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AdS/CFT Correspondence

Holography: G. ’t Hooft (THU-93/26, ’93), L. Susskind (JMP 36, ’95)
AdS/CFT: J. Maldacena (ATMP 2, ’97)

Weak-strong duality.〈
e
∫
ddxφ0(x)O(x)

〉
CFT

= e−SSUGRA
∣∣∣
φ(0,x)=φ0(x)
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Anti-de Sitter Spacetime

Poincaré patch: ds2 = L2

r2 dr
2 + r2

L2 ηµνdx
µdxν .

Constant negative curvature, maximally symmetric spacetime.

Vacuum of Einstein-Hilbert S = 1
16πG

∫
dd+1x

√
−g(R− 2Λ) with

constant negative Λ (cosmological constant).

Embedding into Rd,2:
−(X0)2 + (X1)2 + · · ·+ (Xd)2 − (Xd+1)2 = −L2

Isometries: d(d−1)
2 rotations among X1,...,d, one rotation between

X0 and Xd+1, and 2d boosts mixing X0 and Xd+1 with X1,...,d.

Algebra of isometries is so(d, 2) .
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Conformal Field Theory

Translations Pµ = i∂µ

Rotations/boosts Jµν = 2ix[µ∂ν]

Dilatations D = ixµ∂µ

SCT Kµ = i(x2∂µ − 2xµx
ν∂ν)

Conformal algebra is so(d, 2) .

In 1 + 1d, extended to infinite Virasoro
algebra.

CFT fields form representations of the conformal algebra.
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AdS/CFT Textbook
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Quantum Information Theory in Holography

Entanglement probes of the bulk.
[0603011 Ryu, Takayanagi; 0705.0016 Hubeny, Rangamani, Takayanagi; 1408.3203 Engelhardt, Wall]

Quantum error correction =⇒ bulk reconstruction.
[1411.7041 Almheiri, Dong, Harlow]

Tensor networks =⇒ bulk-boundary maps.
[1601.01694 Hayden et. al.]

Holographic distance measures.
[pure: 1507.0755 Lashkari, van Raamsdonk; mixed: 1701.02319 Banerjee, Erdmenger, Sarkar]
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Previous Info Geom + Physics work

Ruppeiner (’95,’96) - stat phys and thermo (e.g., ideal gas)
Brody & Hook (2008) - stat phys and thermo (e.g., vdW gas)
Janke et. al. (2002, 2003) - 1d Ising & Spherical models
Dolan, Johnston, Kenna (2002) - Potts model
Amari (’97) - Neural networks
Ke & Nielsen (2016) - machine learning
Heckman (2013) - string theory
Blau, Narain, Thompson (2001) - YM instantons in 3+1-d
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Fisher Metric

x x
x

ξ

p
R

pξ(x) ≥ 0

∫
dx pξ(x) = 1

ξ
injective−−−−→ pξsmooth, ∂i ≡ ∂

∂ξi

Fisher metric: gij(ξ) ≡
∫
dx pξ(x) ∂i ln pξ(x) ∂j ln pξ(x)

Fact 1: gij(ξ) = −
∫
dx pξ(x) ∂i∂j ln pξ(x) and gij(ξ) = 4

∫
dx ∂i

√
pξ(x) ∂j

√
pξ(x)

Fact 2: gij is positive semi-definite.
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Gaussian Distribution

A simple example (1d Gaussians):

Random variable space is X = R.

Parameter space is Ξ = upper half-plane = (µ, σ) ∈ R× R>0

pµ,σ(x) = 1√
2π σ

e−
(x−µ)2

2σ2

ds2 =
dµ2 + 2dσ2

σ2

Alternative example: pµ,σ(x) = 1
πσ

σ2

(x−µ)2+σ2
gives ds2 = dµ2+dσ2

2σ2
.

Comments:
1. It is not true that all free theories have flat Fisher metrics.
2. This hyperbolic space is a priori unrelated to AdS/CFT.
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Exponential Family

Generalization of the Gaussian (Exponential Family):

pξ(x) = exp
[
C(x) + ξiFi(x)− ψ(ξ)

]
.

ψ(ξ) = ln
∫
dx exp

[
C(x) + ξiFi(x)

]
is a normalization factor.

Assume that {C,Fi} are lin. indep. so ξ → pξ is bijective.

gij(ξ) = ∂i∂jψ(ξ)

Fact: gij(ξ) = 〈(Fi − 〈Fi〉ξ)(Fj − 〈Fj〉ξ〉ξ where 〈f〉ξ ≡
∫
dx f(x) pξ(x).
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Symmetries

ξ → ξ̃(ξ) is a symmetry of p if it can be undone by x→ x̃(x)

pξ̃(x) dx = pξ(x̃) dx̃

Fact: a symmetry of p is also a symmetry of gij .

Gaussian example:

µ→µ+c−−−−−−−−→ x→x+c−−−−→

(µ,σ)→λ(µ,σ)−−−−−−−−→ x→λx−−−−−→
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Non-Uniqueness

Infinitely many distributions give the same information geometry
[Clingman, Murugan and Shock 2015]

E.g., 1d Gaussian and Cauchy-Lorentz give 2d hyperbolic space

Cauchy-Lorentz is not in the exponential family

Weirder example in Clingman, Murugan, Shock (2015) of a 3d
distribution that gives 2d hyperbolic space, but has none of its
symmetries.

