

MCMC builds $X_t \sim p$ in the limit of large t

- Sampling from $p_j := \exp(-\beta E_j)/Z$ is generally hard
- MCMC: build a nice Markov chain with invariant measure p

MCMC builds $X_t \sim p$ in the limit of large t

- Sampling from $p_j := \exp(-\beta E_j)/Z$ is generally hard
- MCMC: build a nice Markov chain with invariant measure p

•
$$\mathbb{E}_{\rho}f(X) = \lim_{t \to \infty} \frac{1}{t} \sum_{j=1}^{t} f(X_j)$$

- Even though X_j are correlated!
- The price: slow convergence (and no good way to track it)

MCMC builds $X_t \sim p$ in the limit of large t

- Sampling from $p_j := \exp(-\beta E_j)/Z$ is generally hard
- MCMC: build a nice Markov chain with invariant measure p
- $\mathbb{E}_p f(X) = \lim_{t \to \infty} \frac{1}{t} \sum_{j=1}^t f(X_j)$
 - Even though X_j are correlated!
- The price: slow convergence (and no good way to track it)
- Typically decompose into proposal and acceptance steps
 - Proposal probability: $q_{jk} := \mathbb{P}(X' = k | X_t = j)$
 - Acceptance probability: $\alpha_{jk} := \mathbb{P}(X_{t+1} = k | X' = k, X_t = j)$
 - Chain transition matrix: $P_{jk} := \mathbb{P}(X_{t+1} = k | X_t = j) = q_{jk} \alpha_{jk}$
- Most attention in the literature is devoted to proposals, but we will only be concerned with acceptances

The typical MCMC algorithm has a simple form

Input: Runtime *T* and $P_{jk} = q_{jk}\alpha_{jk}$ with pP = pInitialize t = 0 and X_0 **repeat** for each state *k* do Propose *k* with probability q_{jk} end for Accept $X_{t+1} = k$ with probability α_{jk} Set t = t + 1until t = TOutput: $\{X_t\}_{t=0}^T \sim p^{\times (T+1)}$ (approximately) The Hastings algorithm is an acceptance specification

• Hastings: accept proposal with probability $\alpha_{jk} = s_{jk}/(1+t_{jk})$

• $t_{jk} := p_j q_{jk} / p_k q_{kj}$

Requirements on s:

•
$$s_{jk} = s_{kj}$$

•
$$s_{jk} \leq 1 + \min(t_{jk}, t_{kj})$$

- $s_{jk} = 1$: Barker sampler
- $s_{jk} = 1 + \min(t_{jk}, t_{kj})$: Metropolis-Hastings sampler

6

Lie groups and algebras might seem unrelated ...

- A Lie group is a group and manifold with smooth group ops
- Classical real matrix examples sit inside $GL(n, \mathbb{R})$:
 - E.g., $O(n) := \{A \in GL(n, \mathbb{R}) : AA^T = I\}$
 - "Special" (det = 1) subgroups, e.g., $SL(n, \mathbb{R})$, SO(n), ...

Lie groups and algebras might seem unrelated ...

- A Lie group is a group and manifold with smooth group ops
- Classical real matrix examples sit inside $GL(n, \mathbb{R})$:
 - E.g., $O(n) := \{A \in GL(n, \mathbb{R}) : AA^T = I\}$
 - "Special" (det = 1) subgroups, e.g., $SL(n, \mathbb{R})$, SO(n), ...
- Tangent space at the identity of a Lie group is a Lie algebra
 - Echoes Lie group structure via bilinear bracket satisfying the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Lie groups and algebras might seem unrelated ...

- A Lie group is a group and manifold with smooth group ops
- Classical real matrix examples sit inside $GL(n, \mathbb{R})$:
 - E.g., $O(n) := \{A \in GL(n, \mathbb{R}) : AA^T = I\}$
 - "Special" (det = 1) subgroups, e.g., $SL(n, \mathbb{R})$, SO(n), ...
- Tangent space at the identity of a Lie group is a Lie algebra
 - Echoes Lie group structure via bilinear bracket satisfying the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0
- Ado's theorem: a real finite-dimensional Lie group is isomorphic to a subgroup of GL(n, ℝ)
 - Corresponding Lie algebra isomorphic to a subalgebra of $M_n(\mathbb{R})$
 - Bracket is the matrix commutator: [X, Y] := XY YX
 - Matrix exponential gives a map from the Lie algebra to the corresponding Lie group that respects both structures

- ... but note that a measure generates a Lie group
 - The stochastic group STO(n) := {P ∈ GL(n, ℝ) : P1 = 1} has a Lie algebra with basis indexed by (j, k) ∈ [n] × [n − 1]:

$$e_{(j,k)} := e_j(e_k^T - e_n^T)$$

... but note that a measure generates a Lie group

 The stochastic group STO(n) := {P ∈ GL(n, ℝ) : P1 = 1} has a Lie algebra with basis indexed by (j, k) ∈ [n] × [n − 1]:

$$e_{(j,k)} := e_j(e_k^T - e_n^T)$$

 The group generated by p, ⟨p⟩ := {P ∈ STO(n) : pP = p}, has a Lie algebra with basis indexed by (j, k) ∈ [n − 1]²:

$$e_{(j,k)}^{(p)} := e_{(j,k)} - r_j e_{(n,k)} \\ = (e_j - r_j e_n) (e_k^T - e_n^T)$$

where $r_j := p_j/p_n$

... but note that a measure generates a Lie group

 The stochastic group STO(n) := {P ∈ GL(n, ℝ) : P1 = 1} has a Lie algebra with basis indexed by (j, k) ∈ [n] × [n − 1]:

$$e_{(j,k)} := e_j(e_k^T - e_n^T)$$

 The group generated by p, ⟨p⟩ := {P ∈ STO(n) : pP = p}, has a Lie algebra with basis indexed by (j, k) ∈ [n − 1]²:

$$e_{(j,k)}^{(p)} := e_{(j,k)} - r_j e_{(n,k)} \\ = (e_j - r_j e_n) (e_k^T - e_n^T)$$

where $r_j := p_j / p_n$

• If $p_j \equiv \mathcal{L}_j/Z$ then $r_j = \mathcal{L}_j/\mathcal{L}_n$ does not depend on Z: this is the fundamental reason why MCMC works

Our chosen basis yields convenient formulae

• For
$$i\in\mathbb{Z}_+$$
 $\left(e_{(j,k)}^{(p)}
ight)^i=\left(\delta_{jk}+r_j
ight)^{i-1}e_{(j,k)}^{(p)}$

Our chosen basis yields convenient formulae

• For
$$i \in \mathbb{Z}_+$$
 $\left(e^{(p)}_{(j,k)}
ight)^i = (\delta_{jk} + r_j)^{i-1} \, e^{(p)}_{(j,k)}$

It follows that

$$\exp t e_{(j,k)}^{(p)} = I + \frac{e^{t(\delta_{jk}+r_j)} - 1}{\delta_{jk} + r_j} e_{(j,k)}^{(p)}$$
$$:= I + f_{(j,k)}^{(p)}(-t) \cdot e_{(j,k)}^{(p)}$$

• The case j = k will be particularly important

We consider special monoids in STO(n) and $\langle p \rangle$

• Define the monoids (i.e., semigroups with identity)

 $STO^+(n) := \{P \in M(n, \mathbb{R}) : P1 = 1 \text{ and } P \ge 0\}$

where $P \ge 0$ is interpreted per entry, and

$$\langle p \rangle^+ := \{ P \in STO^+(n) : pP = p \}$$

We consider special monoids in STO(n) and $\langle p \rangle$

• Define the monoids (i.e., semigroups with identity)

 $STO^+(n) := \{P \in M(n, \mathbb{R}) : P1 = 1 \text{ and } P \ge 0\}$

where $P \ge 0$ is interpreted per entry, and

$$\langle p \rangle^+ := \{ P \in STO^+(n) : pP = p \}$$

- $STO^+(n) \not\subset STO(n)$ and $\langle p \rangle^+ \not\subset \langle p \rangle$
 - The LHSs have noninvertible elements; the RHSs have matrices with negative entries
- STO⁺(n) and ⟨p⟩⁺ are bounded convex polytopes that respectively embody *bona fide* transition and candidate MCMC matrices