14 32



Lessons

Many statistical models S can lead to the same Fisher metric
(Gaussian and Cauchy-Lorentz).

FM inherits the symmetries of S but can have more
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Classical metric on States: Instantons

Blau, Narain, Thompson (2001) - YM instantons in 3+1-d

Uses prescription of Hitchin (1990): probability distribution is
taken to be the Lagrangian density evaluated on the state.

Simpler model:
∫
d4x
(
∂µφ∂

µφ− g2φ4
)
(Euclidean signature)

Exact solution to e.o.m.: φ~µ,σ(~x) = 2
gσ

σ2

|~x−~µ|2+σ2

Lagrangian density: L~µ,σ(~x) = 16σ2

g2
|~x−~µ|2−σ2

(|~x−~µ|2+σ2)4

L~µ,σ(~x) < 0 for |~x− ~µ| < σ, so not a good prob. distr.

If instead we use −φ∂2φ− g2φ4, we get p~µ,σ(~x) = 16
g2

σ4

(|~x−~µ|2+σ2)4

and the information geometry is 5d hyperbolic space.
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Lessons

Many statistical models S can lead to the same Fisher metric
(Gaussian and Cauchy-Lorentz).

FM inherits the symmetries of S but can have more

FM on the states of a field theory can be sensitive to stability
(scalar instanton).
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Classical metric on Theories: 2d Ising Model

Geometry of space of couplings of a theory.

2d classical Ising model on a square lattice:

H = −J
N∑

i,j=1

σi,jσi+1,j −K
N∑

i,j=1

σi,jσi,j+1

Partition function: Z =
∏
i

∑
σi=±1 e

−βH(σ)

Probability distribution: pβJ,βK(σ) = 1
Z e
−βH(σ).

This is in the exponential family!

gij = ∂i∂jf where f is the reduced free energy per site
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2d Ising Model Fisher Metric Ricci Scalar

(a) Ricci curvature as function of
couplings J,K (β = 1)

disordered phase

ferromagnetic phase

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

βJ

βK

(b) 2d Ising Model phase
diagram for βJ, βK ≥ 0

The scalar curvature diverges at the critical curve given by

sinh(2βJ) sinh(2βK) = 1
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Lessons

Many statistical models S can lead to the same Fisher metric
(Gaussian and Cauchy-Lorentz).

FM inherits the symmetries of S but can have more

FM on the states of a field theory can be sensitive to stability
(scalar instanton).

FM on the space of theories is sensitive to phase transitions
(2d Ising model)
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2d Isotropic IsingModel and 1dMajorana Fermions

Set J = K = 1 and the critical temp. is βc = 1
2 ln
(√

2 + 1
)
≈ 0.44.

gββ is the specific heat:

gββ =
d2f

dβ2
' ln

1

|β − βc|
' ln

1

|m|
,

where m = 2
( tanhβc

tanhβ − 1
)
.

Well-known effective theory: S =
∫
d2z
2π

(
ψ∂ψ + ψ∂ψ + imψψ

)
.

Can we reproduce the ln 1
|m| divergence of the Fisher metric in

the effective field theory?
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2d Isotropic IsingModel and 1dMajorana Fermions

c.f. B. P. Dolan (1998): take p to be the path integrand.

In a QFT with action S, the Fisher metric on the couplings ξi is

gij =
1

spacetime vol

(
〈∂iS ∂jS〉 − 〈∂iS〉〈∂jS〉

)
.

If ξi and ξj are masses, then 〈∂iS ∂jS〉 is 4-pt and 〈∂iS〉 is 2-pt.

For a free theory, the 4-pt reduces to 2-pt fns.

For the free 1d Majorana fermion theory,

gmm '
∫ Λ

0

p dp

p2 +m2
' ln

Λ

|m|
' ln

1

|m|
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Quantum metric on States: Divergences

Divergence: bifunctional D(p||q) of two distributions p and q.

D is a measure of how “different” q is from p (D = 0 iff q = p).

e.g., D(α)(p||q) = 4
1−α2

(
1−

∫
dx p

1+α
2 q

1−α
2

)
for α ∈ R.

The α = 1 limit is the Kullback-Leibler divergence, or relative
entropy D(1)(p||q) =

∫
dx p ln p

q .

gij(ξ) = ∂2

∂ξ′i ∂ξ′j
D(pξ||pξ′)

∣∣
ξ′=ξ
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Quantum metric on States: Bures Metric

A quantum state is described by a density matrix ρ.

p→ ρ and “
∫
p dx = 1”→ “trρ = 1”.

Bures distance DB(ρ1, ρ2) = 2
(
1−

∣∣tr√ρ1/2
1 ρ2ρ

1/2
1

∣∣)
For pure states DB(|ψ1〉, |ψ2〉) = 2

(
1−

∣∣〈ψ1|ψ2〉
∣∣).