We can construct a nice element of $\langle p \rangle^+$

Lemma If
$$t_j \geq 0$$
, then $\exp\left(-\sum_j t_j e^{(p)}_{(j,j)}
ight) \in \langle p
angle^+$

Proof $-\sum_{j} t_{j} e_{(j,j)}^{(p)}$ is a continuous-time Markov generator matrix. \Box

We can construct a nice element of $\langle p angle^+$

Lemma If $t_j \ge 0$, then $\exp\left(-\sum_j t_j e_{(j,j)}^{(p)}\right) \in \langle p \rangle^+$

Proof $-\sum_{j} t_{j} e_{(j,j)}^{(p)}$ is a continuous-time Markov generator matrix. \Box

• In particular, for $t \ge 0$ we get a closed-form element of $\langle p \rangle^+$:

$$\exp\left(-te_{(j,j)}^{(p)}\right) = I + f_{(j,j)}^{(p)}(t) \cdot e_{(j,j)}^{(p)}$$

- No obvious useful generalization of this expression
 - Closed form for $\exp\left(-t_{(j,k)}e_{(j,k)}^{(p)} t_{(\ell,m)}e_{(\ell,m)}^{(p)}\right)$ runs many pages or has some manifestly negative entries (but wouldn't count these out *a priori*)

18

BAE SYSTEMS

We can construct a nice element of $\langle p angle^+$

Lemma If $t_j \geq 0$, then $\exp\left(-\sum_j t_j e_{(j,j)}^{(p)}\right) \in \langle p \rangle^+$

Proof $-\sum_{j} t_{j} e_{(j,j)}^{(p)}$ is a continuous-time Markov generator matrix. \Box

• In particular, for $t \ge 0$ we get a closed-form element of $\langle p \rangle^+$:

$$\exp\left(-te_{(j,j)}^{(p)}\right) = I + f_{(j,j)}^{(p)}(t) \cdot e_{(j,j)}^{(p)}$$

- No obvious useful generalization of this expression
 - Closed form for $\exp\left(-t_{(j,k)}e_{(j,k)}^{(p)} t_{(\ell,m)}e_{(\ell,m)}^{(p)}\right)$ runs many pages or has some manifestly negative entries (but wouldn't count these out *a priori*)
- But this is enough to recover classical MCMC samplers!

20

We recover classical MCMC samplers

• Relabel current state as *n*; undo after applying matrix in $\langle p \rangle^+$

• I.e., transition $n \rightarrow j$ is generic

We recover classical MCMC samplers

• Relabel current state as *n*; undo after applying matrix in $\langle p \rangle^+$

• I.e., transition
$$n \rightarrow j$$
 is generic

•
$$P = \exp\left(-te_{(j,j)}^{(p)}\right) = I + f_{(j,j)}^{(p)}(t) \cdot e_{(j,j)}^{(p)} \Rightarrow P_{nj}(t) = -f_{(j,j)}^{(p)}(t)r_j$$

We recover classical MCMC samplers

• Relabel current state as *n*; undo after applying matrix in $\langle p \rangle^+$

• I.e., transition
$$n \rightarrow j$$
 is generic

•
$$P = \exp\left(-te_{(j,j)}^{(p)}\right) = I + f_{(j,j)}^{(p)}(t) \cdot e_{(j,j)}^{(p)} \Rightarrow P_{nj}(t) = -f_{(j,j)}^{(p)}(t)r_j$$

• Maximize $P_{nj}(t)$ at $t = \infty$: $P_{nj}(\infty) = r_j/(1+r_j)$

•
$$\mathcal{B}^{(p)}:=P(\infty)$$
 corresponds to the Barker sampler

We recover classical MCMC samplers

• Relabel current state as *n*; undo after applying matrix in $\langle p \rangle^+$

• I.e., transition
$$n \rightarrow j$$
 is generic

•
$$P = \exp\left(-te_{(j,j)}^{(p)}\right) = I + f_{(j,j)}^{(p)}(t) \cdot e_{(j,j)}^{(p)} \Rightarrow P_{nj}(t) = -f_{(j,j)}^{(p)}(t)r_j$$

- Maximize $P_{nj}(t)$ at $t = \infty$: $P_{nj}(\infty) = r_j/(1+r_j)$
 - $\mathcal{B}^{(p)} := P(\infty)$ corresponds to the Barker sampler
- But we can almost trivially do better by optimizing over the entire line segment in (p)⁺ that I and B^(p) belong to

•
$$I - \tau e_{(j,j)}^{(p)} \in \langle p \rangle^+$$
 iff $0 \le \tau \le \min(1, r_j^{-1})$

• Taking the upper limit for τ yields the Metropolis sampler:

$$\mathcal{M}^{(p)} := I - \min(1, r_j^{-1}) \cdot e_{(j,j)}^{(p)}; \quad \left(\mathcal{M}^{(p)}\right)_{nj} = \min(1, r_j)$$

BAE SYSTEMS

Barker sampler

```
Input: Runtime T and and oracle for r
Initialize t = 0 and X_0
repeat
Relabel states so that X_t = n
Propose j \in [n - 1]
Accept X_{t+1} = j with probability (\mathcal{B}^{(p)})_{nj} = r_j/(1 + r_j)
Undo relabeling; set t = t + 1
until t = T
Output: \{X_t\}_{t=0}^T \sim p^{\times (T+1)} (approximately)
```


Metropolis sampler

Input: Runtime T and and oracle for rInitialize t = 0 and X_0

repeat

```
Relabel states so that X_t = n

Propose j \in [n-1]

Accept X_{t+1} = j with probability (\mathcal{M}^{(p)})_{nj} = \min(1, r_j)

Undo relabeling; set t = t + 1

until t = T

Output: \{X_t\}_{t=0}^T \sim p^{\times (T+1)} (approximately)
```


What if we are willing to sacrifice some proposal sparsity?

- Barker/Metropolis samplers are the simplest MCMC methods
 - Simplicity derives from functional form and sparsity of corresponding matrices in $\langle p \rangle^+$
- What if we propose more than one state at a time?
 - Anticipates ensemble/multiple-try MCMC methods

What if we are willing to sacrifice some proposal sparsity?

- Barker/Metropolis samplers are the simplest MCMC methods
 - Simplicity derives from functional form and sparsity of corresponding matrices in $\langle p \rangle^+$
- What if we propose more than one state at a time?
 - Anticipates ensemble/multiple-try MCMC methods
- Natural to expect better convergence/higher complexity
 - Impractical and degenerate limiting case is the matrix 1p
 - Practical starting case is Barker/Metropolis
- Key consideration is how (or if) we can readily construct suitable elements of $\langle p \rangle^+$

Let's do some algebra aimed at building elements of $\langle p
angle^+$

• Define
$$r := (r_1, \ldots, r_{n-1}, 1)$$
 and $r^- := (r_1, \ldots, r_{n-1})$

• For
$$\mathcal{J} := \{j_1, \ldots, j_d\} \subseteq [n-1]$$
 and $\alpha \in M_{n-1}(\mathbb{R})$, define

•
$$(\alpha_{(\mathcal{J})})_{uv} := \alpha_{j_u j_v}$$

• $\alpha_{(\mathcal{J})}^{(p)} := \sum_{u,v=1}^d \alpha_{j_u j_v} e_{(j_u,j_v)}^{(p)} \in \mathfrak{lie}(\langle p \rangle)$

•
$$r_{(\mathcal{J})} := (r_{j_1}, \ldots, r_{j_d})$$

Let's do some algebra aimed at building elements of $\langle p
angle^+$

• Define
$$r := (r_1, \ldots, r_{n-1}, 1)$$
 and $r^- := (r_1, \ldots, r_{n-1})$

For J := {j₁,..., j_d} ⊆ [n − 1] and α ∈ M_{n−1}(ℝ), define
 (α_(J))_{uv} := α_{jujv}

•
$$\alpha_{(\mathcal{J})}^{(p)} := \sum_{u,v=1}^{d} \alpha_{j_u j_v} e_{(j_u, j_v)}^{(p)} \in \mathfrak{lie}(\langle p \rangle)$$

• $r_{(\mathcal{J})} := (r_{j_1}, \dots, r_{j_d})$

Lemma Let $\mathcal{J} := \{j_1, \ldots, j_d\} \subseteq [n-1]$. If $\gamma_{(\mathcal{J})}^{(p)} = \alpha_{(\mathcal{J})}^{(p)} \beta_{(\mathcal{J})}^{(p)}$, then

$$\gamma_{(\mathcal{J})} = \alpha_{(\mathcal{J})} (I + 1r_{(\mathcal{J})}) \beta_{(\mathcal{J})}$$

• This is a notational mess but the lemma is worth it

• d = 2 case takes about a page of algebra to check otherwise

 Using this lemma, we can readily construct an analytically convenient matrix in lie((p))...

Theorem: we can build a Barker matrix

Let
$$\mathcal{J}:=\{j_1,\ldots,j_d\}\subseteq [n-1],\ \omega\in\mathbb{R}$$
 and

$$A_{(\mathcal{J})}^{(p;\omega)} := \omega \sum_{u,v} \left(\delta_{j_{u}j_{v}} - \frac{1}{1 + r_{(\mathcal{J})}1} r_{j_{v}} \right) e_{(j_{u},j_{v})}^{(p)} = \left(\omega (l + 1r_{(\mathcal{J})})^{-1} \right)_{(\mathcal{J})}^{(p)}.$$

(We pick this matrix precisely because we can exponentiate it in closed form easily using the preceding lemma.) Then

$$\exp t A_{(\mathcal{J})}^{(p;\omega)} = I + \frac{e^{\omega t} - 1}{\omega} A_{(\mathcal{J})}^{(p;\omega)}.$$

Moreover, $\exp\left(-tA_{(\mathcal{J})}^{(p;\omega)}\right) \in \langle p \rangle^+ \cap GL(n,\mathbb{R})$ if $t \ge 0$. So the Barker matrix

$$\mathcal{B}^{(p)}_{(\mathcal{J})} := I - \omega^{-1} \mathcal{A}^{(p;\omega)}_{(\mathcal{J})}$$

is in $\langle p \rangle^+$, and does not depend on ω .

Lemma: we can build a Metropolis matrix

Let Δ denote the map that takes a matrix to the vector of its diagonal entries, and indicate the boundary of a nice subset of Euclidean space using ∂ .

The Metropolis matrix

$$\mathcal{M}_{(\mathcal{J})}^{(p)} := I - rac{1}{\max\Delta\left(\mathcal{A}_{(\mathcal{J})}^{(p;\omega)}
ight)} \mathcal{A}_{(\mathcal{J})}^{(p;\omega)}$$

is in $\partial \langle \boldsymbol{p} \rangle^+$ and does not depend on ω .

Example: p = (1, 2, 3, 4, 10)/20 and $\mathcal{J} = \{1, 2, 3\}$

$$A_{(\mathcal{J})}^{(p;\omega)} = \frac{\omega}{16} \begin{pmatrix} 15 & -2 & -3 & 0 & -10 \\ -1 & 14 & -3 & 0 & -10 \\ -1 & -2 & 13 & 0 & -10 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & -2 & -3 & 0 & 6 \end{pmatrix}$$

For $\omega = 1$ and $t = -\log 2$,

$$\exp\left(\log 2 \cdot A_{(\mathcal{J})}^{(p;1)}\right) = \frac{1}{32} \begin{pmatrix} 17 & 2 & 3 & 0 & 10\\ 1 & 18 & 3 & 0 & 10\\ 1 & 2 & 19 & 0 & 10\\ 0 & 0 & 0 & 32 & 0\\ 1 & 2 & 3 & 0 & 26 \end{pmatrix}$$

Finally,

$$\mathcal{B}_{(\mathcal{J})}^{(p)} = \frac{1}{16} \begin{pmatrix} 1 & 2 & 3 & 0 & 10 \\ 1 & 2 & 3 & 0 & 10 \\ 1 & 2 & 3 & 0 & 10 \\ 0 & 0 & 0 & 16 & 0 \\ 1 & 2 & 3 & 0 & 10 \end{pmatrix}; \quad \mathcal{M}_{(\mathcal{J})}^{(p)} = \frac{1}{15} \begin{pmatrix} 0 & 2 & 3 & 0 & 10 \\ 1 & 1 & 3 & 0 & 10 \\ 1 & 2 & 2 & 0 & 10 \\ 0 & 0 & 0 & 15 & 0 \\ 1 & 2 & 3 & 0 & 9 \end{pmatrix}$$

Example: p = (1, 2, 3, 4, 10)/20 and $\mathcal{J} = \{1, 2, 3\}$

$$A_{(\mathcal{J})}^{(p;\omega)} = \frac{\omega}{16} \begin{pmatrix} 15 & -2 & -3 & 0 & -10 \\ -1 & 14 & -3 & 0 & -10 \\ -1 & -2 & 13 & 0 & -10 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & -2 & -3 & 0 & 6 \end{pmatrix}$$

For $\omega = 2$ and $t = -\log 2$,

$$\exp\left(\log 2 \cdot A_{(\mathcal{J})}^{(p;2)}\right) = \frac{1}{64} \begin{pmatrix} 19 & 6 & 9 & 0 & 30 \\ 3 & 22 & 9 & 0 & 30 \\ 3 & 6 & 25 & 0 & 30 \\ 0 & 0 & 0 & 64 & 0 \\ 3 & 6 & 9 & 0 & 46 \end{pmatrix}$$

Finally,

$$\mathcal{B}_{(\mathcal{J})}^{(p)} = \frac{1}{16} \begin{pmatrix} 1 & 2 & 3 & 0 & 10 \\ 1 & 2 & 3 & 0 & 10 \\ 1 & 2 & 3 & 0 & 10 \\ 0 & 0 & 0 & 16 & 0 \\ 1 & 2 & 3 & 0 & 10 \end{pmatrix}; \quad \mathcal{M}_{(\mathcal{J})}^{(p)} = \frac{1}{15} \begin{pmatrix} 0 & 2 & 3 & 0 & 10 \\ 1 & 1 & 3 & 0 & 10 \\ 1 & 2 & 2 & 0 & 10 \\ 0 & 0 & 0 & 15 & 0 \\ 1 & 2 & 3 & 0 & 9 \end{pmatrix}$$

Algebra yields higher-order Barker sampler

- Key idea: let $n \rightarrow j \in \mathcal{J}$ correspond to a generic transition
 - We do not specify or constrain a proposal that produces ${\cal J}$
- Get matrix entries

$$\frac{1}{\omega} \left(A_{(\mathcal{J})}^{(p;\omega)} \right)_{j_{u}j_{u}} = 1 - \frac{r_{j_{u}}}{1 + r_{(\mathcal{J})}1}$$
$$\frac{1}{\omega} \left(A_{(\mathcal{J})}^{(p;\omega)} \right)_{nj_{u}} = -\frac{r_{j_{u}}}{1 + r_{(\mathcal{J})}1}$$
$$\frac{1}{\omega} \left(A_{(\mathcal{J})}^{(p;\omega)} \right)_{nn} = \frac{r_{(\mathcal{J})}1}{1 + r_{(\mathcal{J})}1}$$

• This yields the *higher-order Barker sampler* (HOBS):

$$\left(\mathcal{B}_{(\mathcal{J})}^{(p)} \right)_{nj_u} = \frac{r_{j_u}}{1 + r_{(\mathcal{J})}1}; \quad \left(\mathcal{B}_{(\mathcal{J})}^{(p)} \right)_{nn} = \frac{1}{1 + r_{(\mathcal{J})}1}$$
BAE SYSTEMS

Algebra yields higher-order Metropolis sampler

• Meanwhile

$$\frac{1}{\omega}\max\Delta\left(A_{(\mathcal{J})}^{(\boldsymbol{p};\omega)}\right) = \frac{1+r_{(\mathcal{J})}1-\min\{1,\min r_{(\mathcal{J})}\}}{1+r_{(\mathcal{J})}1}$$

• This yields the higher-order Metropolis sampler (HOMS):

$$\begin{pmatrix} \mathcal{M}_{(\mathcal{J})}^{(p)} \end{pmatrix}_{nj_u} = \frac{r_{j_u}}{1 + r_{(\mathcal{J})}1 - \min\{1, \min r_{(\mathcal{J})}\}} \\ \begin{pmatrix} \mathcal{M}_{(\mathcal{J})}^{(p)} \end{pmatrix}_{nn} = 1 - \frac{r_{(\mathcal{J})}1}{1 + r_{(\mathcal{J})}1 - \min\{1, \min r_{(\mathcal{J})}\}}$$