The Bures metric is the leading (quadratic) term in the expansion
of DB around ρ2 ≈ ρ1.
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Quantum metric on States: Coherent States

c.f. Nozaki, Ryu, Takayanagi (2012)

Two free Majorana fermions {a, a†} = {b, b†} = 1.

Fermionic coherent state: |ψλ〉 =
√

1
1+|λ|2 e

−λa†b† |Ω〉 with λ ∈ C.

One free complex scalar [a, a†] = [b, b†] = 1.

Bosonic coherent state: |ψλ〉 =
√

1− |λ|2 e−λa†b† |Ω〉 with λ ∈ C.

Fermions: ds2 = dλ dλ
(1+|λ|2)2 and Bosons: ds2 = dλ dλ

(1−|λ|2)2

Fermions: 2-sphere and Bosons: 2d hyperbolic space
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Symmetries of the Bures Metric

Symmetry of a family of density matrices: ρξ → ρξ′ = UρξU
† for

some (special) unitary matrix U .

The Fermionic coherent state contains only |Ω〉 and a†b†|Ω〉.

In this 2d space, ρλ = 1
2

(
I + n̂λ · ~σ

)
, where ~σ = Pauli matrices and

n̂λ is a real unit 3d vector built out of λ.

A general 2× 2 special unitary matrix takes the form U = eiθn̂·~σ

for some angle θ and axis n̂.

Conjugation of ρλ by U = eiθn̂·~σ rotates n̂λ by θ around n̂.

Symmetry algebra of ρλ is su(2) = so(3) .

The metric must be that of the 2-sphere.

In fact, ds2 = 1
4dn̂λ · dn̂λ.
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Symmetries of the Bures Metric

The Bosonic coherent state has 1
n!(a

†b†)n|Ω〉 for n = 0, 1, . . ..

The (m,n)-comp. of ρλ is (ρλ)m,n = (−1)m+n(1− |λ|2)λmλ
n.

The symmetry algebra of ρλ is so(2, 1) .

(1, 2)-rotation by θ: Umn = eimθδmn.

(1, 3)-boost by ε� 1: Umn = δmn + ε
2(mδm,n+1 − nδm+1,n).

(2, 3)-boost by ε� 1: Umn = δmn + iε
2 (mδm,n+1 + nδm+1,n).

The metric must be that of the 2d hyperbolic space.

In fact, ds2 = 1
4dm̂

†
λ

(
1 0 0
0 1 0
0 0 −1

)
dm̂λ for some m̂λ.
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Lessons

Many statistical models S can lead to the same Fisher metric
(Gaussian and Cauchy-Lorentz).

FM inherits the symmetries of S but can have more

FM on the states of a field theory can be sensitive to stability
(scalar instanton).

FM on the space of theories is sensitive to phase transitions
(2d Ising model)

The Bures metric defines a metric on quantum states
(coherent states).
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Curvature

α-connection: Γ
(α)
ij,k = 〈(∂i∂j`ξ + 1−α

2 ∂i`ξ ∂j`ξ)∂k`ξ〉ξ where ` = ln p.

Exercise: Γ(α)
ij,k

=
∂3D(α)(pξ||pξ′ )

∂ξ′i ∂ξ′j ∂ξ′k

∣∣∣
ξ′=ξ

− ∂kgij

α = 0 corresponds to the standard Christoffel symbols.

α 6= 0 is not a metric connection (ie., ∇(α)
k gij 6= 0).

The exponential family is 1-flat.

What physics is captured by the different curvatures?

2 + 1d Chern-Simons: S = 1
4π tr

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)
gives the

e.o.m. dΓ + Γ ∧ Γ = 0.

Vanishing 1-curvature could be a particular solution.
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Lessons

Many statistical models S can lead to the same Fisher metric
(Gaussian and Cauchy-Lorentz).

FM inherits the symmetries of S but can have more

FM on the states of a field theory can be sensitive to stability
(scalar instanton).

FM on the space of theories is sensitive to phase transitions
(2d Ising model)

The Bures metric defines a metric on quantum states
(coherent states).

Many concepts of curvature. What do they all mean?
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Outlook

What do all the curvatures mean? What physics is captured?

Can we apply these concepts to Nielsen’s ideas of
geometrizing the space of states to define complexity?

Can we apply these concepts to holographic
renormalization? Can we map RG flow as literal “loss of
information”?

How to get gravitational dynamics this way?

Recent work by Iqbal and McGreevy associating a modified
3d Ising model with a string theory. Application here? Maybe
following Heckman’s info geom and string theory work?

Thank you very much for listening!

31 32



Outlook

What do all the curvatures mean? What physics is captured?

Can we apply these concepts to Nielsen’s ideas of
geometrizing the space of states to define complexity?

Can we apply these concepts to holographic
renormalization? Can we map RG flow as literal “loss of
information”?

How to get gravitational dynamics this way?

Recent work by Iqbal and McGreevy associating a modified
3d Ising model with a string theory. Application here? Maybe
following Heckman’s info geom and string theory work?

Thank you very much for listening!
31 32



Thanks for listening!
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