Higher-order Barker sampler (HOBS)

Input: Runtime *T* and and oracle for *r* Initialize t = 0 and X_0 **repeat** Relabel states so that $X_t = n$ Propose $\mathcal{J} = \{j_1, \dots, j_d\} \subseteq [n-1]$ Accept $X_{t+1} = j_u$ with probability $\left(\mathcal{B}_{(\mathcal{J})}^{(p)}\right)_{nj_u}$ Undo relabeling; set t = t + 1**until** t = T**Output:** $\{X_t\}_{t=0}^T \sim p^{\times (T+1)}$ (approximately)

Ensemble MCMC algorithm of (Neal, 2011) as in (Martino, 2018)

BAE SYSTEMS
Higher-order Metropolis sampler (HOMS)

Input: Runtime *T* and and oracle for *r* Initialize t = 0 and X_0 **repeat** Relabel states so that $X_t = n$ Propose $\mathcal{J} = \{j_1, \dots, j_d\} \subseteq [n-1]$ Accept $X_{t+1} = j_u$ with probability $\left(\mathcal{M}_{(\mathcal{J})}^{(p)}\right)_{nj_u}$ Undo relabeling; set t = t + 1**until** t = T**Output:** $\{X_t\}_{t=0}^T \sim p^{\times (T+1)}$ (approximately)

Slight specialization of construction in (Delmas & Jourdain, 2009)

BAE SYSTEMS

Look at behavior on a Sherrington-Kirkpatrick spin glass

• Sherrington-Kirkpatrick spin glass at inverse temperature eta is

$$p(s) := Z^{-1} \exp\left(-rac{eta}{\sqrt{N}} \sum_{jk} J_{jk} s_j s_k
ight)$$

where $s \in \{\pm 1\}^N$; $J_{jk} \sim \mathcal{N}(0,1)$ are IID with $J_{kj} = J_{jk}$

- We use the same PRNG initial state for each run
- β low enough (1/4 and 1) so single runs are representative

Look at behavior on a Sherrington-Kirkpatrick spin glass

Look at behavior on a Sherrington-Kirkpatrick spin glass

We can still do better than the preceding algorithms

I - τ^(p)_(J) ∈ ⟨p⟩⁺ iff τ satisfies various linear constraints
 τ^(p)_(J) := (*I*_{n-1}/-r⁻_J) τ (*I*_{n-1} -1⁻_J)
 τ is a generic parameter matrix

• See paper for exact/simple definitions of $r_{\mathcal{T}}^-$ and $1_{\mathcal{T}}^-$

We can still do better than the preceding algorithms

• $I - \tau_{(\mathcal{J})}^{(p)} \in \langle p \rangle^+$ iff τ satisfies various linear constraints

•
$$\tau_{(\mathcal{J})}^{(p)} := \begin{pmatrix} I_{n-1} \\ -r_{\mathcal{J}}^- \end{pmatrix} \tau \begin{pmatrix} I_{n-1} & -1_{\mathcal{J}}^- \end{pmatrix}$$

- au is a generic parameter matrix
- See paper for exact/simple definitions of $r_{\mathcal{J}}^-$ and $1_{\mathcal{J}}^-$
- Optimize via linear program
 - Generic objective $x^T \tau_{(\mathcal{J})}^{(p)} y$ for fixed x, y
- There is a natural choice of x, y that yields an optimal Frobenius norm approximation of (the appropriately sparse submatrix of) the "ultimate" transition matrix 1p
 - Detailed in paper

Example: p = (1, 2, 3, 4, 10)/20 and $\mathcal{J} = \{1, 2, 3\}$

$$\begin{split} \mathcal{B}_{(\mathcal{J})}^{(p)} &= \frac{1}{16} \begin{pmatrix} 1 & 2 & 3 & 0 & 10 \\ 1 & 2 & 3 & 0 & 10 \\ 1 & 2 & 3 & 0 & 10 \\ 0 & 0 & 0 & 16 & 0 \\ 1 & 2 & 3 & 0 & 10 \end{pmatrix} \\ \mathcal{M}_{(\mathcal{J})}^{(p)} &= \frac{1}{15} \begin{pmatrix} 0 & 2 & 3 & 0 & 10 \\ 1 & 1 & 3 & 0 & 10 \\ 1 & 2 & 2 & 0 & 10 \\ 0 & 0 & 0 & 15 & 0 \\ 1 & 2 & 3 & 0 & 9 \end{pmatrix} \\ \text{opt} &= \frac{1}{10} \begin{pmatrix} 0 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & 10 \\ 1 & 2 & 3 & 0 & 4 \end{pmatrix} \end{split}$$

Higher-order programming sampler (HOPS)

```
Input: Runtime T and and oracle for r
Initialize t = 0 and X_0
```

repeat

Relabel states so that $X_t = n$ Propose $\mathcal{J} = \{j_1, \dots, j_d\} \subseteq [n-1]$ Compute optimal τ via linear program Set $P = I - \tau_{(\mathcal{J})}^{(p)}$ Accept $X_{t+1} = J_u$ with probability P_{nj_u} Undo relabeling; set t = t + 1until t = TOutput: $\{X_t\}_{t=0}^T \sim p^{\times (T+1)}$ (approximately)

This algorithm appears to be new

The HOPS outperforms the HOMS

The HOPS outperforms the HOMS

Symmetry unifies MCMC algorithms and gives new ones

- HOPS may be useful for Bayesian inverse problems
- Not tried yet:
 - Continuous variables (would be much more technical)
 - Incorporating proposal mechanism into HOPS objective
 - Generalizing HOPS using convex optimization
 - Determining if HOPS is reversible
- It is possible to produce transiton matrices (even in closed form) with nonnegative *n*th row but negative entries elsewhere. Not clear if this actually breaks MCMC, though initial experiments in this direction were not encouraging
- Would be nice to sample vertices of (p)⁺, but it's NP-hard to sample even approximately uniformly (Khachiyan, 2001)

Part 2: statistical physics from symmetry

We will derive β from data

- There is a unique effective temperature β⁻¹ for finite systems consistent both with Gibbs relation in equilibrium and physical scaling requirements
 - · Immediately yields an effective energy function
 - Form suggests application to nonequilibrium steady states

We will derive β from data

- There is a unique effective temperature β⁻¹ for finite systems consistent both with Gibbs relation in equilibrium and physical scaling requirements
 - Immediately yields an effective energy function
 - Form suggests application to nonequilibrium steady states
- β and derived quantities useful for data analysis

We will derive β from data

- There is a unique effective temperature β⁻¹ for finite systems consistent both with Gibbs relation in equilibrium and physical scaling requirements
 - · Immediately yields an effective energy function
 - Form suggests application to nonequilibrium steady states
- β and derived quantities useful for data analysis
- We will exhibit an application to Anosov systems
 - Gallavotti-Cohen chaotic hypothesis: generic systems are morally Anosov

The Gibbs distribution can be derived from symmetry (1)

Ansatz The probability of a state depends only on its energy

• Akin to Faddeev characterization of entropy

Energy only defined up to additive constant ε , so $\exists f$ s.t.

$$\mathbb{P}(E_k) = \frac{f(E_k)}{\sum_j f(E_j)} = \frac{f(E_k + \varepsilon)}{\sum_j f(E_j + \varepsilon)}$$

Define

$$g_E(\varepsilon) := rac{\sum_j f(E_j + \varepsilon)}{\sum_j f(E_j)}$$

Now $g_E(0) = 1$ and

$$\mathbb{P}(E_k) = \frac{f(E_k)}{\sum_j f(E_j + \varepsilon)} g_E(\varepsilon) = \frac{f(E_k + \varepsilon)}{\sum_j f(E_j + \varepsilon)}$$

The Gibbs distribution can be derived from symmetry (2)

• From preceding slide: $g_E(0) = 1$ and

$$\mathbb{P}(E_k) = \frac{f(E_k)}{\sum_j f(E_j + \varepsilon)} g_E(\varepsilon) = \frac{f(E_k + \varepsilon)}{\sum_j f(E_j + \varepsilon)}$$

$$\Rightarrow f(E_k) \cdot g_E(\varepsilon) = f(E_k + \varepsilon)$$

$$\Rightarrow f(E_k + \varepsilon) - f(E_k) = (g_E(\varepsilon) - 1) \cdot f(E_k)$$

$$\Rightarrow f'(E_k) = g'_E(0) \cdot f(E_k) \text{ since } g_E(0) = 1$$

$$\Rightarrow f(E_k) = C \exp(g'_E(0)E_k)$$

The Gibbs distribution can be derived from symmetry (2)

• From preceding slide: $g_E(0) = 1$ and

$$\mathbb{P}(E_k) = \frac{f(E_k)}{\sum_j f(E_j + \varepsilon)} g_E(\varepsilon) = \frac{f(E_k + \varepsilon)}{\sum_j f(E_j + \varepsilon)}$$

$$\Rightarrow f(E_k) \cdot g_E(\varepsilon) = f(E_k + \varepsilon)$$

$$\Rightarrow f(E_k + \varepsilon) - f(E_k) = (g_E(\varepsilon) - 1) \cdot f(E_k)$$

$$\Rightarrow f'(E_k) = g'_E(0) \cdot f(E_k) \text{ since } g_E(0) = 1$$

$$\Rightarrow f(E_k) = C \exp(g'_E(0)E_k)$$

• Set (w.l.o.g.) $\beta := -g'_E(0)$ and $C \equiv 1$ for Gibbs distribution

- Self-consistent argument since $g_E(\varepsilon) = \exp(-\beta\varepsilon) \Rightarrow g_E \equiv g$
- Derivation is for the canonical ensemble (fixed β)

- We consider a stationary system with
 - n < ∞ states
 - Probability distribution $p = (p_1, \ldots, p_n) > 0$
 - Characteristic timescale t_{∞} (think mixing time or similar)

- We consider a stationary system with
 - n < ∞ states
 - Probability distribution $p = (p_1, \ldots, p_n) > 0$
 - Characteristic timescale t_{∞} (think mixing time or similar)

•
$$t \equiv (t_1, \ldots, t_n) := t_{\infty} p$$

 $\Rightarrow t_j/t_{\infty} = p_j$

$$\Rightarrow t_{\infty} = \sum_{k} t_{j}$$

•
$$H := (E_1, \ldots, E_n, \beta^{-1})$$

- We consider a stationary system with
 - n < ∞ states
 - Probability distribution $p = (p_1, \ldots, p_n) > 0$
 - Characteristic timescale t_{∞} (think mixing time or similar)

•
$$t \equiv (t_1, \ldots, t_n) := t_{\infty} p$$

 $\Rightarrow t_i / t_{in} = p_i$

$$\Rightarrow t_{\infty} = \sum_{k} t_{j}$$

•
$$H := (E_1, \ldots, E_n, \beta^{-1})$$

• Want coordinate map $t \mapsto H$ vs. more common map $H \mapsto p$

- We consider a stationary system with
 - n < ∞ states
 - Probability distribution $p = (p_1, \ldots, p_n) > 0$
 - Characteristic timescale t_∞ (think mixing time or similar)

•
$$t \equiv (t_1, \dots, t_n) := t_{\infty} p$$

 $\Rightarrow t_j/t_{\infty} = p_j$
 $\Rightarrow t_{\infty} = \sum_k t_j$

•
$$H := (E_1, \ldots, E_n, \beta^{-1})$$

• Want coordinate map $t \mapsto H$ vs. more common map $H \mapsto p$

•
$$e^{-\beta E_j}/Z = p_j^{(H)} = p_j^{(t)} = t_j/t_\infty$$

- W.I.o.g., set $\sum_j E_j = 0$
 - Not fixing U or anything physical
 - Can later redefine zero point if desired, e.g. $\sum_{i} E_{i} = n\beta^{-1}$

• A line of algebra yields

$$\gamma_j := \beta E_j = \frac{1}{n} \sum_{k=1}^n \log p_k - \log p_j$$

A line of algebra yields

$$\gamma_j := \beta E_j = \frac{1}{n} \sum_{k=1}^n \log p_k - \log p_j$$

- $\beta = \|\beta H\| / \|H\| = \sqrt{\|\gamma\|^2 + 1} / \|H\|$
- We will get ||H|| from symmetry and scaling considerations
- This will immediately yield β

61

eta scales as t_∞

 A physically reasonable t → H must depend on some constant governing parameter x, i.e. β ≡ f(x, t) ≡ f(x, t_∞, p)

eta scales as t_∞

- A physically reasonable t → H must depend on some constant governing parameter x, i.e. β ≡ f(x, t) ≡ f(x, t_∞, p)
- Π -theorem: $\beta = x^{\xi} t_{\infty}^{\omega} \Psi(p)$ for non-dimensional Ψ

eta scales as t_∞

- A physically reasonable t → H must depend on some constant governing parameter x, i.e. β ≡ f(x, t) ≡ f(x, t_∞, p)
- Π -theorem: $\beta = x^{\xi} t_{\infty}^{\omega} \Psi(p)$ for non-dimensional Ψ
- Dilating time by C in a system with Hamiltonian \mathcal{H} induces $t_{\infty} \mapsto t'_{\infty} = t_{\infty}/C$ and the extended canonical transformation

$$X \mapsto X' = X, \quad P \mapsto P' = CP, \quad \mathcal{H} \mapsto \mathcal{H}' = C\mathcal{H}$$

- Since this is a change of units, it leaves $e^{-\beta \mathcal{H}}$ invariant
 - I.e., $\beta' = \beta/C$, so $\omega = 1$ and β scales as t_{∞}
 - Other arguments (classical gas, KMS, etc.) give same result

63

BAE SYSTEMS

eta scales as t_∞

- A physically reasonable t → H must depend on some constant governing parameter x, i.e. β ≡ f(x, t) ≡ f(x, t_∞, p)
- Π -theorem: $\beta = x^{\xi} t_{\infty}^{\omega} \Psi(p)$ for non-dimensional Ψ
- Dilating time by C in a system with Hamiltonian \mathcal{H} induces $t_{\infty} \mapsto t'_{\infty} = t_{\infty}/C$ and the extended canonical transformation

$$X \mapsto X' = X, \quad P \mapsto P' = CP, \quad \mathcal{H} \mapsto \mathcal{H}' = C\mathcal{H}$$

- Since this is a change of units, it leaves $e^{-\beta \mathcal{H}}$ invariant
 - I.e., $\beta' = \beta/C$, so $\omega = 1$ and β scales as t_{∞}
 - Other arguments (classical gas, KMS, etc.) give same result
- Take $x = \hbar$ so $\xi = -1$ and $\beta = \hbar^{-1} t_{\infty} \Psi(p)$
 - Work in natural units and suppress \hbar

BAE SYSTEM

Rays and radii are preserved by $t \mapsto H$

- p is invariant under $t \mapsto t/C$, so γ is also invariant
- Ansatz $\beta \equiv \beta(t)$: $t \mapsto t/C \Rightarrow H = \frac{1}{\beta(t)}(\gamma, 1) \mapsto \frac{1}{\beta(t/C)}(\gamma, 1)$
- So p is constant on rays in both t and H coordinates

Rays and radii are preserved by $t \mapsto H$

- p is invariant under $t \mapsto t/C$, so γ is also invariant
- Ansatz $\beta \equiv \beta(t)$: $t \mapsto t/C \Rightarrow H = \frac{1}{\beta(t)}(\gamma, 1) \mapsto \frac{1}{\beta(t/C)}(\gamma, 1)$
- So p is constant on rays in both t and H coordinates
- Lemma A smooth map between $t \mapsto H$ respecting the Gibbs relation and $\sum_j E_j = 0$ sends rays and sphere orthants in t coordinates to rays and hemispheres in H coordinates, respectively

•
$$u := 1 \cdot ||t|| / \sqrt{n} \Rightarrow ||u|| = ||t||$$
; lemma $\Rightarrow ||H(t)|| = ||H(u)||$

- $u := 1 \cdot ||t|| / \sqrt{n} \Rightarrow ||u|| = ||t||$; lemma $\Rightarrow ||H(t)|| = ||H(u)||$
- $H(u) = (0, ..., 0, 1/\beta(u)) \Rightarrow ||H(t)|| = 1/\beta(u)$

- $u := 1 \cdot ||t|| / \sqrt{n} \Rightarrow ||u|| = ||t||$; lemma $\Rightarrow ||H(t)|| = ||H(u)||$
- $H(u) = (0, ..., 0, 1/\beta(u)) \Rightarrow ||H(t)|| = 1/\beta(u)$
- Follows that $\beta(t) = \beta(u) \cdot \sqrt{\|\gamma\|^2 + 1}$

- $u := 1 \cdot ||t|| / \sqrt{n} \Rightarrow ||u|| = ||t||$; lemma $\Rightarrow ||H(t)|| = ||H(u)||$
- $H(u) = (0, ..., 0, 1/\beta(u)) \Rightarrow ||H(t)|| = 1/\beta(u)$
- Follows that $\beta(t) = \beta(u) \cdot \sqrt{\|\gamma\|^2 + 1}$
- $\beta(u) = K \|t\| = Kt_{\infty} \|p\|$ (K = constant) since β scales as t_{∞}

- $u := 1 \cdot ||t|| / \sqrt{n} \Rightarrow ||u|| = ||t||$; lemma $\Rightarrow ||H(t)|| = ||H(u)||$
- $H(u) = (0, ..., 0, 1/\beta(u)) \Rightarrow ||H(t)|| = 1/\beta(u)$
- Follows that $\beta(t) = \beta(u) \cdot \sqrt{\|\gamma\|^2 + 1}$
- $\beta(u) = K \|t\| = K t_{\infty} \|p\|$ (K = constant) since β scales as t_{∞}
- Taking $K \equiv \hbar^{-1} = 1$ yields

$$eta(t) = t_\infty \| p \| \cdot \sqrt{\| \gamma \|^2 + 1}$$

- Using $\gamma_j := \beta E_j = \frac{1}{n} \sum_{k=1}^n \log p_k \log p_j$ gives β explicitly in terms of p and t_{∞}
- Ideas behind derivation of β mostly due to David Ford

BAE SYSTEMS

Summarizing the bijection $t \leftrightarrow H$

Level curves of $\beta^{-1} = 1, 2$ (solid contours) and of $t_{\infty} = 1, \sqrt{2}$ (dashed contours) are shown in both coordinate systems. The bijection is also shown explicitly for circular arcs and rays.

BAE SYSTEMS
To review: we got here with just a few symmetries

Axiom Zero point of energy is physically irrelevant Axiom The probability of a state depends only on its energy Derived Changing unit of time leaves $\beta \mathcal{H}$ invariant Derived Any physically nice bijection $t \leftrightarrow H$ preserves rays and radii

What is t_{∞} ? How can we use β ?

- Intensivity implies that t_∞ must behave roughly-but not exactly-like a mixing time
 - Precise details still unclear but looking at free energy of discrete memoryless channels offers a possible solution
 - Rest of the talk: L^2 mixing time is a generic surrogate for t_∞

What is t_{∞} ? How can we use β ?

- Intensivity implies that t_∞ must behave roughly-but not exactly-like a mixing time
 - Precise details still unclear but looking at free energy of discrete memoryless channels offers a possible solution
 - Rest of the talk: L^2 mixing time is a generic surrogate for t_∞
- Obvious applications to time-varying Markov processes
 - Original motivation of research (started by David Ford in 1998; joint *circa* 2000-2008): analyze Markov processes obtained from computer network traffic

What is t_{∞} ? How can we use β ?

- Intensivity implies that t_∞ must behave roughly-but not exactly-like a mixing time
 - Precise details still unclear but looking at free energy of discrete memoryless channels offers a possible solution
 - Rest of the talk: L^2 mixing time is a generic surrogate for t_∞
- Obvious applications to time-varying Markov processes
 - Original motivation of research (started by David Ford in 1998; joint *circa* 2000-2008): analyze Markov processes obtained from computer network traffic
- What about applications to physics?

It's hard to find physically relevant examples

- Obvious (but not good) candidate: equilibrium spin systems
 - Single Glauber-Ising spin: $\beta^{-1} = \text{actual temperature}$ $\Rightarrow t_{\infty} \propto 1/(\text{largest energy scale})$
 - Unfortunately, the only point of looking at equilibrium spin systems would be to help understand t_{∞} (analytically hard)
 - Spin glasses are very nonstationary ("aging")

It's hard to find physically relevant examples

- Obvious (but not good) candidate: equilibrium spin systems
 - Single Glauber-Ising spin: $\beta^{-1} = \text{actual temperature}$ $\Rightarrow t_{\infty} \propto 1/(\text{largest energy scale})$
 - Unfortunately, the only point of looking at equilibrium spin systems would be to help understand t_∞ (analytically hard)
 - Spin glasses are very nonstationary ("aging")
- For a continuous example, need well-behaved phase space discretization where p and | log p| are both in L¹ ∩ L²
 - No obvious nontrivial examples with physical measure absolutely continuous w.r.t. phase space volume

It's hard to find physically relevant examples

- Obvious (but not good) candidate: equilibrium spin systems
 - Single Glauber-Ising spin: β⁻¹ = actual temperature ⇒ t_∞ ∝ 1/(largest energy scale)
 - Unfortunately, the only point of looking at equilibrium spin systems would be to help understand t_∞ (analytically hard)
 - Spin glasses are very nonstationary ("aging")
- For a continuous example, need well-behaved phase space discretization where p and | log p| are both in L¹ ∩ L²
 - No obvious nontrivial examples with physical measure absolutely continuous w.r.t. phase space volume
- What about scaling limits of discrete systems?
 - Naive discretizations of ideal gas with obvious boundary conditions, UV cutoff, etc. have no reasonable scaling limit

It turns out that Anosov systems are very good examples

- Physical relevance from Gallavotti-Cohen chaotic hypothesis:
 - "For the purpose of studying macroscopic properties, the time evolution map [T] of a many-particle system can be regarded as a mixing Anosov map"
 - *Markov partitions* are natural discretizations that help with the fact that the physical (SRB) probability measure is typically singular w.r.t. phase space volume
 - L^2 mixing time is a computable proxy for t_∞

It turns out that Anosov systems are very good examples

- Physical relevance from Gallavotti-Cohen chaotic hypothesis:
 - "For the purpose of studying macroscopic properties, the time evolution map [T] of a many-particle system can be regarded as a mixing Anosov map"
 - *Markov partitions* are natural discretizations that help with the fact that the physical (SRB) probability measure is typically singular w.r.t. phase space volume
 - L^2 mixing time is a computable proxy for t_∞
- We have analyzed archetypal examples
 - "Cat map" on the torus
 - Free particle on surfaces of constant negative curvature
- Many general implications, not least by thermostatting

What's an Anosov system?

- A smooth endomorphism T is an Anosov map if it is both
 - Uniformly hyperbolic, i.e. at every point x there are transverse local stable and unstable surfaces on which points respectively converge and diverge exponentially at a rate independent of x
 - Invariant, i.e. the tangent spaces to these surfaces are mapped by the derivative of T into the tangent spaces to the corresponding surfaces at $Tx \equiv T(x)$

What's an Anosov system?

- A smooth endomorphism T is an Anosov map if it is both
 - Uniformly hyperbolic, i.e. at every point x there are transverse local stable and unstable surfaces on which points respectively converge and diverge exponentially at a rate independent of x
 - Invariant, i.e. the tangent spaces to these surfaces are mapped by the derivative of T into the tangent spaces to the corresponding surfaces at $Tx \equiv T(x)$
- T is *mixing* if global stable and unstable surfaces are dense
- Continuous-time notion of Anosov flow is defined similarly

Anosov systems have Markov partitions

- A rectangle R is a subset of phase space such that the intersection of a local stable and a local unstable surface consists of a single point also in R: i.e., there is a local product structure compatible with T
 - · Generally not a rectangle in the usual geometrical sense
- A partition R = {R_j}ⁿ_{j=1} of phase space into rectangles is Markov if (whenever these sets intersect) the images TR_j stretch completely across R_k in the unstable direction and R_k stretches completely across TR_j in the stable direction

The Arnol'd-Avez cat map is Anosov

- Anosov map defined by $T_A x = A x \mod 1$, where $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$
 - More generally, matrices in GL(n, Z) with no eigenvalues in S¹ correspond to hyperbolic toral automorphisms (HTAs)
 - Rectangles for HTAs are geometrically unions of parallelograms

The Arnol'd-Avez cat map is Anosov

- Anosov map defined by $T_A x = Ax \mod 1$, where $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$
 - More generally, matrices in GL(n, Z) with no eigenvalues in S¹ correspond to hyperbolic toral automorphisms (HTAs)
 - Rectangles for HTAs are geometrically unions of parallelograms
- Corresponds to unit-frequency projections for Hamiltonian $\mathcal{H}_A(X, P) = \mathcal{K}(P^2 X^2 + XP)$ with $\mathcal{K} = \sinh^{-1}(\sqrt{5}/2)/\sqrt{5}$

The Arnol'd-Avez cat map is Anosov

- Anosov map defined by $T_A x = A x \mod 1$, where $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$
 - More generally, matrices in GL(n, Z) with no eigenvalues in S¹ correspond to hyperbolic toral automorphisms (HTAs)
 - Rectangles for HTAs are geometrically unions of parallelograms
- Corresponds to unit-frequency projections for Hamiltonian $\mathcal{H}_A(X, P) = \mathcal{K}(P^2 X^2 + XP)$ with $\mathcal{K} = \sinh^{-1}(\sqrt{5}/2)/\sqrt{5}$
- Eigenvalues $\lambda_{\pm} = \phi^{\pm 2}$, where $\phi = \frac{1+\sqrt{5}}{2}$
- Eigenvectors $e_- = (s, -c)^*$, $e_+ = (c, s)^*$

•
$$c=1/\sqrt{3-\phi}$$
 and $s=\sqrt{1-c^2}$

• Irrational slopes of eigenvectors imply dense stable and unstable curves on the torus, so cat map is mixing

BAE SYSTEMS

There are many Markov partitions for the cat map

- E.g., \mathcal{R}_A , \mathcal{R}'_A , \mathcal{R}''_A
 - 3 rounds of "greedy refinements" [defined later] shown for \mathcal{R}_{A}

• Refinements $(\mathcal{R}_A)_m^{\vee}$ formed by intersecting images of \mathcal{R}_A

Markov partitions induce probability distributions

- Physical/SRB measure μ for any HTA is just area (or volume)
- Given Markov partition $\mathcal{R} = \{R_j\}_{j=1}^n$, form $p_j := \mu(R_j)$
 - Note that $eta/t_\infty = \|p\|\cdot \sqrt{\|\gamma\|^2+1}$ only depends on p
 - Insofar as β is independent of \mathcal{R} , so is *pointwise* E

Markov partitions induce probability distributions

- Physical/SRB measure μ for any HTA is just area (or volume)
- Given Markov partition $\mathcal{R} = \{R_j\}_{j=1}^n$, form $p_j := \mu(R_j)$
 - Note that $eta/t_\infty = \|p\|\cdot \sqrt{\|\gamma\|^2+1}$ only depends on p
 - Insofar as β is independent of \mathcal{R} , so is *pointwise* E
- For *p* corresponding to \mathcal{R}_m^{\vee} , β/t_{∞} converges to finite nonzero value for generic 2D HTAs
 - Key step is to count the number of rectangles in R[∨]_m contained in R_j and with given extents in stable direction

Markov partitions induce probability distributions

- Physical/SRB measure μ for any HTA is just area (or volume)
- Given Markov partition $\mathcal{R} = \{R_j\}_{j=1}^n$, form $p_j := \mu(R_j)$
 - Note that $eta/t_{\infty} = \|p\| \cdot \sqrt{\|\gamma\|^2 + 1}$ only depends on p
 - Insofar as β is independent of \mathcal{R} , so is *pointwise* E
- For *p* corresponding to \mathcal{R}_m^{\vee} , β/t_{∞} converges to finite nonzero value for generic 2D HTAs
 - Key step is to count the number of rectangles in R[∨]_m contained in R_j and with given extents in stable direction
- However, detailed calculations show $\lim \beta/t_\infty$ depends on ${\cal R}$
 - $\beta/t_{\infty} \approx 0.3463$ for \mathcal{R}_A and \mathcal{R}''_A ; $\beta/t_{\infty} \approx 0.4245$ for \mathcal{R}'_A

91

BAE SYSTEMS

Any finite nonzero limit for eta/t_∞ is already nontrivial

• $\lim \beta/t_{\infty} = \infty$ if we start with $\mathcal{Y}^{(0)} = [0, 1]$ and form $\mathcal{Y}^{(m+1)}$ by subdividing each interval in $\mathcal{Y}^{(m)}$ into two subintervals of relative length q and 1 - q

•
$$q = 1/2 \Rightarrow \lim \beta/t_{\infty} = 0$$

Any finite nonzero limit for β/t_{∞} is already nontrivial

- $\lim \beta/t_{\infty} = \infty$ if we start with $\mathcal{Y}^{(0)} = [0, 1]$ and form $\mathcal{Y}^{(m+1)}$ by subdividing each interval in $\mathcal{Y}^{(m)}$ into two subintervals of relative length q and 1 q
 - $q = 1/2 \Rightarrow \lim \beta/t_{\infty} = 0$
- As mentioned earlier, naive discretization of free particle/ideal gas has no obvious reasonable scaling limit
- 2D HTA limits indicate that while $\beta = K_n \cdot t_\infty ||p|| \sqrt{||\gamma||^2 + 1}$ initially appears OK, we should actually enforce $K_n \equiv const$
 - This is not at all obvious: taking K_n = √n (so that β(u) does not depend on n) naively appears to be more appropriate

Any finite nonzero limit for eta/t_∞ is already nontrivial

- $\lim \beta/t_{\infty} = \infty$ if we start with $\mathcal{Y}^{(0)} = [0, 1]$ and form $\mathcal{Y}^{(m+1)}$ by subdividing each interval in $\mathcal{Y}^{(m)}$ into two subintervals of relative length q and 1 q
 - $q = 1/2 \Rightarrow \lim \beta/t_{\infty} = 0$
- As mentioned earlier, naive discretization of free particle/ideal gas has no obvious reasonable scaling limit
- 2D HTA limits indicate that while $\beta = K_n \cdot t_{\infty} ||p|| \sqrt{||\gamma||^2 + 1}$ initially appears OK, we should actually enforce $K_n \equiv const$
 - This is not at all obvious: taking K_n = √n (so that β(u) does not depend on n) naively appears to be more appropriate
- Two related issues with Markov partitions of the form \mathcal{R}_m^{ee}
 - $\lim eta / t_\infty$ depends on $\mathcal R$
 - Phase space volumes (to say nothing of physical measures) of rectangles vary increasingly more as *m* increases

Greedy refinements are physically natural

- Physical intuition suggests dealing with Markov partitions that have the most uniform possible phase space volumes
- Even for $\mu \neq$ phase space volume ν , this will tend to minimize β and maximize entropy/minimize effective free energy
 - First indication of a generalized variational principle
 - Can get finite limit for β even as entropy diverges

Greedy refinements are physically natural

- Physical intuition suggests dealing with Markov partitions that have the most uniform possible phase space volumes
- Even for $\mu \neq$ phase space volume ν , this will tend to minimize β and maximize entropy/minimize effective free energy
 - · First indication of a generalized variational principle
 - Can get finite limit for β even as entropy diverges
- For a rectangle R_j ∈ R with ν(R_j) maximal, the intersection of TR_j with rectangles in R determines subrectangles of TR that in turn determine various refinements of R under T⁻¹
- We call such a refinement of maximal entropy w.r.t. ν greedy
 - Generally not unique

Greedy refinements of \mathcal{R}''_A in eigencoordinates

$$\mathcal{R}''_{A,0} \equiv \mathcal{R}''_{A}$$

 $\begin{array}{l} \{(\nu/\nu_{\mathsf{min}},\mathsf{multiplicity})\} = \\ \{(\phi^2,1),(1,1)\} \end{array}$

$$1 \; \mathsf{GR} = 1 \; \mathsf{round} \mapsto \mathcal{R}''_{A,2}$$

 $\{(\phi, 3), (1, 1)\}$

$$1 \text{ GR} = 1 \text{ round} \mapsto \mathcal{R}''_{A,1}$$

 $\begin{array}{l} \{(\nu/\nu_{\mathsf{min}},\mathsf{multiplicity})\} = \\ \{(\phi,1),(1,2)\} \end{array}$

$$\mathsf{3}\;\mathsf{GRs}=1\;\mathsf{round}\mapsto\mathcal{R}''_{A,3}$$

 $\{(\phi, 4), (1, 3)\}$

Greedy refinements of \mathcal{R}_A and \mathcal{R}'_A in eigencoordinates

$$\mathcal{R}_{A,0} \equiv \mathcal{R}_A$$

 $\{ (\nu/\nu_{\min}, \text{multiplicity}) \} = \\ \{ (\phi^2, 2), (\phi, 2), (1, 1) \}$

 $\{(\phi, 3), (1, 1)\}$

2 GRs = 1 round $\mapsto \mathcal{R}_{A,1}$

 $\{(
u/
u_{\min}, \text{multiplicity})\} = \\ \{(\phi, 4), (1, 3)\}$

 $\{(\phi, 4), (1, 3)\}$

Greedy refinements stabilize rectangle measures

- For m > 0, both R_{A,m} and R'_{A,m} contain L_{m+1} and L_{m+2} rectangles of relative measure 1 and φ, respectively
 - Lucas numbers obey $L_{m+2} = L_{m+1} + L_m$ with $L_1 = 1$, $L_2 = 3$
- For m > 1, R["]_{A,m} contains L_{m-1} and L_m rectangles of relative measure 1 and φ, respectively

Greedy refinements stabilize rectangle measures

• For m > 0, both $\mathcal{R}_{A,m}$ and $\mathcal{R}'_{A,m}$ contain L_{m+1} and L_{m+2} rectangles of relative measure 1 and ϕ , respectively

• Lucas numbers obey $L_{m+2} = L_{m+1} + L_m$ with $L_1 = 1$, $L_2 = 3$

- For m > 1, R["]_{A,m} contains L_{m-1} and L_m rectangles of relative measure 1 and φ, respectively
- · Good reason to think that similar results hold more generally
 - E.g., the common limit of $\beta/t_{\infty} \approx 0.2393$ for all the cases above is apparently minimal/universal for the cat map
 - Even if this turned out not to hold in other cases, we could still take an extremum over Markov partitions with diminishing size

There are two archetypal Anosov flows

- "Suspension" of cat map generated by vector field e_z under twisted periodic boundary condition $(T_A x, z) \sim (x, z + 1)$
 - The *cat flow* can be analyzed in a manner similar to that of the cat map, and we get exactly the same limiting behavior
 - However unlike the cat map, the cat flow is not mixing, so its utility as a model physical system is comparatively limited

There are two archetypal Anosov flows

- "Suspension" of cat map generated by vector field e_z under twisted periodic boundary condition $(T_A x, z) \sim (x, z + 1)$
 - The *cat flow* can be analyzed in a manner similar to that of the cat map, and we get exactly the same limiting behavior
 - However unlike the cat map, the cat flow is not mixing, so its utility as a model physical system is comparatively limited
- Geodesic flow on surface of constant negative curvature
 - Corresponds to free particle Hamiltonian $\mathcal{H} = \frac{1}{2m} \sum_{ik} g^{jk} P_j P_k$
 - Geodesic flow is mixing and will give apparently geometry-independent effective temperature of free particle

BAE SYSTEMS

Geodesic flow in Poincaré disk model is tractable

- Differential arclength $ds = dr/(1 r^2)$
- Geodesics correspond to circular arcs intersecting S¹ at right angles
- Surface of constant negative curvature obtained by identifying pairs of edges s_j of hyperbolic polygon such as shown in top figure via maps $T_j(s_j) = s_{\sigma(j)}^{-1}$
 - Here s_i^{-1} is orientation reversal of s_j
 - Pairing $\sigma(j)$ indicated in bottom figure
 - Note that the pairing is not "twisted"
 - 8g 4 edges \Rightarrow genus g = # of holes
- Hamiltonian $\mathcal{H} = (1 r^2)^2 \cdot P^2/2m$

Timing map and Markov partition for geodesic flow

- Following Adler and Weiss, we instantiate edge pairing maps T_j en route to $T_R = (\text{timing/Poincaré map}) \circ (\text{isometry})$
 - Isometry \Rightarrow T_R is equivalent to timing map for our purposes
- We also instantiate a Markov partition $\mathcal R$ for $\mathcal T_R$
 - $T_R^m \mathcal{R}$ for g = 2, m = 0, 1, 2: rectangles consistently shaded
 - Get \mathcal{R}_m^{\vee} by intersecting rectangles in $T_R^0 \mathcal{R}, \ldots, T_R^m \mathcal{R}$

- Unlike the cat map, T_R is highly nonlinear
- Rationale of T_R vs. timing map: "rectangles are rectangles"
- Although $\mu = \nu$ in this case (as with HTAs), it is nontrivial:

$$\mu([x_1, x_2] \times [y_1, y_2]) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} \frac{|dx \ dy|}{|e^{ix} - e^{iy}|^2}$$

 We exploit a few tricks to numerically compute measures of rectangles in refinements of *R*

- Unlike the cat map, T_R is highly nonlinear
- Rationale of T_R vs. timing map: "rectangles are rectangles"
- Although $\mu = \nu$ in this case (as with HTAs), it is nontrivial:

$$\mu([x_1, x_2] \times [y_1, y_2]) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} \frac{|dx \ dy|}{|e^{ix} - e^{iy}|^2}$$

- We exploit a few tricks to numerically compute measures of rectangles in refinements of *R*
- First result: β/t_{∞} diverges nearly exponentially for \mathcal{R}_m^{\vee}
 - Difference in behavior vs. T_A due to lack of linear structure

106

- For greedy refinements, we have strong numerical evidence that lim β is nonzero, finite, and independent of genus g
 - Actually computing $\lim eta/t_\infty$, but in fact mixing time $\equiv 1/2$
- · Copies with different initial conditions give ideal gas
 - Weak coupling \Rightarrow thermometer

We numerically compute β for geodesic flow

We numerically compute entropy for geodesic flow

A conjecture for nonequilibrium statistical physics

- Intrinsic eta/t_∞ via (extremal limit over?) greedy refinements
- t_{∞} similar (but not identical) to mixing time
- Conjecture: the effective temperature for classical steady-state systems satisfying the chaotic hypothesis is well-defined and is equivalent to physical temperature
 - This would extend Ruelle's thermodynamical formalism to a more complete theory of statistical physics for nonequilibrium steady states in which not only entropy production rates but also temperature and energy could be meaningfully interpreted
- Some major obstructions to any proof
 - The simplicial complex of Markov partitions seems complicated
 - Hard to develop nonlinear estimates, spectral techniques, etc.

Physical background for Anosov systems

- Both Anosov and Markov systems obey a fluctuation theorem
- Generic form of FT: $\mathbb{P}\left(t^{-1}\Sigma_t = z\right) = e^{tz} \cdot \mathbb{P}\left(t^{-1}\Sigma_t = -z\right)$
 - $t^{-1}\Sigma_t$ is trajectory's mean entropy production rate to time t
- Generalizes Onsager and Green-Kubo relations linking fluxes and transport coefficients; gives 2nd law behavior
- Vast majority of work on the chaotic hypothesis concerned with things like entropy production rate, FT, etc.
 - · Precise meaning of "Anosov-like" in hypothesis not yet known
- We explore the chaotic hypothesis in an entirely different direction, providing evidence that reasonable notions of temperature and energy are defined for systems that obey it

Comparison with other approaches

- We do everything in terms of time data alone
 - That said, physical measures still provide a dynamical basis
 - Take seriously: "there is no conceptual difference between stationary states in equilibrium and out of equilibrium"
- In another approach, dynamical rates of expansion/contraction "provide an 'energy function' that assigns relative probabilistic weights to the coarse grained cells"
 - Define an effective temperature of a thermostat by $\dot{W}/\dot{\Sigma}$, where \dot{W} is the work rate of external forces on the system and $\dot{\Sigma}$ is the entropy production rate
 - This still requires a priori knowledge of an energy function of some sort in order to define a sensible notion of work rate-but we don't need anything like that in our approach

Towards generalization of these results

- Markov partitions, physical measures, etc. exhibit great regularity w.r.t. small perturbations of dynamics
- Although perturbed and especially weakly coupled lattices of cat maps or perturbed geodesic flows are not easily treated explicitly, they still behave nicely
 - Hence while our explicit examples deal with "microcanonical" ensembles, our results generalize to related systems in what amount to both canonical and nonequilibrium ensembles
 - Relevant ideas: thermostats, weakly coupled map lattices, etc.
 - Only case of obvious desired generalization with elusive approach is coupled geodesic flows (read: interacting gas)

BAE SYSTEMS